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Abstract.
In underwater acoustic waveguides a pressure field can be decomposed over three kinds of modes: the prop-

agating modes, the radiating modes and the evanescent modes. In this paper, we analyze the effects produced
by a randomly perturbed free surface and an uneven bottom topography on the coupling mechanism between
these three kinds of modes. Using an asymptotic analysis based on a separation of scales technique we derive
the asymptotic form of the distribution of the forward mode amplitudes. We show that the surface and bottom
fluctuations affect the propagating-mode amplitudes mainly in the same way. We observe an effective amplitude
attenuation which is mainly due to the coupling between the propagating modes themselves. However, for the
highest propagating modes this mechanism is stronger and due to an efficient coupling with the radiating modes.
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Introduction. Acoustic wave propagation in waveguides has been studied for a long time
because of its numerous domains of applications. One of the most important application is
submarine detection with active or passive sonars, but it can also be used in underwater com-
munication, mines or archaeological artifacts detection, and to study the ocean’s structure or
ocean biology. Underwater acoustic waveguide are used to model acoustic wave propagation
media such as a continental shelves. These environments are very complex media because of
indices of refraction with spatial and time dependences. However, the sound speed in water,
which is about 1500m/s, is sufficiently large with respect to the motions of water masses so that
we can consider this medium as being time independent. Moreover, the presence of small spatial
inhomogeneities in the water, heave or the ocean bottom roughness can induce significant effects
over large propagation distances.

The effects of random boundaries has been studied in many physical setups. For instance,
for fluid flows in a medium with random boundaries has been studied in [3], for water wave
propagation with a free surface or a random depth has been studied in [8, 13], and also in wave
propagation in underwater acoustics with a perturbed sea surface [7, 22, 23, 26]. Mathematical
studies regarding acoustic wave propagation in randomly perturbed waveguides have been carried
out in many papers [10, 11, 12, 14, 15, 17, 19], but only under the rigid-lid assumption at the
waveguide boundaries, and with random perturbations inside the waveguide through variations
of the index of refraction. Recently, waveguides with a bounded cross-section and randomly
perturbed boundaries have been considered in [2]. Using a change of coordinates the authors
show that the scattering effects differ from the ones produced by internal perturbations (see [10]).
In this paper, we consider a two-dimensional acoustic waveguide model with a Pekeris profile
(unbounded cross-section), a randomly perturbed free surface, and uneven bottom topography
(see Figure 0.1). Our approach is based on a conformal transformation providing a smooth change
of coordinates and allowing the use of the modal decomposition of the unperturbed waveguide
(see Figure 0.1 (a)). In our model a propagating field can be decomposed over three kinds of
modes: the propagating modes which propagate over long distances, the evanescent modes which
decrease exponentially with the propagation distance, and the radiating modes representing
modes which can penetrate under the ocean bottom. Using an asymptotic analysis based on
a separation of scale technique described in Section 1, we show in this paper that the random
perturbations of the waveguide geometry induce a mode coupling between the three kinds of
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Figure 0.1. Illustration of two semi-infinite waveguides with a Pekeris profile. In (a) an unperturbed
waveguide with the rigid-lid assumption is considered. In (b) a perturbed waveguide with a free surface and an
uneven bottom topography is considered. In the two cases the waveguide are homogeneous in the interior with
propagation speed profile c(z,x) equal to c1 in the ocean section of the waveguide, and c0 in its bottom.

modes. Theorem 4.1, Theorem 4.2, and Theorem 4.3 describe the coupling mechanisms between
the propagating and the radiating mode amplitudes in term of diffusion models but taking into
account the effects produced by the evanescent modes. These mechanisms are similar to the ones
observed in [15] and produce an effective attenuation of the mode amplitudes (Theorem 1.1 and
see Section 4.2). It turns out that the surface and bottom fluctuations affect the propagating-
mode amplitudes mainly in the same way. However, for almost all the propagating modes the
attenuation mechanism is mainly due to the coupling between the propagating mode themselves.
Nevertheless, for the highest propagating modes the attenuation mechanism is due to the coupling
with the radiating modes, and it is significantly stronger than for the other modes.

The organization of this paper is as follows. In Section 1 we present the waveguide model
and give a summary of the tools before introducing the main result of this paper. The remaining
of the paper consists in introducing more precisely the tools, and techniques used to prove the
results. In Section 2 we introduce the conformal transformation. In Section 3 we study the mode
coupling mechanism when the three kinds of modes are taken into account and we derive the
coupled mode equations. In Section 4, under the forward scattering approximation, we study
the asymptotic form of the joint distribution of the propagating and radiating mode amplitudes.
Finally, we precisely describe the attenuation of the propagating-mode amplitudes.

1. Waveguide Model and Main Result
Throughout this paper, we consider a two-dimensional linear acoustic wave model. We

assume that the acoustic pressure satisfies the wave equation

∆p− 1
c2ε(z,x)

∂2p

∂t2
=F (t,z,x)∈R×R×R∗+, (1.1)

with ∆ =∂2
x+∂2

z . Here, the coordinate z represents the propagation axis along the waveguide,
and the coordinate x represents the transverse section of the waveguide (see Figure 0.1). Let
d>0 be the average ocean depth, we consider the velocity field given by

cε(z,x) =
√
Kε(z,x)/ρε(z,x) =

{
c1 if x∈ (V εs (z),d+V εb (z)),
c0 if x∈ [d+V εb (z),+∞), z∈R, (1.2)

where V εs and V εb model respectively the free surface and the bottom topography (see Figure 1.1
for an illustration). In our context, the free surface can model heave produced by the speed of the
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Figure 1.1. Illustration of the waveguide model. In this figure d represents the mean ocean depth, and the
random fluctuations are given by the graphs of V εs at the free surface, and d+V εb at the bottom of the waveguide
model. We illustrate the source term F emitting a wave f(t) is the z-direction. L/ε characterizes the size of the
section in which the random fluctuations are included (see (1.4)). The right arrow (with a 0) pointing to the left
at z=L/ε indicates that no wave is coming from the right at the end of the random section.

wind, and the uneven bottom topography can model a sandy bottom with variations produced
by water currents [20]. The forcing term F(t,z,x) is given by

F(t,z,x) =f(t)Ψ(x)δ(z−LS)ez, (1.3)

where ez is the unit vector pointing in the z-direction. This term models a source located in
the plane z=LS , emitting a signal f(t) in the z-direction with transverse profile Ψ supported in
(0,d) (see Figure 1.1).

Moreover, from the continuity of the pressure field at the free surface x=V εs (z), which is
tantamount to neglect the surface tension, the wave equation (1.1) is complemented by the
following boundary conditions

p(t,z,V εs (z)) =psurface ∀(t,z)∈R×R,

where psurface is the atmospheric pressure. However, one can assume without loss of generality
that

psurface= 0,

and then consider Dirichlet boundary conditions at the free surface, which corresponds to a
pressure-release condition.

Waveguide models with a Pekeris profile (1.2) have been extensively studied for half a century
[31], and has been widely used to model an ocean with a constant propagation speed profile (see
Figure 0.1). Such conditions can be found during the winter in Earth’s mid latitudes and in
water shallower than about 30 meters [24]. This profile is convenient for computations but it
underestimates the real complexity of the medium. Nevertheless, the analysis carried out in this
paper can be extended to more general propagation speed profiles. This model can also be used
for electromagnetic waveguides such as dielectric slabs or optical fibers with randomly perturbed
boundaries [27, 28, 33, 38].

In the definition of the sound speed profile (1.2), V εs and V εb are given by

V εs (z) =
√
εVs(z/lc)fs(εz), and V εb (z) =

√
εVb(z/lc)fb(εz), with ε�1. (1.4)

We assume that Vs and Vb are two independent mean zero stationary bounded stochastic pro-
cesses, and fs and fb are two smooth functions with support included in (εη,L) (with η>0).
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Therefore, fs(εz) and fb(εz) represent the locations of the random fluctuations of the free surface
and the bottom topography for z∈ (η,L/ε). The scaling of fb and fs has been chosen according
to the size of the random fluctuations (

√
ε�1). In fact, wind speeds at about 5m/s induce a

standard deviation of the surface roughness at about 0.1m, and the same order of magnitude
can be considered for the roughness of sandy bottoms (see [20, Chapter 2] and [23]). Therefore,
we have to wait for long propagation distances (of order 1/ε) to observe significant cumulative
stochastic effects on the pressure wave. Let us note that the two random processes Vs and Vb in
(1.4) are assumed to be independent since the surface and bottom standard deviations are small
compared to the ocean depth, and then the bottom topography does not produce any ripples
on the free surface. In this paper we consider the power spectral densities for Vs and Vb (i.e the
Fourier transform of their autocorrelation functions) given by (see [20, Chapter 2, Section 2.4
and Section 2.9])

Is(u) =
∫
Rs(z)eiuzdz= C1,s

|u|αIs
e
− C2,s
|u|µIs and Ib(u) =

∫
Rb(z)eiuzdz= Cb

4π(v2 +1)αIb/2
, (1.5)

with C1,s,C2,s,Cb>0, and

Rs(z) =E[Vs(z+z0)Vs(z0)] and Rb(z) =E[Vb(z+z0)Vb(z0)].

In [20, Chapter 2, Section 2.4 and Section 2.9] the authors refer to αIb = 4, αIs = 6 and µIs = 2
(Pierson-Neuman spectra), or αIs = 5 and µIs = 4 (Pierson-Moscovitz spectra). Consequently,
the trajectories of V εs and V εb are at least of class C2 with bounded derivatives, and therefore the
surface fluctuations given by the graph V εs do not have breaking waves. Regarding the mixing
properties of V εs and V εb , we assume that Vs and Vb in (1.4) are φ-mixing processes [25], that is
considering the σ-algebras

Fz =F0,z =σ(Vs(u),Vb(u), 0≤u≤z) and Fz,+∞=σ(Vs(u),Vb(u), z≤u), (1.6)

we have

sup
z≥0

A∈Fz+u,+∞
B∈F0,z

|P(A|B)−P(A)|≤φ(u), with φ∈L1(R)∩L1/2(R). (1.7)

To study the asymptotic behavior of the acoustic pressure wave in the perturbed waveg-
uide domain, we use a change of coordinates through a conformal transformation [34] described
precisely in Section 2, from

D0 =
{
u+ iv∈C, such that u>0

}
onto DVs =

{
z+ ix∈C, such that x>V εs (z)

}
,

and allowing us to study the pressure wave p(t,z,x) in a waveguide domain with a flat surface
(see Figure 1.2). As a result, one can focus our attention on p0(t,u,v) defined by

p0(t,u,v) =p(t,z(u,v),x(u,v)),

which represents the pressure wave p(t,z,x) solution of (1.1) in a waveguide domaine with a flat
surface, and where z(u,v)+ ix(u,v) = Φ(u+ iv) is the change of coordinates from D0 onto DVs .
Thanks to this transformation the acoustic pressure wave p0 satisfies now Dirichlet boundaries
conditions at the flat surface of the waveguide:

p0(t,u,0) = 0, ∀(t,u)∈R×R.
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Figure 1.2. Schematic representation of the change of coordinates from the unperturbed domain D0 onto
the perturbed domain DVs .

Moreover, the original pressure wave p(t,z,x) can be recovered from p0(t,u,v) by inverting the
change of coordinates:

p(t,z,x) =p0(t,Re(Φ−1(z+ ix)),Im(Φ−1(z+ ix))).

We show in Section 2 that this change of coordinates transforms the random fluctuations of the
free surface to random fluctuations in the interior and at the bottom of the waveguide (see Figure
3.1).

By taking the Fourier transform in time of p0

p̂0(ω,u,v) =
∫
p0(t,u,v)eiωtdt with p0(t,u,v) = 1

2π

∫
p̂0(ω,u,v)e−iωtdω, (1.8)

one can decompose the monochromatic pressure field p̂0(ω,u,v) as

p̂0(ω,u,v) =
N(ω)∑
j=1

p̂j(ω,u)φj(ω,v)︸ ︷︷ ︸
propagating modes

+
∫ k2(ω)

0
p̂γ(ω,u)φγ(ω,v)dγ︸ ︷︷ ︸

radiating modes

+
∫ 0

−∞
p̂γ(ω,u)φγ(ω,v)dγ︸ ︷︷ ︸
evanescent modes

. (1.9)

This modal decomposition corresponds to the spectral decomposition of the (unperturbed)
Pekeris operator defined by

Rω = d2

dv2 +k2(ω)n2(v) with n(v) =
{
n1 = c0/c1>1 if v∈ (0,d),

1 if v∈ [d,+∞). (1.10)

The spectral properties of this operator are recalled in Section 5.1, and here φj(ω,u) (j∈{
1,. ..,N(ω)

}
) and φγ(ω,u) (∀γ∈ (−∞,k2(ω))) are the eigenelements of this operator. Moreover,

k(ω) =ω/c0 is the wavenumber, c0 is the propagation speed in the bottom of the waveguide model,
and N(ω) is the number of propagating modes. The coefficients p̂j(ω,u) (j∈

{
1,. ..,N(ω)

}
) and

p̂γ(ω,u) (∀γ∈ (−∞,k2(ω))) represent the amplitudes of each kind of modes (propagating, radi-
ating, and evanescent modes).

