Definitions, background

Braid group: \(B_n := \{1, 2, \ldots, n\} \) on top + bottom modulo time-preserving isotopy

Composition: \(\chi \chi' \cdot 1 \chi'' = \chi \chi' \chi'' \)

Identity: \(1 \)

Generators: \(\sigma_i \)

Proof: avoid triple points

A = \sigma_i, B = \sigma_j

"braided relation" Theorem (Artin): \(B_n = \langle \sigma_i | \sigma_i \text{ and } \sigma_j \text{ braid, commute, } i \neq j \rangle \)

By following strands: \(1 \to P_n \to B_n \to S_n \to 1 \)

\(\sigma_i \mapsto (i \ i+1) \)

P_n "pure braid group" generated by \(T_{i,j} \)

Proof 1: \(S_n \) has presentation

\[
\langle S_i = (i \ i+1) | S_i^2 = 1, S_i \text{ and } S_j \text{ braid, commute} \rangle
\]

(coxeter group)

General lemma:

Given \(1 \to K \to G \to H \to 1 \), \(g_i \) generators for \(G \), and a presentation of \(K \) is normally generated in \(G \) by those relations \(R_j \) that don't lift to \(H \).

Proof: \(G/\langle R_j \rangle \) is a presentation for \(H \).

So lifting \(s_i \) to \(\sigma_i \), we find \(P_n \) is generated by the \(B_n \)-conjugates of \(\sigma_i^2 = T_{i,i+1} \).

Check that \(T_{i,j} \) generate all conjugates.

Proof 2. Forgetting last strand gives

\[
\begin{array}{c}
\text{kernel:} \\
\end{array}
\]

\(1 \to F_n \to P_{n+1} \to P_n \to 1 \)

\(P_{n+1} = F_n \times P_n \)

By induction, \(P_n \) generated by \(T_{i,i+1} \)

\(F_n \) generated by \(T_{i+1,i} \).

\(P_{n+1} = F_n \times P_n \) yields presentation for \(P_n \) inductively.
Configuration spaces:
Consider \(\mathcal{S} \) as a movie \(I \), we see \(n \) points moving in the plane.

Each strand traces out \(\gamma_i(t) \), \(w/ \gamma_i(t) \neq \gamma_j(t) \) and \(\gamma_i(0)=\gamma_i(1)=i \) (pure braid).

Key definition: \(X_n := C^n \setminus \Delta = C^n \setminus \{ \text{any } z_i=z_j \} \)
\(\bar{p}=(1,\cdots,n) \) a pure braid \(\rightarrow \) an \(n \)-strand movie \(\rightarrow \) \(n \) loops \(\bar{\gamma} \) one loop \(\bar{\gamma} \) in \(X_n \)
\(\bar{\gamma}(0)=\bar{\gamma}(1)=\bar{p} \) level-preserving isotopy \(\rightarrow \) homotopy of \(\bar{\gamma} \)

Thus: \(P_n=\pi_1(X_n,\bar{p}) \)
If \(Y_n=X_n/S_n \) is the unordered configuration space, \(B_n=\pi_1(Y_n,\bar{p}) \)

Cohomology groups of \(P_n \)
Natural projection \(X_{n+1} \rightarrow X_n \), fiber over \(\bar{p}=(1,\cdots,n) \) is \(C \setminus \{ 1,\cdots,n \} \), is a fiber bundle.
Corollary: \(X_n \) is a \(K(P_n,1) \). Proof: LES in homotopy shows \(F \rightarrow E \rightarrow B \) if \(F \) and \(B \) are aspherical, so is \(E \). Induction on \(n \).

Claim: \(H^*(P_n) \cong H^*(Z) \otimes H^*(F_2) \otimes H^*(F_3) \otimes \cdots \otimes H^*(F_{n-1}) \) as abelian groups.

Proof: Consider Leray-Serre spectral sequence for \(C \setminus \{ 1,\cdots,n \} \rightarrow X_{n+1} \rightarrow X_n \).
Note we have a section (explicitly \((z_i) \mapsto (z_i, \frac{z_1+\cdots+z_n}{n}+2 \max |z_i-z_j|+1) \))
corresponding to splitting \(P_n=F_n \times P_n \).

