Part 1 of Reading Course

Introduction to de Rham cohomology

Thomas Church

[If you have Eliashberg's notes from Math $52 \mathrm{H} / 62 \mathrm{CM}$, read §7.1 and §7.4.]
We are interested in understanding the operator d, which takes a function f on \mathbb{R}^{n}, and produces a covector field $d f$ on \mathbb{R}^{n}. In general, if f is a function on any manifold M, then $d f$ will be a covector field on M; but for now we stick with the case $M=\mathbb{R}^{n}$.
Covector fields. In fact, let us work with \mathbb{R}^{2}, since we can see everything important there. The standard coordinates give us 2 "basic" covector fields on \mathbb{R}^{2}, called $d x$ and $d y$. The first is the covector field which (at each point) sends a vector to its x-coordinate, and the second is the covector field which (at each point) sends a vector to its y-coordinate.

Every covector field ω on \mathbb{R}^{2} can be written uniquely as $\omega=\alpha d x+\beta d y$ for unique functions α and β on \mathbb{R}^{2}. (Think about why this is!)
The operator d. We can define the operator d very simply: given a function f on \mathbb{R}^{2}, we define

$$
d f \stackrel{\text { def }}{=} \frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y
$$

For example, for the function $f(x, y)=x y^{2}$ on \mathbb{R}^{2}, we have $d f=y^{2} d x+2 x y d y$. [If you have Eliashberg's notes, compare with $\S 7.1$ for a conceptual explanation of $d f$ as a linear approximation.]

On \mathbb{R}^{1} this is even simpler: given a function f on \mathbb{R}^{1}, we have just

$$
d f \stackrel{\text { def }}{=} \frac{\partial f}{\partial x} d x
$$

Exercises.

1. (Warm-up) For $f(x, y)=e^{x+y^{2}}$, what is $d f$? For $g(x, y)=2 x+3 y$, what is $d f$?
2. Let ω be the covector field $\omega=x d x+y d y$ on \mathbb{R}^{2}. Find a function f on \mathbb{R}^{2} such that $d f=\omega$.
3. Let ω be an arbitrary covector field on \mathbb{R}^{1}. Prove that there exists some function f on \mathbb{R}^{1} such that $d f=\omega$. (Hint: write $\omega=\alpha d x$ for some function α.)
4. In contrast with Exercise 3: give an example of a covector field $\omega=\alpha d x+\beta d y$ on \mathbb{R}^{2} for which there cannot exist any function f with $d f=\omega$.
5. (Challenge) Let $\omega=\alpha d x+\beta d y$ be a covector field on \mathbb{R}^{2}. Describe precise conditions on α and β that guarantee that there does exist a function f with $d f=\omega$.
(Challenge) When these conditions are satisfied, how can we actually find the function f ?
6. (Challenge) Let C be the unit circle. In contrast with Exercise 3, describe a covector field ω on the unit circle C for where there does not exist any function f on C with $d f=\omega$. [This will require thinking about how you want to describe a covector field on C.]
[^0]
[^0]: ${ }^{1}$ A vector field is a choice, at each point of \mathbb{R}^{n}, of a vector there; similarly a covector field is a choice, at each point of \mathbb{R}^{n}, of a linear function from vectors there to \mathbb{R}. (Eventually we will use the term "differential 1-form" instead of "covector field".)