In (1.9), the propagating modes can propagate over long distances, while the amplitudes
of the evanescent modes decrease exponentially with the propagation distance. Finally, the
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radiating modes represent modes which can penetrate under the ocean bottom. Thanks to
this decomposition, one can study the effects of the random fluctuations on the pressure field
p̂0(ω,u,v) through an aymptotic analysis of the mode coupling precisely described in Section 3
and Section 4. As a result, by neglecting the backscattering effects during the propagation and
because of the strong attenuation of the evanescent modes, the expected pressure field p̂0 at the
end of the perturbed section (u=L/ε) can be approximated for ε�1 by

E
[
p̂0

(
ω,
L

ε
,v
)]
'
N(ω)∑
j=1

âj,0(ω)√
βj(ω)

e−Tj(ω,L)+iPj(ω,L)eiβj(ω)L/εφj(ω,v)

+
∫ k2(ω)

0

âγ,0(ω)
γ1/4 ei

√
γL/εφγ(ω,v)dγ

'
N(ω)∑
j=1

âj,0(ω)√
βj(ω)

e−Tj(ω,L)+iPj(ω,L)eiβj(ω)L/εφj(ω,v),

(1.11)

because of the fast oscillating integral. In (1.11) we have introduced the modal wavenumbers
(β1(ω),. ..,βN(ω)(ω)) of the propagating modes and (√γ)γ∈(0,k2(ω)) for the radiating modes. Here,
â0(ω) is the initial amplitude of the modes generated by the source and entering in the random
section. One can observe that in the asymptotic ε→0 the radiating modes are not affected by
the fluctuations but do not propagate over large distance. Only the propagating modes exhibit
frequency-dependent attenuations and phase-modulations through Tj(ω,L) and Pj(ω.L). These
coefficients are precisely described in Section 4.2 with a particular interest in the mode-dependent
and frequency-dependent attenuation Tj(ω,L). These terms are of the form

Tj(ω,L) =Csj (ω)
∫ L

0
f2
s (z)dz+Cbj (ω)

∫ L

0
f2
b (z)dz j∈{1,. ..,N(ω)},

with Csj (ω)>0 and Csj (ω)>0. Here, the two terms describe the modal cumulative net scattering
effects produced by respectively the surface and bottom fluctuations. The main result of this
paper describe how the surface and bottom fluctuation act on the net scattering effects.
Theorem 1.1 In the limit of a large number of propagation modes k(ω)�1, we have for α∈
{s,b}:

• for j�N(ω)1/2

Cαj (ω) ∼
k(ω)�1

−Kα
1 k

3/2(ω) j2

N(ω)2

∫ +∞

0

√
vIα(v)dv,

• for j∼N(ω)1/2

Cαj (ω) ∼
k(ω)�1

−Kα
2 k

3/2(ω) j2

N(ω)2

∫ +∞

0

√
vIα(v−j2πθ/(2N(ω)d))dv,

• for N(ω)1/2� j.νN(ω), with ν ∈ (0,1)

Cαj (ω) ∼
k(ω)�1

−Kα
3 k

2(ω) j3

N(ω)3

∫ +∞

0
Iα(v)dv,

• for j∼N(ω)

Kα
4 k(ω)5/2≤Cαj (ω)≤Kα

5 k(ω)5/2,
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where Kα
1 ,K

α
2 ,K

α
3 ,K

α
4 ,K

α
5 >0, Iα is given by (1.5), and θ=

√
1−1/n2

1.
Theorem 1.1 gives the order of magnitude of the mode-dependent and frequency-dependent at-
tenuation Tj(ω,L) responsible for the effective attenuation of the forward propagating-mode
amplitudes. The first remark is that the surface and bottom fluctuations affect the mode am-
plitudes mainly in the same way. The second remark is that the higher the propagating mode
is the stronger is the attenuation. In fact, the higher the mode is the more it bounces on the
random boundaries, and then the more it is scattered. However, as described more precisely in
Proposition 4.2 and Proposition 4.3, while j is not of order N(ω) the phenomena is mainly due
to the mode coupling between the propagating modes themselves. However, for the highest order
modes j∼N(ω), this attenuation is mainly produced by the coupling with the radiating modes.
The reason is that only the highest order modes can couple efficiently with the radiating modes
and therefore produced a stronger attenuation since the radiating modes induce strong losses in
the bottom of the waveguide [15].

This kind of result has already been obtained in [2] for waveguides with a bounded cross-
section, which do not support radiative modes. In this paper the authors use a very convenient
local change of coordinates. However, this method cannot be easily extended to unbounded cross-
section without bringing technical difficulties. The main reason is that to treat the radiating part
of the pressure wave one need global estimates of the distance between the identity map and the
change of coordinate over the cross-section (0,+∞), and not only local estimates. This is due
to the fact that φγ(ω,·) does not belongs to L2(0,+∞) (see (5.11)). As we will see in Section 2,
the conformal transformation approach allows uniform and L2 estimates over the cross-section
(0,+∞) of this distance.

The remaining of this paper consists in the detail analysis described above to prove Theorem
1.1 through Theorem 4.1, Theorem 4.2, Theorem 4.3, Proposition 4.2, and Proposition 4.3.

2. Conformal Transformation of the Waveguide
The free surface of our waveguide model (see Figure 1.1) is not convenient for the forthcoming

asymptotic analysis based on a spectral decomposition of the acoustic pressure wave. In this
paper, we consider a conformal transformation approach allowing us to transform our waveguide
model with a free surface to a waveguide with an unperturbed surface (see Figure 1.2). This
strategy has already been used in several contexts [7, 8, 13, 26]. We will see in Section 3 that this
transformation by flattening the surface induces deformations in the structure of the waveguide,
that is deformations of the bottom and also induces variations of the index of refraction of the
waveguide (see Figure 3.1).

To introduce the conformal transformation we consider the waveguide domain with a free
surface as a subdomain of the complex plan C:

DVs =
{
z+ ix∈C : x>V εs (z)

}
,

where V εs is defined by (1.4), and the domain corresponding to the waveguide with a flat surface
is then given by

D0 =
{
u+ iv∈C : v>0

}
.

We refer to [34] for the basic properties of conformal transformations. In order to provide an
explicit expression of this transformation (from D0 onto DVs) we need to consider boundary
conditions at infinity. We have assumed that the random perturbations of the waveguide geom-
etry are included in the interval (0,L/ε) in the longitudinal direction. Therefore, the difference
between the conformal map and the identity map goes to 0 as Z=u+ iv goes to +∞. The
following proposition, which is a consequence of [34, Theorem 14.8], proves the existence and
gives explicit formula of a conformal transformation from D0 onto DVs .
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Proposition 2.1 There exists a bijective conformal map Φ from D0 onto DVs defined by

Φ(u+ iv) =z(u,v)+ ix(u,v),

with

z(u,v) =u− 1
π

∫ +∞

−∞
dũ

(ũ−u)V εs (z(ũ,0))
(ũ−u)2 +v2 and x(u,v) =v− v

π

∫ +∞

−∞
dũ

V εs (z(ũ,0))
(ũ−u)2 +v2 , (2.1)

for all (u,v) such that u+ iv∈D0.
Let us note that we can extend the conformal transformation Φ as a homeomorphism from the
closure of D0 onto the closure of DVs thanks to [34, Theorem 14.19], so that the derivation of
(2.1) is a classical result about harmonic functions which can be found in [1, 30] for instance.

Consequently, one can consider the pressure wave in the new system of coordinates:

p0(t,u,v) =p(t,z(u,v),x(u,v)), ∀(t,u,v)∈R×R×(0,+∞),

where p is the solution of (1.1). Therefore, p0(t,u,v) evolves in the unperturbed domain D0 and
satisfies Dirichlet boundary conditions at the flat surface of the waveguide:

p0(t,u,0) = 0, ∀(t,u)∈R×R.

However, (2.1) involves the term z(u,0) which is not convenient for the forthcoming analysis. In
fact, at the boundary v= 0 it is difficult to use the inductive formula z(u,0) =u−U(z(.,0))(u),
where U is the Hilbert transform defined below in Proposition 2.2. In the following proposition
we give an approximation of z(u,0) and then an approximation of x(u,0) to justify Assumption
1 introduced below.
Proposition 2.2 We have for every p∈ (2,+∞)

z(u,0) =u−U(V εs )(u)+ε1−1/pAε1(u), (2.2)

and then

x(u,0) =V εs (z(u,0)) =V εs (u)−U(V εs )(u) d
du
V εs (u)+ε3/2−1/pAε2(u), (2.3)

with supε‖Aε1‖Lp(R) +‖Aε2‖Lp(R)≤C almost surely, and where C is a deterministic constant. In
(2.2) and (2.3), U stands for the Hilbert transform defined by

U(f)(u) = 1
π
p.v.

∫
f(ũ)
u− ũ

dũ,

where p.v. denotes the Cauchy principal value.
The proof of this proposition is given in [18, Section 5.2]. However, one can easily see that (2.3)
comes from (2.2) using a Taylor expansion of V εs . Let us remark that we prove this approximation
only in Lp(R) with p<∞. The reason is that the Hilbert transform is not a bounded operator
in L∞(R). Moreover, we take p>2 so that Aε1(u) in (2.2) and Aε2(u) in (2.3) do not play any
significant role in the forthcoming analysis. In particular we need to have 1−1/p>1/2 (p>2) in
(2.2) and 3/2−1/p>1 in (2.3). Consequently, for the sake of simplicity in the proof of Theorem
4.1 (Section 5.2) we neglect in what follows the contributions of ε1−1/pAε1(u) and ε3/2−1/pAε2(u).
Assumption 1

z(u,0) =u−U(V εs )(u), (2.4)

and

x(u,0) =V εs (u)−U(V εs )(u) d
du
V εs (u). (2.5)



C. Gomez 9

However, this assumption will not change the overall results of this paper because the contribu-
tions of the correctors ε1−1/pAε1(u) (resp. ε3/2−1/pAε2(u)) are too small with respect to

√
ε (resp.

ε) to produce any significant effects. We keep only the terms which produce significant effects.
We can remark that (2.4) illustrates the fact that z(u,0) is closed to the identity map but

where the small correction comes from the conformal transform. The same remark holds for
(2.5), at the boundary of the domain D0, x(u,0) is closed to the original free surface V εs but also
with a small correction.

Finally, we describe in the following proposition the asymptotic behavior of the real and
imaginary part of the conformal transformation given by (2.1) under Assumption 1.
Proposition 2.3 For all p>2, we have

sup
u,v≥0

|z(u,v)−u|+ |x(u,v)−v|≤Cpε1/2−1/p almost surely,

and

sup
u

∫ +∞

0
E
[
|z(u,v)−u|2 + |x(u,v)−v|2

]
dv≤Cpε1/2−1/p,

where Cp is a deterministic constant independent of ε.
Proposition 2.3 means, as expected, that the conformal transformation is closed to the identity
map since the amplitude of the surface fluctuations are small. The proof of Proposition 2.3 is
given in [18, Section 5.3].

3. Mode Coupling in Random Waveguides
In this paper, the stochastic effects produced on the wave propagation is studied using the

spectral decomposition of the unperturbed Pekeris operator defined by (1.10) and introduced in
Section 5.1. In this section we introduce the mode coupling mechanism induces by the random
free surface and the uneven bottom topography. By taking the Fourier transform (1.8) of the
pressure wave p(t,z,x) we obtain the time-harmonic wave equation

∂2
z p̂(ω,z,x)+∂2

xp̂(ω,z,x)+ ω2

c2ε(z,x) p̂(ω,z,x) = F̂(ω,z,x),

where cε is defined by (1.2) and F̂(ω,z,x) is the Fourier transform of the source term F(t,z,x)
defined by (1.3).