Since \(H^*(C \setminus \{ 1,\cdots,n \}) \) is only \(H^0=\mathbb{Z} \), \(H^1=\mathbb{Z}^n \), and action of \(P_n \) is trivial (pure braid group),

\(E_2 \) page looks like
\[
\begin{array}{c}
H^0(X_n) \otimes \mathbb{Z} & H^1(X_n) \otimes \mathbb{Z} & \cdots & H^n(X_n) \otimes \mathbb{Z} \\
H^0(F_n) \otimes \mathbb{Z} & H^1(F_n) \otimes \mathbb{Z} & \cdots & H^n(F_n) \otimes \mathbb{Z}
\end{array}
\]
(same as for direct product \(F_n \times P_n \))

Existence of section \(X_n \rightarrow X_{n+1} \) implies \(d_2 \) is zero (black box), and all later differentials are 0,
so \(E_2=E_3=\cdots=E_\infty \). By induction, everything is free abelian, so no extension problems.

Corollary: \(H^*(P_n) \) is torsion-free.
Cup product in $H^*(\mathbb{P}^n)$

Generators for $H^*(\mathbb{P}^n) \cong \text{Hom}(\mathbb{P}^n, \mathbb{Z})$ given by

$W_{ij}: \mathbb{P}^n \to \mathbb{Z}$ measuring winding of i^{th} strand around j^{th}

$W_{ij}(T_{ij}) = 1$, $W_{ij}(T_{ji}) = 0$

Fundamental relation:

$W_{ij} \wedge W_{jk} + W_{jk} \wedge W_{ki} + W_{ki} \wedge W_{ij} = 0$ in $H^2(\mathbb{P}^n)$ (call this $R_{ijk} = 0$)

Corollary: $H^*(\mathbb{P}^n) = \Lambda^*[W_{ij}] / (R_{ijk})$.
Proof: spectral sequence implies $H^*(\mathbb{P}^n)$ generated by W_{ij}, so the natural map $\Lambda^*[W_{ij}] / (R_{ijk}) \to H^*(\mathbb{P}^n)$ is onto. Calculation shows ranks are the same, thus isomorphism.

3 proofs of fundamental relation (de Rham, bar cochain, Sullivan theory)

Proof 1:
Define $\omega_{ij} = \frac{dz_i - dz_j}{z_i - z_j} \in \Omega^2(\mathbb{P}^n, \mathbb{C})$.

Note $\omega_{ij} = d(\log(z_i - z_j))$ so ω_{ij} is closed;

Cauchy integral formula $\Rightarrow \int_\gamma \omega_{ij} = \text{winding number of } \gamma_i \text{ around } \gamma_j$

Claim: the 2-form below is identically 0 at every point:

$P_{ijk} = \left(\frac{dz_i - dz_j}{z_i - z_j} \right) \wedge \left(\frac{dz_j - dz_k}{z_j - z_k} \right) + \left(\frac{dz_j - dz_k}{z_j - z_k} \right) \wedge \left(\frac{dz_k - dz_i}{z_k - z_i} \right) + \left(\frac{dz_k - dz_i}{z_k - z_i} \right) \wedge \left(\frac{dz_i - dz_j}{z_i - z_j} \right)$

Proof of claim: would suffice to expand and collect terms.

We can set $z_i - z_j = a$, etc., so this is $\frac{A \wedge B}{ab} + \frac{B \wedge C}{bc} + \frac{C \wedge A}{ca}$.

Clear denominators and note $A + B + C = 0$, $ab + bc + ca = 0$.

$\text{abc}P_{ijk} = cA \wedge B + aB \wedge C + bC \wedge A$

$= (a + b)A \wedge B + aB \wedge (A + B) + b(-A - B) \wedge A$

$= ((a + b) - b)A \wedge B$

$= 0$.

Thus $R_{ijk} = 0$ in $H^2(\mathbb{P}^n, \mathbb{C})$. Since $H^*(\mathbb{P}^n)$ is torsion-free, $R_{ijk} = 0$ in $H^2(\mathbb{P}^n)$.

Corollary to claim: $W_{ij} \mapsto \omega_{ij}$ defines an injection $H^*(\mathbb{P}^n) \hookrightarrow \Omega^*(\mathbb{P}^n, \mathbb{C})$ into the algebra of closed differential forms.

Corollary: \mathbb{P}^n is formal (in the sense of Sullivan theory).