Let us first describe the mode decomposition of the pressure field entering the perturbed
section of the waveguide (0,L/ε). According to the spectral decomposition of the Pekeris operator
(1.10), the monochromatic pressure field can be expanded as follows in the unperturbed section
[LS ,0],

p̂(ω,z,x) =
N(ω)∑
j=1

p̂j(ω,z)φj(ω,x)︸ ︷︷ ︸
propagating modes

+
∫ k2(ω)

0
p̂γ(ω,z)φγ(ω,x)dγ︸ ︷︷ ︸

radiating modes

+
∫ 0

−∞
p̂γ(ω,z)φγ(ω,x)dγ︸ ︷︷ ︸
evanescent modes

,

where the mode amplitudes are defined by (5.14) and (5.15), and where φj(ω,u) (j∈{
1,. ..,N(ω)

}
) and φγ(ω,u) (∀γ∈ (−∞,k2(ω))), defined by (5.5) and (5.11), are the eigenele-

ments of the Pekeris operator. The source term (1.3) implies the following jump conditions for
the pressure field across the plane z=LS ,

p̂(ω,x,L+
S )− p̂(ω,x,L−S ) = 0

∂z p̂(ω,x,L+
S )−∂z p̂(ω,x,L−S ) = 1

2 f̂(ω)Ψ(x), (3.1)
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so that the pressure field p̂(ω,z,x) for z∈ (LS ,0] is given by

p̂(ω,z,x) =
N(ω)∑
j=1

âj,0(ω)√
βj(ω)

eiβj(ω)zφj(ω,x)+
∫ k2(ω)

0

âγ,0(ω)
γ1/4 ei

√
γzφγ(ω,x)dγ

+
∫ 0

−∞

ĉγ,0(ω)
|γ|1/4

e−
√
|γ|zφγ(ω,x)dγ ∀x>0,

and where

âj,0(ω) = f̂(ω)
4i
√
βj(ω)

e−iβj(ω)LS
〈
φj(ω),Ψ

〉
L2(0,+∞) j∈{1,. ..,N(ω)},

âγ,0(ω) = f̂(ω)
4iγ1/4 e

−i√γLS
〈
φγ(ω),Ψ

〉
L2(0,+∞) γ∈ (0,k2(ω)),

ĉγ,0(ω) =− f̂(ω)
4|γ|1/4

e
√
|γ|LS

〈
φγ(ω),Ψ

〉
L2(0,+∞) γ∈ (−∞,0).

(3.2)

Assuming that the source is far away from the randomly perturbed part of the waveguide
(|LS |>>1), the evanescent part of the incoming wave at z= 0 can be neglected because of a
strong attenuation. Therefore, we can consider

p̂(ω,0,x) =
N(ω)∑
j=1

âj,0(ω)√
βj(ω)

eiβj(ω)zφj(ω,x)+
∫ k2(ω)

0

âγ,0(ω)
γ1/4 ei

√
γzφγ(ω,x)dγ, ∀x>0. (3.3)

Now, to study the evolution of the pressure field in the perturbed section (0,L/ε) through a
mode coupling mechanism, we consider the new system of coordinates introduced in Section 2.
This transformation allows us to flatten the free surface of the waveguide domain, and then to
decompose the pressure field with respect to the propagating, radiating, and evanescent modes.
The pressure field p̂(ω,z,x) in the new system of coordinates is given by

p̂0(ω,u,v) = p̂(ω,z(u,v),x(u,v)), ∀(u,v)∈R×(0,+∞), (3.4)

where z(u,v) and x(u,v) are defined by (2.1) under Assumption 1, and satisfies the following
time-harmonic wave equation

∂2
up̂0(ω,u,v)+∂2

v p̂0(ω,u,v)+k2(ω)Jε(u,v)n2
ε(u,v)p̂0(ω,u,v) = 0, (3.5)

for all (u,v)∈ [0,L/ε]×(0,+∞), with Dirichlet boundary conditions

p̂0(ω,u,0) = 0, ∀u∈R. (3.6)

Moreover, in (3.5), the Jacobian Jε and the index of refraction nε are given by

Jε(u,v) =
(
∂ux(u,v)

)2
+
(
∂vx(u,v)

)2
, (3.7)

and for all (u,v)∈R×(0,+∞)

nε(u,v) = c0/cε(z(u,v),x(u,v)) =
{
n1 = c0/c1>1 if v∈ (0,x−1(u,d+V εb (z(u,v)))),

1 if v∈ [x−1(u,d+V εb (z(u,v))),+∞). (3.8)

According to (3.5), let us remark that the waveguide transformation transfers the surface per-
turbations to the interior of the waveguide through the Jacobian Jε, and to the bottom of the
waveguide through the index of refraction nε(u,v) defined by (3.8) (see Figure 3.1). Thanks to
the Dirichlet boundary conditions (3.6), the effects of the random perturbations can be studied
using the modal decomposition corresponding to an unperturbed waveguide.
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Figure 3.1. Illustration of the conformal transformation on the waveguide with a free surface and an
uneven bottom topography. Figure (a) and Figure (b) represent waveguides with a free surface. In these figures
the vertical dashed lines mean that the medium parameters are not perturbed. In (a) the bottom is not perturbed,
that is V εb = 0, and in (b) the bottom of the waveguide is perturbed. Figure (c) represents the waveguide after the
conformal transformation. In this figure the perturbed vertical dashed lines mean that the medium parameters
are perturbed. Moreover, if the bottom was already perturbed before the conformal transformation (Figure (b)),
it is now also is perturbed by the waveguide transformation.

3.1. Coupled Mode Equations
Let us begin this section with two remarks on (3.5). First, Jε(u,v)n2

ε(u,v)p̂0(ω,u,v) does not
necessarily belong to H=L2(0,+∞) since the Jacobian Jε blows up as v goes to 0. This technical
difficulty can be avoided by considering the following assumption on the modal decomposition
(1.9) of the pressure field p̂0(ω,u,v) defined by (3.4).
Assumption 2 For all (u,v)∈R×(0,+∞), we have

p̂0(ω,u,v) =
N(ω)∑
j=1

p̂j(ω,u)φj(ω,v)+
∫

(−1/ξ,−ξ)∪(ξ,k2(ω))
p̂γ(ω,u)φγ(ω,v)dγ, (3.9)

where the modes amplitude are defined by (5.14) and (5.15).
The cut-off induced by ξ in the previous decomposition allows to obtain a rigorous derivation
of the following coupled mode equations more easily, but without changing the overall results
obtained in Section 4.1. Basically, we make an error of order O(ξ) with this assumption, and the
main results in Section 4.1 are obtain after passing to the limit ξ→0. Consequently, according
to Assumption 2 the coupling mechanism of the spectral components of the pressure field will
be studied in the space

CN(ω)×L2((−1/ξ,−ξ)∪(ξ,k2(ω))
)
.

Finally, we assume that ε� ξ�1 so that we have two distinct scales. In this paper, we consider
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first the asymptotic ε goes to 0 and in a second time the asymptotic ξ goes to 0. As a result, the
mode amplitudes in (3.9) satisfy the following coupled mode equations for u∈ [0,L/ε]:

d2

du2 p̂j(ω,u)+β2
j (ω)p̂j(ω,u)+k2(ω)

N(ω)∑
l=1

Cεjl(ω,u)p̂l(ω,u)

+k2(ω)
∫

(−1/ξ,−ξ)∪(ξ,k2(ω))
Cεjγ′(ω,u)p̂γ′(ω,u)dγ′= 0,

d2

du2 p̂γ(ω,u)+γ p̂γ(ω,u)+k2(ω)
N(ω)∑
l=1

Cεγl(ω,u)p̂l(ω,u)

+k2(ω)
∫

(−1/ξ,−ξ)∪(ξ,k2(ω))
Cεγγ′(ω,u)p̂γ′(ω,u)dγ′= 0,

(3.10)

where

Cεrs(ω,u) =
∫ +∞

0
(Jε(u,v)n2

ε(u,v)−n2(v))φr(ω,v)φs(ω,v)dv, (3.11)

for (r,s)∈ ({1,. ..,N(ω)}×(−1/ξ,−ξ)∪(ξ,k2(ω)))2. Under Assumption 2, the coupling coef-
ficients Cε(ω,u) and then the previous coupled mode equations in CN(ω)×L2((−1/ξ,−ξ)∪
(ξ,k2(ω))

)
are well defined since ∃K1,ε>0 such that supu|Jε(u,v)−1|≤K1,ε/v

2, and

φr(ω,v) ∼
v→0

K2v ∀r∈{1,. ..,N(ω)}×(−1/ξ,−ξ)∪(ξ,k2(ω)). (3.12)

Moreover, supu|n2
ε(u,v)−n2(v)| is bounded and has a bounded support with respect to the

transverse variable v. Let us also remark that

Jε(u,v)n2
ε(u,v)−n2(v) =n2

ε(u,v)(Jε(u,v)−1)+(n2
ε(u,v)−n2(v)),

so that the first part of the decomposition induces random perturbations in the core of the
waveguide, while the second part which is the difference of the index of refractions induces
random perturbations at the bottom of the waveguide (see Figure 3.1).

The two asymptotic results in Section 4 (Theorem 4.1 and Theorem 4.2) are based on a
diffusion-approximation result for the solution of ordinary differential equations with random
coefficients in a Hilbert space. However, according to the formula of the conformal transformation
(2.1) and the coefficients (3.11), we cannot directly apply the asymptotic results obtained in
[10, 15, 17] since the mode amplitudes are not adapted to the φ-mixing filtration (1.6). In fact,
in (2.1) all the trajectory of V εs is involved, which leads us to technical difficulties to manage the
random coefficients (3.11), and to use the mixing properties of the random perturbations (1.7).
For the sake of simplicity in the proof of Theorem 4.1 we consider the following assumption.
Assumption 3

Cεγγ′(ω,u) = 0, ∀(γ,γ′)∈ (−1/ξ,−ξ)∪(ξ,k2(ω)).

This assumption means that we neglect the coupling mechanism between the radiating and
evanescent modes, they do not interact with each others. Let us remark that in [15], in which the
random perturbations take place in the interior of the waveguide, the mode coupling mechanism
between these modes do not play any significant role.
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Next, we introduce the amplitudes of the generalized right- and left-going modes â(ω,z) and
b̂(ω,z), which are given by

p̂j(u) = 1√
βj

(
âj(u)eiβju+ b̂j(u)e−iβju

)
,

d

du
p̂j(u) = i

√
βj

(
âj(u)eiβju− b̂j(u)e−iβju

)
,

p̂γ(u) = 1
γ1/4

(
âγ(u)ei

√
γu+ b̂γ(u)e−i

√
γu
)
,

d

du
p̂γ(u) = iγ1/4

(
âγ(u)ei

√
γu− b̂γ(u)e−i

√
γu
)
,

so that

âj(u) =
iβj p̂j(u)+ d

dz p̂j(u)
2i
√
βj

e−iβju, âγ(u) =
i
√
γp̂γ(u)+ d

dz p̂γ(u)
2iγ1/4 e−i

√
γu,

b̂j(u) =
iβj p̂j(u)− d

dz p̂j(u)
2i
√
βj

eiβju, b̂γ(u) =
i
√
γp̂γ(u)− d

dz p̂γ(u)
2iγ1/4 ei

√
γu,

(3.13)

for all j∈
{

1,. ..,N(ω)
}
and almost every γ∈ (ξ,k2(ω)). From now on, let us denote

Hωξ =CN(ω)×L2(ξ,k2(ω)).

From (3.10) and (3.13), we obtain the coupled mode equation in Hωξ ×Hωξ ×L2(−1/ξ,−ξ) for the
mode amplitudes

(
â(ω,u), b̂(ω,u), p̂(ω,u)

)
:

d

du
âj(u) =Haa

ε,ξ,j(u)(â(u))+Hab
ε,ξ,j(u)(̂b(u))+ ik2

2

∫ −ξ
−1/ξ

Cεjγ′(u)√
βj

p̂γ′(u)dγ′e−iβju,

d

du
âγ(u) =Haa

ε,ξ,γ(u)(â(u))+Hab
ε,ξ,γ(u)(̂b(u)),

(3.14)

d

du
b̂j(u) =Hab

ε,ξ,j(u)(â(u))+Haa
ε,ξ,j(u)(̂b(u))− ik

2

2

∫ −ξ
−1/ξ

Cεjγ′(u)√
βj

p̂γ′(u)dγ′eiβju,

d

du
b̂γ(u) =Hab

ε,ξ,γ(u)(â(u))+Haa
ε,ξ,γ(u)(̂b(u)),

(3.15)

and

d2

du2 p̂γ(ω,u)+γ p̂γ(ω,u)+
√
εgγ(ω,u) = 0, (3.16)

where

gγ(u) =k2
N∑
l=1

Cεγl(u)
√
βl

(
âl(u)eiβlu+ b̂l(u)e−iβlu

)
+k2

∫ k2

ξ

Cεγγ′(u)
γ′1/4

(
âγ′(u)ei

√
γ′u+ b̂γ′(u)e−i

√
γ′u
)
dγ′+k2

∫ −ξ
−1/ξ

Cεγγ′(u)p̂γ′(u)dγ′.

(3.17)

In (3.14)-(3.15) we have

Haa
ε,ξ,j(u)(y) = ik2

2

[ N∑
l=1

Cεjl(u)√
βjβl

ei(βl−βj)uyl+
∫ k2

ξ

Cεjγ′(u)√
βj
√
γ′
ei(
√
γ′−βj)uyγ′dγ

′
]
, (3.18)
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Haa
ε,ξ,γ(u)(y) = ik2

2

[ N∑
l=1

Cεγl(u)√√
γβl

ei(βl−
√
γ)uyl+

∫ k2

ξ

Cεγγ′(u)
γ1/4γ′1/4

ei(
√
γ′−√γ)uyγ′dγ

′
]
, (3.19)

Hab
ε,ξ,j(u)(y) = ik2

2

[ N∑
l=1

Cεjl(u)√
βjβl

e−i(βl+βj)uyl+
∫ k2

ξ

Cεjγ′(u)√
βj
√
γ′
e−i(
√
γ′+βj)uyγ′dγ

′
]
, (3.20)

Hab
ε,ξ,γ(u)(y) ik

2

2

[ N∑
l=1

Cεγl(u)√√
γβl

e−i(βl+
√
γ)uyl+

∫ k2

ξ

Cεγγ′(u)
γ1/4γ′1/4

e−i(
√
γ′+√γ)uyγ′dγ

′
]
, (3.21)

The operators Haa
ε,ξ(ω,u) and Hab

ε,ξ(ω,u) represent the coupling between the propagating and
the radiating modes with themselves. Moreover, Haa

ε,ξ(ω,u) describes the coupling between the
forward-going modes, whileHab

ε,ξ(ω,u) describes the coupling between the forward- and backward-
going modes. Let us note that in absence of random perturbations, the mode amplitudes â(ω,u)
and b̂(ω,u) are constant. We complement this system with the boundary conditions

â(ω,0) = âε,ξ0 (ω) and b̂

(
ω,
L

ε

)
= b̂ε,ξL (ω) in Hωξ , (3.22)

where âε,ξ0 (ω) and b̂ε,ξL (ω) are defined by (3.13), (5.14), and (5.15), for respectively u= 0 and
u=L/ε. In (3.22), âε,ξ0 (ω) represents the initial amplitudes of the right-going propagating and
radiating modes at u= 0, while b̂ε,ξL (ω) represents the initial amplitudes of the left-going prop-
agating and radiating modes at u=L/ε. However, let us recall that the pressure wave entering
the random section at z= 0 is given by (3.3), and that we assumed that no wave is coming from
the right at z=L/ε (see Figure 1.1). The following proposition shows that âε,ξ0 (ω) is closed to
the mode amplitudes â0(ω) (defined by (3.2)) of the pressure field (3.3) coming from the right
homogeneous part of the waveguide and entering the random section at z= 0. The convergence
of b̂ε,ξL (ω) toward 0 in the following proposition is due to the fact that we assumed that no wave
is coming from the right at z=L/ε (see Figure 1.1).
Proposition 3.1 We have

lim
ε→0

E
[
‖âε,ξ0 (ω)− â0(ω)‖2Hω

ξ
+‖b̂ε,ξL (ω)‖2Hω

ξ

]
= 0.

Proposition 3.1 gives us an approximation of the coefficient âε,ξ0 (ω) in Hωξ , which is used in
Theorem 4.1 and Theorem 4.2 to determine the initial conditions of the asymptotic diffusion
processes. This proposition is a direct consequence of Proposition 2.3 and the Parseval’s equality
associated to the spectral decomposition introduced in Section 5.1 since we have∫ +∞

0
E
[
|p̂0(ω,u∗,v)− p̂(ω,u∗,v))|2 + |∂up̂0(ω,u∗,v)−∂up̂(ω,u∗,v))|2

]
dv

≤C
∫ +∞

0
E
[
|z(u∗,v)−u∗|2 + |x(u∗,v)−v|2

]
dv,

where u∗ is either equal to 0 or L/ε. Let us remark that this inequality holds because u∗ is
out of the randomly perturbed section of the waveguide (see Figure 1.1), so that we can use the
variable v∈ [0,+∞) of the unperturbed transverse section also for the original monochromatic
pressure field p̂(ω,z,x).
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3.2. Influence of the Evanescent Modes on the Propagating and Radiating Modes

In this section we describe the influence of the evanescent modes on the coupling mechanism
between the propagating and the radiating modes. The main goal is to obtain a more convenient
coupled mode equation involving only the propagating and the radiating modes, but taking into
account the contribution of the evanescent modes. However, to obtain the following proposition
we introduce the following radiation condition for the evanescent modes meaning that the energy
carried by the evanescent modes decay as the propagation distance becomes large.
Assumption 4

lim
u→+∞

∫ +∞

0

∣∣∣∫ −ξ
−1/ξ

p̂γ(ω,u)φγ(ω,v)dγ
∣∣∣2dv= 0.

Consequently, thanks to Assumption 4 and following [15, Section 4.3] (see also [18, Section 5.4]),
we can rewrite (3.14)-(3.15) in a closed form in Hωξ ×Hωξ .
Proposition 3.2 We have

d

du
â(ω,u) =Haa

ε,ξ(ω,u)
(
â(ω,u)

)
+Hab

ε,ξ(ω,u)
(
b̂(ω,u)

)
+Gaa

ε,ξ(ω,u)
(
â(ω,u)

)
+Gab

ε,ξ(ω,u)
(
b̂(ω,u)

)
+Aε(u),

(3.23)

d

du
b̂(ω,u) =Hab

ε,ξ(ω,u)
(
â(ω,u)

)
+Haa

ε,ξ(ω,z)
(
b̂(ω,u)

)
+Gab

ε,ξ(ω,u)
(
â(ω,u)

)
+Gaa

ε,ξ(ω,u)
(
b̂(ω,u)

)
+Bε(u),

(3.24)

for all u∈ [0,L/ε], where

sup
u∈[0,L/ε]

‖Aε(u)‖Hω
ξ

+‖Bε(u)‖Hω
ξ
≤C ε

3/2−1/p

ξ
sup

u∈[0,L/ε]

(
‖â(ω,u)‖Hω

ξ
+‖b̂(ω,u)‖Hω

ξ

)
(3.25)

for every p>2.
In (3.23) and (3.24), the operator Haa

ε,ξ and Hab
ε,ξ are defined by (3.18)-(3.21), and according to

Assumption 3

Gaa
ε,ξ,j(u)(y) = ik4

4

N∑
l=1

∫ −ξ
−1/ξ

∫
Cεjγ′(u)Cεγ′l(ũ+u)√

βj |γ′|βl
e−
√
|γ′||ũ|−iβju+iβl(ũ+u)yl (3.26)

Gab
ε,ξ,j(u)(y) = ik4

4

N∑
l=1

∫ −ξ
−1/ξ

∫
Cεjγ′(u)Cεγ′l(ω,ũ+u)√

βj(ω)|γ′|βl
e−
√
|γ′||ũ|−iβju−iβl(ũ+u)yl

Gaa
ε,ξ,γ(u)(y) =Gab

ε,ξ,γ(u)(y) = 0, for almost all γ∈ (ξ,k2), (3.27)

with y∈Hωξ and where Cε(ω,u) = 0 if u 6∈ [0,L/ε]. Here, the operators Gaa
ε,ξ and Gab

ε,ξ represent
the coupling between the evanescent modes with the propagating and the radiating modes. Let
us remark that we take p>2 in order to have 3/2−1/p>1 in (3.25), so that the correctors Aε
and Bε are small enough to do not play any significant role in the forthcoming analysis.
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Equations (3.23) and (3.24) describe the coupling process between the propagating and the
radiating mode including the influence of the evanescent modes and the evanescent part of the
source term. However, it is difficult to get good a priori estimates on

sup
u∈[0,L/ε]

(
‖â(ω,u)‖Hω

ξ
+‖b̂(ω,u)‖Hω

ξ

)
(3.28)

to be sure that the residuals Aε and Bε in Proposition 3.2 are small even after large propagation
distance L/ε. One way consists in introducing the following stopping "time"

Lε= inf
(
L>0, sup

u∈[0,L/ε]
‖â(ω,u)‖Hω

ξ
+‖b̂(ω,u)‖Hω

ξ
≥ 1
εα

)
,

where α is such that 3/2−1/p−α>1, in order to limit the size of the random section and
control the size of the residuals Aε and Bε. However, will see in Section 3.3 that under the
forward scattering approximation, we have

lim
ε→0

P(Lε≤L) = 0 ∀L>0,

which means that with high probability the residual terms are small.

3.3. Forward Scattering Approximation
The forward scattering approximation is widely used in the literature, and consists in assum-

ing that the coupling between forward- and backward-propagating modes is negligible compared
to the coupling between the forward-propagating modes. In this case, the amplitudes of the
left-going modes b̂ should converge to 0 as ε→0 since we have assumed that no wave is coming
from the right (see Figure 1.1). A rigorous derivation of the forward scattering approximation is
technically complex. The main technical problem is to obtain a uniform bound with respect to ε
for (3.28). To correct this issue we could think that it suffices to use in a first step the stopping
times corresponding to the first exit times of closed balls with respect to the norm ‖.‖Hω

ξ
as

described in [35, Chapter 11]. Unfortunately there are two problems. The first problem is that
it is not possible to show a limit theorem on C([0,L],(Hωξ ,‖.‖Hωξ )). In fact, if the convergence
holds on C([0,L],(Hωξ ,‖.‖Hωξ )) the energy conservation property (3.30) should be also valid for
the asymptotic diffusion process according to the Portmanteau’s theorem [4]. However, this con-
servation property contradict the energy dissipation of the limit process1. As a result, it seems
to be more appropriate to obtain a limit theorem on C([0,L],Hωξ,w) where Hωξ,w stands for Hωξ
equipped with the weak topology. However, the second problem is that these first exit times are
lower semicontinuous with respect to the topology of C([0,L],(Hωξ ,‖.‖Hωξ )), but not with respect
to the one of C([0,L],Hωξ,w). Therefore, the classical technique of [35, Chapter 11] cannot be
applied.

Nevertheless, one can formally show using the diffusion approximation theorem proved in
[10] that the coupling between right-going propagating modes and left-going propagating modes
involves coefficients of the form∫ +∞

0
Rs(u)cos

(
(βl(ω)+βj(ω))u

)
du and

∫ +∞

0
Rb(u)cos

(
(βl(ω)+βj(ω))u

)
du,

1We refer to [15, Theorem 6.1] for the statement of this result in the case of perturbations in the interior
of the waveguide. The same theorem holds in our context but the precise study of the asymptotic mean mode
powers will be addressed in a later work
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while the coupling between two right-going propagating modes or two left-going propagating
modes involves coefficients of the form∫ +∞

0
Rs(u)cos

(
(βl(ω)−βj(ω))u

)
du and

∫ +∞

0
Rb(u)cos

(
(βl(ω)−βj(ω))u

)
du,

for all (j,l)∈
{

1,. ..,N(ω)
}2, and where Rs,Rb∈L1(R) are the autocorrelations function of Vs

and Vb (see (1.5)). Consequently, in our context if we forget these technical problems, according
to [10, 14] the forward scattering approximation should be valid in the asymptotic ε→0 under
the following assumption, meaning that the Fourier transform of the u-autocorrelation functions
possess a cut-off wavenumber.
Assumption 5 For all (j,l)∈

{
1,. ..,N(ω)

}2,∫ +∞

0
Rs(u)cos

(
(βl(ω)+βj(ω))u

)
du= 0 and

∫ +∞

0
Rb(u)cos

(
(βl(ω)+βj(ω))u

)
du= 0.

As a result, under these assumptions, there is no effective mode coupling between the right-going
and left-going propagating modes, but there is still coupling between the right-going propagating
modes which is described in Section 4. Let us remark that the continuous part (0,k2(ω)) of
the spectrum corresponding to the radiating modes play no role in the previous assumption.
The reason is that the radiating modes and the evanescent modes play no role in the coupling
mechanism between the right- and left-going modes as it has been shown in [15, 17].

Consequently, according to the forward scattering approximation we only consider the sim-
plified version of the forward coupled mode equation (3.23) and (3.24):

d

dz
â(ω,u) =Haa

ε,ξ(ω,u)(â(ω,u))+Gaa
ε,ξ(ω,u)(â(ω,u))+Aε(u) (3.29)

in Hωξ , for u∈ [0,L/ε], where Haa
ε,ξ and Gaa

ε,ξ are defined by (3.18)-(3.19), (3.26)-(3.27), and with

sup
u∈[0,L/ε]

‖Aε(u)‖Hω
ξ
≤C ε

3/2−1/p

ξ
sup

u∈[0,L/ε]
‖â(ω,u)‖Hω

ξ
, ∀p>2.

The evolution equation (3.29) is complemented with initial condition â(ω,0) = âε,ξ0 (ω), where
âε,ξ0 (ω) is introduced in Section 3.1. As already discussed, under the forward scattering approx-
imation, we have the following proposition.
Proposition 3.3 We have

lim
ε→0

P(Lε≤L) = 0, where Lε= inf
(
L>0, sup

u∈[0,L/ε]
‖â(ω,u)‖Hω

ξ
≥ 1
εα

)
,

The proof of Proposition 3.3 follows exactly the one of [16, Proposition 4.1]. Consequently, under
the forward scattering approximation, one can adapt the results obtained in [15, Section 4.2] to
the system (3.29) in order to derive the local energy flux conservation for the propagating and
the radiating modes, that is for all η>0

lim
ε→0

P
(

sup
u∈[0,L/ε]

∣∣∣‖â(ω,u)‖2Hω
ξ
−‖â0(ω)‖2Hω

ξ

∣∣∣>η)= 0, (3.30)

meaning that the amplitude â(ω,u) is asymptotically uniformly bounded on [0,L/ε] in the limit
ε→0. The derivation of (3.30) is based on Lemma 5.1, Proposition 3.1, and Proposition 3.3.
Consequently, using the Gronwall’s lemma, Proposition 3.1, and Proposition 3.3, we have the
following proposition.
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Proposition 3.4 We have for all η>0

lim
ε→0

P
(

sup
u∈[0,L/ε]

‖â(ω,u)− â1(ω,u)‖2Hω
ξ
>η
)

= 0,

where â1(ω,u) is the unique solution of the differential equation

d

du
â1(ω,u) =Haa

ε,ξ(ω,u)(â1(ω,u))+Gaa
ε,ξ(ω,u)(â1(ω,u)) with â1(ω,0) = â0(ω). (3.31)

As a result, thanks to Proposition 3.4 and [4, Theorem 3.1], we can focus our attention in what
follows on the process â1(ω,u), which is studied in detail in Section 4.

4. Coupled Mode Processes
In this section, we study in a first time the asymptotic behavior, as ε→0 first and then ξ→0,

of the statistical properties of the mode coupling mechanism (3.31) in terms of a diffusion process.
In a second time we study the net scattering effects for the propagating-mode amplitudes.

First of all, let us define the rescaled process according to the size of the random section
[0,L/ε],

âε,ξ(ω,u) = â1

(
ω,
u

ε

)
∀u∈ [0,L].

This process is the unique solution on [0,L] of the rescaled forward coupled mode equations

d

du
âε,ξ(ω,u) = 1

ε
Haa
ε,ξ

(
ω,
u

ε

)
(âε,ξ(ω,u))+ 1

ε
Gaa
ε,ξ

(
ω,
u

ε

)
(âε,ξ(ω,u)) (4.1)

in Hωξ , with initial conditions âε,ξ(ω,0) = â0(ω) defined by (3.2), and where Haa
ε,ξ and Gaa

ε,ξ are
defined by (3.18)-(3.19) and (3.26)-(3.27).

4.1. Limit Theorem
In this section, to simplify the presentation we first focus our attention only on the random

perturbations at the surface of the waveguide, that is we assume that V εb = 0. Afterward, we
take into account also the randomly perturbed bottom topography of the waveguide. To prove
Theorem 4.1 and Theorem 4.2 we consider the classical nondegeneracy condition [10, 14, 19].
Assumption 6 The modal wavenumbers (β1(ω),. ..,βN(ω)(ω)) defined in Section 5.1 are distinct
along with their sums and differences.
Let us note that this condition is not necessarily satisfied for nonplanar waveguide model. How-
ever, in this case, Assumption 6 can be still valid if the statistical properties of the random
fluctuations are rotationally invariant [19].

4.1.1. The Random Surface
This section is devoted to the asymptotic analysis of the forward mode amplitude âε,ξ(ω,u)

solution of (4.1), and where the random perturbations of the waveguide are only due to the
random surface, that is V εb = 0.
Theorem 4.1 Let L>0. In the case V εb = 0, under Assumptions 1–6 and the mixing condi-
tions (1.7), the family

(
âε,ξ(ω,·)

)
ε∈(0,1), unique solution of (4.1), converges in distribution on

C([0,L],Hωξ,w) as ε→0 to a limit denoted by âξ(ω,·). Here Hωξ,w stands for the Hilbert space Hωξ
equipped with the weak topology. This limit is the unique diffusion process on Hωξ , starting from
â0(ω) defined by (3.2), and associated to the infinitesimal generator

Lω,sξ (u) =Lω,s1 (u)+Lω,s2,ξ (u)+Lω,s3,ξ (u), (4.2)
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where

Lω,s1 (u) = f2
s (u)
2

N(ω)∑
j,l=1
j 6=l

Γc,sjl (ω)
(
TjTj∂Tl∂Tl +TlTl∂Tj∂Tj −TjTl∂Tj∂Tl−TjTl∂Tj∂Tl

)

+ f2
s (u)
2

N(ω)∑
j=1

(
Γc,sjj (ω)−Γ1,s

jj (ω)
)(
Tj∂Tj +Tj∂Tj

)
+ i

f2
s (u)
2

N(ω)∑
j=1

Γs,sjj (ω)
(
Tj∂Tj −Tj∂Tj

)
,

and

Lω,s2,ξ =−f
2
s (u)
2

N(ω)∑
j=1

(
Λc,s,ξj (ω)+ iΛs,s,ξj (ω)

)
Tj∂Tj +

(
Λc,s,ξj (ω)− iΛs,s,ξj (ω)

)
Tj∂Tj ,

Lω,s3,ξ = if2
s (u)

N(ω)∑
j=1

κs,ξj (ω)
(
Tj∂Tj −Tj∂Tj

)
.

(4.3)

Let us note that according to the infinitesimal generator Lω,sξ defined by (4.2), the diffusion
phenomena happen on the support of fs describing the location of the random perturbations of
the surface of the waveguide (1.4).

Here, we have considered the classical complex derivative with the following notation: If
v=v1 + iv2, then ∂v = 1

2 (∂v1− i∂v2) and ∂v = 1
2 (∂v1 + i∂v2). The coupling coefficients are given

by the following notations. Let us denote

Q(r1,s1,r2,s2,A) = 4
π

(n2
1−1)2φr1(d)φr2(d)φs1(d)φs2(d)e−2d|A|

+ 8
π

(n2
1−1)|A|φr1(d)φs1(d)

∫ +∞

0
φr2(v)φs2(v)n2(v)e−(d+v)|A|dv

+ 4
π
A2
∫ +∞

0

∫ +∞

0
φr1(v)φs1(v)φr2(v′)φs2(v′)n2(v)n2(v′)e−(v+v′)|A|dvdv′.

(4.4)

We have for all (j,l)∈
{

1,. ..,N
}2 and j 6= l

Γc,sjl = k4

2βjβl
Q(j,l,j,l,βj−βl)

∫ +∞

0
Rs(z)cos

(
(βl−βj)z

)
dz,

Γs,sjl = k4

2βjβl
Q(j,l,j,l,βj−βl)

∫ +∞

0
Rs(z)sin

(
(βl−βj)z

)
dz,

Γc,sjj =−
N∑
l=1
l 6=j

Γcjl, Γs,sjj =−
N∑
l=1
l 6=j

Γsjl,

(4.5)

and for all (j,l)∈
{

1,. ..,N
}2,

Λc,s,ξj =
∫ k2

ξ

k4

2
√
γ′βj

Q(γ′,j,γ′,j,
√
γ′−βj)

∫ +∞

0
Rs(z)cos

(
(
√
γ′−βj)z

)
dzdγ′,

Λs,s,ξj =
∫ k2

ξ

k4

2
√
γ′βj

Q(γ′,j,γ′,j,
√
γ′−βj)

∫ +∞

0
Rs(z)sin

(
(
√
γ′−βj)z

)
dzdγ′,

κs,ξj =
∫ −ξ
−∞

ik4

2βj
√
|γ|

∫ +∞

0
G

(1)
jγ (ω,z)cos

(
βjz
)
e−
√
|γ|zdzdγ+ ik2

2βj
G

(2)
j .

(4.6)
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Here, we have

G
(1)
jγ (z) =

∫ +∞

0
Is(u)Q(γ,j,γ,j,u)cos(uz)du

and

G
(2)
j = (n2

1−1)φ2
j (d)

[
6
∫ +∞

0
Is(u)ue−2dudu+U(R̃s)(0)

]
+ 4π2

d2 (n2
1−1)φj(d)φ′j(d)

∫ +∞

0
Is(u)e−2dudu+

∫ +∞

0
φ2
j (v)n2(v)

∫ +∞

0
Is(u)e−2uv(1+u2)du.

In the previous expressions n(v) is defined in (1.10), Rs stands for the autocorrelation function
of the random process Vs, and R̃s is the correlation function of the processes Vs and d

dzVs, which
is d

dzRs. Let us remark that the first (resp. the second and the third) term in the right hand side
of (4.4), and G(1) are produced by the coupling mechanism between the propagating modes at
the bottom of the waveguide (resp. between the bottom and the transverse section, and through
the transverse section of the waveguide).

In the proof of Theorem 4.1, the random operator Gaa
ε,ξ in (4.1) can be treated following

the ideas of [21] as it has been done in [15, 17]. In fact, the technique developed in [21] does
not require any mixing properties. However, the random operator Haa

ε,ξ requires to introduce
an approximation of the random coefficients (3.11) to turn this formula in a more convenient
form to use the φ-mixing properties of the filtration (1.6). The approximations of the random
operators Haa

ε,ξ and Gaa
ε,ξ are given in Lemma 5.1, Section 5.2.1. The remaining of the proofs

are based on a martingale approach using the perturbed-test-function method. In a first step
we show the tightness of the processes, and in a second step we characterize all the subsequence
limits by mean of a well-posed martingale problem in a Hilbert space. Finally, let us remark that
the convergence in Theorem 4.1 holds also in C([0,L],(Hωξ ,‖.‖Hωξ )) only for the N(ω)-discrete
propagating mode amplitudes.

4.1.2. The Random Surface and Random Bottom
In this section we present the asymptotic analysis of the forward mode amplitudes âε,ξ(ω,u),

where we consider a randomly perturbed bottom topography in addition to the randomly per-
turbed free surface. This section presents no additional difficulties since the random perturba-
tions of the surface and the bottom are assumed to be independent, and can be treated directly
using the method of [15, 17].
Theorem 4.2 Let L>0. Under Assumptions 1–6 and the mixing conditions (1.7), the family(
âε,ξ(ω,·)

)
ε∈(0,1), unique solution of (4.1), converges in distribution on C([0,L],Hωξ,w) as ε→0

to a limit denoted by âξ(ω,·). Here Hωξ,w stands for the Hilbert space Hωξ equipped with the weak
topology. This limit is the unique diffusion process on Hωξ , starting from â0(ω) defined by (3.2),
and associated to the infinitesimal generator

Lωξ (u) =Lω,sξ (u)+Lω,bξ (u), (4.7)

where Lω,sξ (u) is defined by (4.2), and

Lω,bξ (u) =Lω,b1 (u)+Lω,b2,ξ (u)+Lω,b3,ξ (u), (4.8)
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with

Lω,b1 (u) = f2
b (u)
2

N(ω)∑
j,l=1
j 6=l

Γc,bjl (ω)
(
TjTj∂Tl∂Tl +TlTl∂Tj∂Tj −TjTl∂Tj∂Tl−TjTl∂Tj∂Tl

)

+ f2
b (u)
2

N(ω)∑
j,l=1

Γ1,b
jl (ω)

(
TjTl∂Tj∂Tl +TjTl∂Tj∂Tl−TjTl∂Tj∂Tl−TjTl∂Tj∂Tl

)

+ f2
b (u)
2

N(ω)∑
j=1

(
Γc,bjj (ω)−Γ1,b

jj (ω)
)(
Tj∂Tj +Tj∂Tj

)
+ i

f2
b (u)
2

N(ω)∑
j=1

Γs,bjl (ω)
(
Tj∂Tj −Tj∂Tj

)
,

(4.9)

and

Lω,b2,ξ =−f
2
b (u)
2

N(ω)∑
j=1

(Λc,b,ξj (ω)+ iΛs,b,ξj (ω))Tj∂Tj +(Λc,b,ξj (ω)− iΛs,b,ξj (ω))Tj∂Tj ,

Lω,b3,ξ = if2
b (u)

N(ω)∑
j=1

κb,ξj (ω)
(
Tj∂Tj −Tj∂Tj

)
.

(4.10)

The coupling coefficients in (4.9) and (4.10) are defined as follows: for all (j,l)∈{
1,. ..,N(ω)

}2 and j 6= l

Γc,bjl =
2k4(n2

1−1)2φ2
j (d)φ2

l (d)
βjβl

∫ +∞

0
Rb(z)cos

(
(βl−βj)z

)
dz,

Γs,bjl =
2k4(n2

1−1)2φ2
j (d)φ2

l (d)
βjβl

∫ +∞

0
Rb(z)sin

(
(βl−βj)z

)
dz,

Γc,bjj =−
N∑
l=1
l 6=j

Γc,bjl , Γs,bjj =−
N∑
l=1
l 6=j

Γs,bjl ,

(4.11)

and for all (j,l)∈
{

1,. ..,N
}2,

Γ1,b
jl =

2k4(n2
1−1)2φ2

j (d)φ2
l (d)

βjβl

∫ +∞

0
Rb(z)dz,

Λc,b,ξj =
∫ k2

ξ

2k4(n2
1−1)2φ2

j (d)φ2
γ′(d)

√
γ′ηj

∫ +∞

0
Rb(z)cos

(
(
√
γ′−βj)z

)
dzdγ′,

Λs,b,ξj =
∫ k2

ξ

2k4(n2
1−1)2φ2

j (d)φ2
γ′(d)

√
γ′βj

∫ +∞

0
Rb(z)sin

(
(
√
γ′−βj)z

)
dzdγ′,

κb,ξj = i

∫ −ξ
−1/ξ

2k4(n2
1−1)2φ2

j (d)φ2
γ′(d)

βj
√
|γ|

∫ +∞

0
Rb(z)cos

(
βjz
)
e−
√
|γ|zdzdγ

+ iRb(0)
8k2(n2

1−1)2φ2
j (d)φ′2j (d)

βj
.

(4.12)

The drift (Lω,s2,ξ , L
ω,s
3,ξ , L

ω,b
2,ξ , and L

ω,b
3,ξ defined by (4.3) and (4.10)) of the diffusion process

âξ(ω,·) still depend on the parameter ξ introduced in Assumption 2. Before discussing the
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meaning of each terms in (4.2) and (4.8), we give the following result regarding the asymptotic
ξ→0.
Theorem 4.3 Let L>0. The family

(
âξ(ω,·)

)
ξ∈(0,1) converges in distribution on

C([0,L],(Hω0 ,‖.‖Hω0 )) as ξ→0 to a limit denoted by â(ω,·). This limit is the unique diffusion
process on Hω0 , starting from â0(ω) and associated to the infinitesimal generator

Lω(u) =Lω1 (u)+Lω2 (u)+Lω3 (u), (4.13)

where

Lω2 =−1
2

N(ω)∑
j=1

f2
s (u)

(
(Λc,sj (ω)+ iΛs,sj (ω))Tj∂Tj +(Λc,sj (ω)− iΛs,sj (ω))Tj∂Tj

)
+f2

b (u)
(

(Λc,bj (ω)+ iΛs,bj (ω))Tj∂Tj +(Λc,bj (ω)− iΛs,bj (ω))Tj∂Tj
)
,

Lω3 = i

N(ω)∑
j=1

(
f2
s (u)κsj(ω)+f2

b (u)κbj(ω)
)(
Tj∂Tj −Tj∂Tj

)
,

with for all j∈
{

1,. ..,N(ω)
}

Λc,sj (ω) = lim
ξ→0

Λc,s,ξj (ω), Λs,sj (ω) = lim
ξ→0

Λs,s,ξj (ω), κsj(ω) = lim
ξ→0

κs,ξj (ω), (4.14)

and

Λc,bj (ω) = lim
ξ→0

Λc,b,ξj (ω), Λs,bj (ω) = lim
ξ→0

Λs,b,ξj (ω), κbj(ω) = lim
ξ→0

κb,ξj (ω). (4.15)

Let us note that in Theorem 4.3 the limits in (4.14) and (4.15) with respect to ξ are well defined
thanks to (5.11)– (5.13).

Consequently, Theorem 4.1, Theorem 4.2, and Theorem 4.3 describe the asymptotic behavior,
as ε→0 first and then ξ→0, of the statistical properties of the forward mode amplitudes âε,ξ(ω,·)
in terms of a diffusion process with infinitesimal generator (4.13) and starting from â0(ω) given
by (3.2). The infinitesimal generator Lω is composed of three parts which represent different
behaviors on the diffusion process. However, we can remark that this infinitesimal generator
depends only on the N(ω)-discrete coordinates, so that the radiating part of the forward mode
amplitudes remains constant. This result has already been obtained in [15, 17] in a different
setup. The first operator Lω1 describes the mode coupling between the N(ω)-propagating modes.
This part is of the form of the infinitesimal generator obtained in [10, 14], and for which the total
energy is conserved. The second operator Lω2 describes the coupling between the propagating
modes with the radiating modes. This part implies a mode-dependent and frequency-dependent
attenuation on the N(ω)-propagating modes, and a mode-dependent and frequency-dependent
phase modulation. The third operator Lω3 describes the coupling between the propagating and the
evanescent modes, and implies a mode-dependent and frequency-dependent phase modulation.
The purely imaginary part of the operator Lω does not remove energy from the propagating
modes but gives an effective dispersion. Finally, let us remark that their is no Γ1,s term for
the surface fluctuations. The reason is that Is(0) = 0 for (1.5) (Pierson-Neuman and Pierson-
Moscovitz spectra), that is a mode cannot be coupled with himself.

4.2. Mean Mode Amplitudes
In this section we describe the effects of the random perturbations on the forward mean

mode amplitudes. From Theorem 4.3, we get the following result.
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Proposition 4.1 For all z∈ [0,L] and j∈
{

1,. ..,N(ω)
}
, we have

lim
ξ→0

lim
ε→0

E
[
âξ,εj (ω,z)

]
=E
[
âj(ω,z)

]
= exp

[(
Γc,sjj (ω)−Γ1,s

jj (ω)−Λc,sj (ω)+ i(Γs,sjj (ω)−Λs,sjj (ω)+2ksj (ω))
2

)∫ z

0
f2
s (u)du

]

×exp
[(

Γc,bjj (ω)−Γ1,b
jj (ω)−Λc,bj (ω)+ i(Γs,bjj (ω)−Λs,bjj (ω)+2kbj(ω))

2

)∫ z

0
f2
b (u)du

]
âj,0(ω),

where â0(ω) is defined by (3.2).
First, let us note that the mean amplitude of the radiating part remains constant on L2(0,k2(ω)),
since the diffusion process only holds for the propagating modes (see Theorem 4.3). Second, for
all j∈

{
1,. ..,N(ω)

}
, the coefficients (Γ1

jj(ω)+Λcj(ω)−Γcjj(ω))/2 are nonnegative according to
the Bochner’s theorem [32] or [10, Section 6.3.6].

The decay rate for the mean jth-propagating mode is given by∣∣∣E[âj(ω,z)]∣∣∣= ∣∣âj,0(ω)
∣∣e−(Λc,s

j
(ω)−Γc,s

jj
(ω))
∫ L

0
f2
s (u)du/2−(Γ1,b

jj
(ω)+Λc,b

j
(ω)−Γc,b

jj
(ω))
∫ L

0
f2
b (u)du/2

,

which depends on the effective coupling between the propagating modes, and the coupling be-
tween the propagating and the radiating modes. This decay describes the effective attenuation
of the mode amplitudes caused by the cumulative effects of the random perturbations given by
fs and fb. The two following propositions describe the net scattering effects in the limit of a
large number of propagating modes N(ω)�1 corresponding to k(ω)�1 (see (5.10)).
Proposition 4.2 We have the following asymptotic behaviors.

1. For j= [νN(ω)η1 ] with η1∈ [0,1/2) and ν >0, we have

Γc,bjj (ω) ∼
k(ω)�1

−k3/2(ω) j2/N(ω)2

(1−θ2j2/N(ω)2)1/4
29/2n

5/2
1 θ2

πd

∫ +∞

0

√
vIb(v)dv.

2. For j= [νN(ω)1/2] and ν >0, we have

Γc,bjj (ω) ∼
k(ω)�1

−k3/2(ω) j2/N(ω)2√
1−θ2j2/N(ω)2

24n
5/2
1 θ2

πd

∫ +∞

−ν2πθ/(2d)

√
ν2πθ/d+2vIb(v)dv.

3. For j= [νN(ω)η2 ] with η2∈ (1/2,1] and ν >0 (ν≤1 if η2 = 1), we have

Γc,bjj (ω) ∼
k(ω)�1

−k2(ω) j3/N(ω)3√
1−θ2j2/N(ω)2

25n3
1θ

3

πd

∫ +∞

0
Ib(v)dv.

4. For j= [νN(ω)η3 ] with η3∈ [0,1] and ν >0 (ν≤1 if η3 = 1), we have

Γ1,b
jj (ω) ∼

k(ω)�1
k2(ω) j4/N(ω)4

1−θ2j2/N(ω)2
4n2

1θ
4

d2

∫ +∞

0
Rb(v)dv.

5. For j= [νN(ω)η4 ] with η4∈ [0,1] and ν >0 (ν <1 if η4 = 1), we have for k(ω)�1

C1

k(ω)αIb−3
j2/N(ω)2√

1−θ2j2/N(ω)2
≤Λc,bj (ω)≤ C2

k(ω)αIb−3
j2/N(ω)2√

1−θ2j2/N(ω)2
,

where C1 and C2 are two positive constants.
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6. For j=N(ω)− [ν] with ν >0, we have for k(ω)�1

C3k(ω)5/2≤Λc,bj (ω)≤C4k(ω)5/2,

where C3 and C4 are two positive constants.
The proof of this proposition is given in Section 5.3. Regarding the influence of the surface
fluctuations we have the following result.
Proposition 4.3 We have the following asymptotic behaviors.

1. For j= [νN(ω)η1 ] with η1∈ [0,1/2) and ν >0, we have

Γc,sjj (ω) ∼
k(ω)�1

−C1k
3/2(ω) j2

N(ω)2πd

∫ +∞

0

√
vIs(v)dv

×
[(

1− θ2j2

N(ω)2

)−1/2 +
(
1− θ2j2

N(ω)2

)−5/4 +
(
1− θ2j2

N(ω)2

)−9/4
]
.

2. For j= [νN(ω)1/2] and ν >0, we have

Γc,sjj (ω) ∼
k(ω)�1

−C2k
3/2(ω) j2

N(ω)2πd

∫ +∞

−ν2πθ/(2d)

√
ν2πθ/d+2vIb(v)dv

×
[
(1− θ2j2

N(ω)2 )−1/2 +(1− θ2j2

N(ω)2 )−3/2 +(1− θ2j2

N(ω)2 )−5/2
]
.

3. For j= [νN(ω)η2 ] with η2∈ (1/2,1] and ν >0 (ν≤1 if η2 = 1), we have

Γc,sjj (ω) ∼
k(ω)�1

−C3k
2(ω) j3

N(ω)3πd

∫ +∞

0
Is(v)dv

×
[(

1− θ2j2

N(ω)2

)−1/2 +
(
1− θ2j2

N(ω)2

)−3/2 +
(
1− θ2j2

N(ω)2

)−5/2
]
.

4. For j= [νN(ω)η3 ] with η3∈ [0,1] and ν >0 (ν <1 if η4 = 1), we have for k(ω)�1
C1

k(ω)αIs−3
j2/N(ω)2√

1−θ2j2/N(ω)2
≤Λc,sj (ω)≤ C2

k(ω)αIs−3
j2/N(ω)2√

1−θ2j2/N(ω)2
,

where C1 and C2 are two positive constants.
5. For j=N(ω)− [ν] with ν >0, we have for k(ω)�1

C3k(ω)5/2≤Λc,sj (ω)≤C4k(ω)5/2,

where C3 and C4 are two positive constants.
The proof of this proposition follows the lines of the one of Proposition 4.2 but with lengthier
computations. For the points 1−3 the three terms into brackets correspond respectively to the
three terms in (4.4). From these two propositions we can first remark that the surface and
bottom fluctuations affect the amplitude of the propagating mode in the same way. Second,
the decay rates become larger as the order of the propagating mode j increase. The reason
is that the higher the propagating mode j is the more it bounces on the randomly perturbed
boundaries, and therefore the more it is scattered. However, while j is not of order N(ω) the
amplitude attenuation is mainly produced by the mode coupling between the propagating modes
themselves through Γc,sjj and Γc,bjj . Now, when j∼N(ω), the modes can coupled significantly
with the radiating modes (see (4.6), (4.12), and (5.2)) through Λc,sj and Λc,bj , which produce
more important losses in the bottom of the waveguide. In fact, for these modes the decay rate
produced by the mode coupling between the propagating modes is of order k2(ω) (points 3-4 in
Proposition 4.2 and point 3 in Proposition 4.3), while the one produced by the mode coupling
with the radiating modes is of order k5/2(ω) which is significantly larger.
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Conclusion. In this paper we have analyzed wave propagation in an acoustic waveguide
with a randomly perturbed free surface and uneven topography, and the resulting mode coupling
mechanism between the three kinds of modes (propagating, radiating, and evanescent). We have
shown that the evolution of the forward propagating mode amplitudes can be described in term
of a diffusion process (Theorem 4.1, Theorem 4.2, and Theorem 4.3) taking into account the main
coupling mechanisms: the coupling with the evanescent modes induces a mode-dependent and
frequency-dependent phase modulation on the propagating modes, the coupling with the radiat-
ing modes, in addition to a mode-dependent and frequency-dependent phase modulation, induces
a mode-dependent and frequency-dependent attenuation on the propagating modes. Moreover,
we have observed (Proposition 4.2 and Proposition 4.3) that the surface and bottom fluctuations
affect the amplitude of the forward propagating modes mainly in the same way. However, the
amplitudes of highest propagating mode is more affected because of an efficient coupling with
the radiating modes.

Acknowledgment. This work was supported by AFOSR FA9550-10-1-0194 Grant.

5. Appendix

5.1. Spectral Decomposition in Unperturbed Waveguides
This section is devoted to the presentation of the spectral decomposition of the Pekeris

operator ∂2
x+k2(ω)n2(x) where the index of refraction n(x) is defined by

n(x) =
{
n1 = c0/c1>1 if x∈ (0,d),

1 if x∈ [d,+∞).

Here, H=L2(0,+∞) is equipped with the inner product defined by

∀(h1,h2)∈H×H,
〈
h1,h2

〉
H

=
∫ +∞

0
h1(x)h2(x)dx.

Definition 5.1 Let us note by R(ω) the Pekeris operator defined by

R(ω)(y) = d2

dx2 y+k2(ω)n2(x)y ∀y∈D(R(ω)), (5.1)

which is an unbounded operator on H with domain

D(R(ω)) =H1
0 (0,+∞)∩H2(0,+∞).

The following result regarding the spectral decomposition of the Pekeris operator R(ω) is proved
in [37].
Theorem 5.1 R(ω) is a self-adjoint operator on H, and its spectrum is given by

Sp
(
R(ω)

)
=
(
−∞,k2(ω)

]
∪
{
β2
N(ω)(ω),. ..,β2

1(ω)
}
, (5.2)

where for all j∈
{

1,. ..,N(ω)
}
, the modal wavenumbers βj(ω) are positive and ordered in an

decreasing way :

k2(ω)<β2
N(ω)(ω)< ·· ·<β2

1(ω)<n2
1k

2(ω).

Moreover, let Πω be the resolution of the identity associated to R(ω), we have for all y∈H and
for all r∈R,
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Πω(r,+∞)(y)(x) =
N(ω)∑
j=1

〈
y,φj(ω,.)

〉
H
φj(ω,x)1(r,+∞)

(
βj(ω)2)

+
∫ k2(ω)

r

〈
y,φγ(ω,.)

〉
H
φγ(ω,x)dγ1(−∞,k2(ω))(r),

(5.3)

and for all y∈D(R(ω)),

Πω(r,+∞)(R(ω)(y))(x) =
N(ω)∑
j=1

βj(ω)2〈y,φj(ω,.)〉Hφj(ω,x)1(r,+∞)
(
βj(ω)2)

+
∫ k2(ω)

r

γ
〈
y,φγ(ω,x)

〉
H
φγ(ω,x)dγ1(−∞,k2(ω))(r).

(5.4)

Let us describe more precisely the decompositions (5.3) and (5.4).
Discrete part of the decomposition
For all j∈

{
1,. ..,N(ω)

}
, the jth eigenvector is given [37] by

φj(ω,x) =
{

Aj(ω)sin(σj(ω)x/d) if 0≤x≤d
Aj(ω)sin(σj(ω))e−ζj(ω) x−dd if d≤x, (5.5)

where

σj(ω) =d
√
n2

1k
2(ω)−β2

j (ω), ζj(ω) =d
√
βj(ω)2−k2(ω), (5.6)

and

Aj(ω) =

√√√√ 2/d
1+ sin2(σj(ω))

ζj(ω) − sin(2σj(ω))
2σj(ω)

. (5.7)

According to [37], σ1(ω),. ..,σN(ω)(ω) are the solutions on (0,n1k(ω)dθ) of the equation

tan(y) =− y√
(n1kdθ)2−y2

, (5.8)

such that 0<σ1(ω)< ·· ·<σN(ω)(ω)<n1k(ω)dθ, and with

θ=
√

1−1/n2
1 =
√

1−c21/c20. (5.9)

This last equation admits exactly one solution over each interval of the form
(
π/2+(j−1)π,π/2+

jπ
)
for j∈{1,. ..,N(ω)}, so that the number of eigenvectors is

N(ω) =
[
n1k(ω)d

π
θ

]
, (5.10)

where [·] stands for the integer part.
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Continuous part of the decomposition
For γ∈ (−∞,k2(ω)), we have [37]

φγ(ω,x) ={
Aγ(ω)sin(η(ω)x/d) if 0≤x≤d

Aγ(ω)
(

sin(η(ω))cos
(
ξ(ω)x−dd

)
+ η(ω)
ξ(ω) cos(η(ω))sin

(
ξ(ω)x−dd

))
if d≤x,

(5.11)

where

η(ω) =d
√
n2

1k
2(ω)−γ, ξ(ω) =d

√
k2(ω)−γ, (5.12)

and

Aγ(ω) =
√

dξ(ω)
π
(
ξ2(ω)sin2(η(ω))+η2(ω)cos2(η(ω))

) .
Let us note that we have

Aγ(ω) ∼
γ→−∞

1√
π|γ|1/4

. (5.13)

We can also remark that φγ(ω,.) does not belong to H, so that
〈
y,φγ(ω,.)

〉
H

in (5.3) and (5.4)
is not defined in the classical sense, but in the following way〈

y,φγ(ω,.)
〉
H

= lim
M→+∞

∫ M

0
y(x)φγ(ω,x)dx in L2(−∞,k2(ω)

)
.

As a result, we have

‖y‖2H =
N(ω)∑
j=1

∣∣〈y,φj(ω,.)〉H ∣∣2 +
∫ k2(ω)

−∞

∣∣〈y,φγ(ω,.)
〉
H

∣∣2dγ,
and then,

Θω :H −→ Hω

y −→
((〈

y,φj(ω,.)
〉
H

)
j=1,...,N(ω),

(〈
y,φγ(ω,.)

〉
H

)
γ∈(−∞,k2(ω))

)
is an isometry, from H onto Hω =CN(ω)×L2(−∞,k2(ω)

)
.

In this paper the pressure field (1.9) can be decomposed according to the resolution of the
identity Πω introduced in this section.

p̂0(ω,u,v) =
N(ω)∑
j=1

p̂j(ω,u)φj(ω,v)︸ ︷︷ ︸
propagating modes

+
∫ k2(ω)

0
p̂γ(ω,u)φγ(ω,v)dγ︸ ︷︷ ︸

radiating modes

+
∫ 0

−∞
p̂γ(ω,u)φγ(ω,v)dγ︸ ︷︷ ︸
evanescent modes

,

where the amplitudes of the propagating modes are defined by

∀j∈
{

1,. ..,N(ω)
}
, p̂j(ω,u) = Πω({βj(ω)})(p̂0(ω,u, ·)) =

∫ +∞

0
p̂0(ω,u,v)φγ(ω,v)dv, (5.14)

and the amplitudes of the radiating and evanescent modes are defined by

∀γ∈ (−∞,k2(ω)), p̂γ(ω,u) = lim
M→+∞

∫ M

0
p̂0(ω,u,v)φγ(ω,v)dv in L2(−∞,k2(ω)

)
. (5.15)

Consequently, the mode amplitudes are the projections of the pressure field p̂0(ω,u,v) over the
eigenelements of the Pekeris operator.
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5.2. Proof of Theorem 4.1
The proof of this theorem is based on a martingale approach using the perturbed-test-

function method. However, the process
(
âξ,ε(u)

)
u≥0 is not adapted with respect to the filtration

Fεu=Fu/ε, where Fu is defined by (1.6). In fact, neither the random operator Haa
ε,ξ nor Gaa

ε,ξ

((3.18)-(3.19) and (3.26)-(3.27)) are adapted with respect to the filtration Fεu. The proof of this
theorem is in three parts. The first part of the proof consists in approximating the random
coefficients Haa

ε,ξ and Gaa
ε,ξ with new ones from which we can use the mixing property. The

second part follows the ideas of [21] and consists in simplifying the coupled mode equation and
introducing a new process for which the martingale approach can be used. Finally, the third
part of the proof is based on a martingale approach using the perturbed-test-function method
and follows the ideas developed in [5, 15].

5.2.1. Approximation of the Random Coefficients
This section is devoted to the approximation of the random operators Haa

ε,ξ and G
aa
ε,ξ. In fact,

these operators do not satisfy the mixing properties coming from the random perturbations of the
waveguide surface. the reason is that the conformal map (2.1) involves the complete trajectory
of the random surface of the waveguide.

Let α0∈ (1/2,1),

C1/2,ε
rs

(u
ε

)
=2(n2

1−1)φr(d)φs(d) d
π

∫
|w|<1/εα0

Vs(u/ε+w)fs(u+εw)
w2 +d2 dw

− 2
π

∫ +∞

0
φr(v)φs(v)n2(v)

∫
|w|<1/εα0

Vs(u/ε+w)fs(u+εw)
w2 +v2 dwdv

+ 4
π

∫ +∞

0
φr(v)φs(v)v2n2(v)

∫
|w|<1/εα0

Vs(u/ε+w)fs(u+εw)
(w2 +v2)2 dwdv,

(5.16)

and

F̃s,t=σ(C1/2,ε(u), s≤u≤ t), (5.17)

the σ-algebra generated by C1/2,ε. Let us remark that F̃s,t is still φ̃ε-mixing. In fact, for s>2/εα0 ,
if A∈F̃t+s,+∞ and B∈F̃0,t, then A∈Ft+s−ε1−α0 ,+∞ and B∈F0,t+ε1−α0 , and therefore we have

sup
t≥0

A∈F̃t+s,+∞
B∈F̃0,t

|P(A|B)−P(A)|≤φ(s−2/εα0) = φ̃ε(s).

According to [25] we have the following results regarding mixing processes :∣∣E[C1/2,ε(t+s1)|F̃0,t]
∣∣≤2φ̃ε(s1), (5.18)

and ∣∣E[C1/2,ε(t+s1 +s2)C1/2,ε(t+s1)|F̃0,t]−E[C1/2,ε(t+s1 +s2)C1/2,ε(t+s2)]
∣∣

≤4φ̃1/2
ε (s1)φ̃1/2

ε (s2),
(5.19)
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for all s1,s2>2/εα0 . Let us also consider

C1,ε
rs (u) = 2(n2

1−1)φr(d)φs(d)
[6d3

π2

∫
Vs(ũ)fs(εũ)
(ũ−u)2 +d2 dũ

∫
Vs(ũ)fs(εũ)

((ũ−u)2 +d2)2 dũ

− 3d
π2

(∫ Vs(ũ)fs(εũ)
(ũ−u)2 +d2 dũ

)2
+ d

π

∫ U(Vsfs(ε·))(ũ) ddzVs(ũ)fs(εũ)
(ũ−u)2 +d2 dũ

]
+(φr(d)φ′s(d)+φ′r(d)φs(d))

( d
π

∫
Vs(ũ)fs(εũ)
(ũ−u)2 +d2 dũ

)2
+
∫ +∞

0
φr(v)φs(v)n2(v)

×
[4v2

π2

(∫ (ũ−u)Vs(ũ)fs(ũ)
((ũ−u)2 +v2)2 dũ

)2
− 2
π

∫ U(Vsfs(ε·))(ũ) ddzVs(ũ)fs(εũ)
(ũ−u)2 +v2 dũ

+ 4v2

π

∫ U(Vsfs(ε·))(ũ) ddzVs(ũ)fs(εũ)
((ũ−u)2 +v2)2 dũ− 2v2

π2

∫
Vs(ũ)fs(εũ)
(ũ−u)2 +v2 dũ

∫
Vs(ũ)fs(εũ)

((ũ−u)2 +v2)2 dũ

+ 1
π2

(∫ Vs(ũ)fs(εũ)
(ũ−u)2 +v2 dũ

)2
+ 4v4

π2

(∫ Vs(ũ)fs(εũ)
((ũ−u)2 +v2)2 dũ

)2]
.

(5.20)

We have the following result.
Lemma 5.1 For all (r,s)∈{1,. ..,N}∪(ξ,k2), we have

Cεrs(u) =
√
εC1/2,ε

rs (u)+εC1,ε
rs (u)+o(ε),

uniformly with respect to u∈ (0,L/ε), and where Cε(u) is defined by (3.11).
This Lemma gives an approximation of the random operators Haa

ε,ξ and Gaa
ε,ξ ((3.18)-(3.19) and

(3.26)-(3.27)) by new operators H̃aa

ε,ξ and G̃aa

ε,ξ defined by

H̃aa

j,ε,ξ(u)(y) = ik2

2

[ N∑
l=1

C
1/2,ε
jl (u)√
βj−βl

yle
i(βl−βj)u+

∫ k2

ξ

C
1/2,ε
jγ′ (u)√
βj
√
γ′
yγ′e

i(
√
γ′−βj)udγ′

]
,

H̃aa

γ,ε,ξ(u)(y) = ik2

2

N∑
l=1

C
1/2,ε
γl (u)√√

γβl
yle

i(βl−
√
γ)u,

G̃aa

j,ε,ξ(u)(y) = ik4

4

N∑
l=1

∫ −ξ
−1/ξ

C
1/2,ε
jγ′ (u)C1/2,ε

γ′l (ũ+u)√
βj |γ′|βl

eiβl(ũ+u)−
√
|γ′||ũ|−iβjudγ′dũ

+ ik2

2

[ N∑
l=1

C1,ε
jl (u)√
βjβl

yle
i(βl−βj)u+

∫ k2(ω)

ξ

C1,ε
jγ′(u)√
βj
√
γ′
yγ′e

i(
√
γ′−βj)udγ′

]
,

where C1/2,ε(u) = 0 if u 6∈ [0,L/ε] and G̃aa

γ,ε,ξ = 0 for γ∈ (ξ,k2(ω)). The following lemma is a direct
consequence of Lemma 5.1.
Lemma 5.2 We have

1
ε
Haa
ε,ξ

(u
ε

)
(y) = 1√

ε
H̃aa

ε,ξ

(u
ε

)
(y)+o(1) and 1

ε
Gaa
ε,ξ

(u
ε

)
(y) = G̃aa

ε,ξ

(u
ε

)
(y)+o(1),

uniformly in u∈ [0,L/ε] and for each y∈Hωξ .
This second lemma will be used in the next section to approximate the forward mode amplitudes
âε,ξ unique solution of (4.1).
Proof (of Lemma 5.1) The proof consists only in doing expansions of the perturbations pro-
duced by the waveguide transformation.
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Cεrs(u) =
∫ +∞

0
(Jε(u,v)n2

ε(u,v)−n2(v))φr(v)φs(v)dv=D1,ε
rs (u)+D2,ε

rs (u)+D3,ε
rs (u),

where Jε is defined by (3.7), and

D1,ε
rs (u) =

∫ +∞

0
φr(v)φs(v)(Jε(u,v)−1)n2(v)dv,

D2,ε
rs (u) =

∫ +∞

0
φr(v)φs(v)(n2

ε(u,v)−n2(v))dv,

D3,ε
rs (u) =

∫ +∞

0
φr(v)φs(v)(Jε(u,v)−1)(n2

ε(u,v)−n2(v))dv.

First, we have

D1,ε
rs (u) =

√
ε

∫ +∞

0
φr(v)φs(v)n2(v)

[4v2

π

∫
Vs(ũ)fs(ũ)

((ũ−u)2 +v2)2 dũ−
2
π

∫
Vs(ũ)fs(ũ)

(ũ−u)2 +v2 dũ
]

+ε

∫ +∞

0
φr(v)φs(v)n2(v)

[4v2

π2

(∫ (ũ−u)Vs(ũ)fs(ũ)
((ũ−u)2 +v2)2 dũ

)2

− 2
π

∫ U(Vs(·)fs(ε·))(ũ) ddzVs(ũ)fs(εũ)
(ũ−u)2 +v2 dũ+ 4v2

π

∫ U(Vs(·)fs(ε·))(ũ) ddzVs(ũ)fs(εũ)
((ũ−u)2 +v2)2 dũ

− 4v2

π2

∫
Vs(ũ)fs(εũ)
(ũ−u)2 +v2 dũ

∫
Vs(ũ)fs(εũ)

((ũ−u)2 +v2)2 dũ

+ 1
π2

(∫ Vs(ũ)fs(εũ)
(ũ−u)2 +v2 dũ

)2
+ 4v4

π2

(∫ Vs(ũ)fs(εũ)
((ũ−u)2 +v2)2 dũ

)2]
+o(ε).

(5.21)

Second, we have

D2,ε
rs (u) =

∫
A1,ε

(1−n2
1)φr(v)φs(v)dv+

∫
A2,ε

(n2
1−1)φr(v)φs(v)dv,

where

A1,ε=
{
v<d, x(u,v)>d

}
and A2,ε=

{
v>d, x(u,v)<d

}
.

The real part x(u,·) of the conformal map (2.1) is a nondecreasing bijection since

sup
u≥0

v∈[η,M ]

|∂vx(u,v)−1|≤
√
εK.

Moreover, we have

|x−1(u,d)−d−(d−x(u,d))∂vx−1(u,x(u,d))|≤ 1
2 |d−x(u,d)|2 sup

ṽ∈[d,x(u,d)]
|∂2
vx
−1(u,ṽ)|,
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with

sup
u≥0

sup
ṽ∈[d,x(u,d)]

|∂2
vx
−1(u,ṽ)|≤K

√
ε, and sup

u≥0
|d−x(u,d)|≤K

√
ε.

Then, D2,ε
rs can be approximated as follows

D2,ε
rs (u) =

∫
Ã1,ε

(1−n2
1)φr(v)φs(v)dv+

∫
Ã2,ε

(n2
1−1)φr(v)φs(v)dv+o(ε),

where

Ã1,ε=
{
v<d, v>d+Y ε(u,d)

}
and Ã2,ε=

{
v>d, v<d+Y ε(u,d)

}
,

with

Y ε(u,d) = d

π

∫
x(u,0)

(ũ−u)2 +d2 dũ
[
1− 1

π

∫
x(u,0)

(ũ−u)2 +d2 dũ+2d
2

π

∫
x(u,0)

((ũ−u)2 +d2)2 dũ
]
.

Consequently, we have

D2,ε
rs (u) =

√
ε2(n2

1−1)φr(d)φs(d) d
π

∫
Vs(ũ)fs(εũ)
(ũ−u)2 +d2 dũ

+ε2(n2
1−1)φr(d)φs(d)

[
2 d

3

π2

∫
Vs(ũ)fs(εũ)
(ũ−u)2 +d2 dũ

∫
Vs(ũ)fs(εũ)

((ũ−u)2 +d2)2 dũ

− d

π2

(∫ Vs(ũ)fs(εũ)
(ũ−u)2 +d2 dũ

)2
+ d

π

∫ U(Vs(·)fs(ε·))(ũ) ddzVs(ũ)fs(εũ)
(ũ−u)2 +d2 dũ

]
+ε4(n2

1−1)(φr(d)φ′s(d)+φ′r(d)φs(d))
( d
π

∫
Vs(ũ)fs(εũ)
(ũ−u)2 +d2 dũ

)2
+o(ε).

Finally, according to the previous step, we have

D3,ε
rs (u) = εφr(d)φs(d)

[4d2

π

∫
Vs(ũ)fs(εũ)

((ũ−u)2 +d2)2 dũ−
2
π

∫
Vs(ũ)fs(εũ)
(ũ−u)2 +d2 dũ

]
× d
π

∫
Vs(ũ)fs(εũ)
(ũ−u)2 +d2 dũ+o(ε).

To finish the proof of this lemma, we have to approximate in D1,ε(u) and D2,ε(u) the terms
of order

√
ε to obtain a more convenient form to exploit the mixing properties of the random

perturbations. Let α0∈ (1/2,1). First, we have∫
Vs(ũ)fs(εũ)
(ũ−u)2 +d2 dũ=

∫
Vs(u+w)fs(ε(u+w))

w2 +d2 dw,

and then ∣∣∣∫
|w|>1/εα0

u+w≥0

Vs(u+w)fs(ε(u+w))
w2 +d2 dw

∣∣∣≤K∫ +∞

1/(dεα0 )

1
w2 +1dw≤Kε

α0 .

In the same way, we have∫ +∞

0
φr(v)φs(v)

∫
Vs(ũ)fs(εũ)
(ũ−u)2 +v2 dũdv=

∫ +∞

0
φr(v)φs(v)

∫
Vs(u+w)fs(ε(ũ+w))

w2 +v2 dwdv,
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so that

∣∣∣∫ +∞

0
φr(v)φs(v)

∫
|w|>1/εα0

u+w≥0

Vs(u+w)fs(ε(u+w))
w2 +v2 dwdv

∣∣∣
≤K

∫ +∞

0

|φr(v)φs(v)|
v

∫ +∞

1/(vεα0 )

1
w2 +1dwdv

≤
∫ +∞

0
|φr(v)φs(v)|dvKεα0 .

Let us note that
∫ +∞

0 |φr(v)φs(v)|dv is well defined thanks to Assumption 3 and the form of φj
given in Section 5.1. The last term can be treated exactly as the previous one. �

5.2.2. Approximation of the Transfer Operator
The forward mode amplitudes âε,ξ unique solution of (4.1) cannot be studied directly using

the perturbed test function method introduced below because the random operatorHaa
ε,ξ andG

aa
ε,ξ

are not adapted to the filtration of the random perturbations. Consequently, we approximate âε,ξ
by a new process from which we can exploit the mixing properties of the random perturbations.
Let us introduce ãε,ξ the unique solution of the differential equation

d

du
ãε,ξ(u) = 1√

ε
H̃aa

ε,ξ

(u
ε

)
ãε,ξ(u)+

〈
G̃aa〉(u)ãε,ξ(u), (5.22)

with ãε,ξ(0) = âξ0 defined by (3.2), and where
〈
Gaa

〉
is defined for all y∈Hξ and j∈

{
1,. ..,N

}
by

〈
Gaa

〉
j
(u,y) =

∫ −ξ
−∞

ik4f2
s (u)

2βj
√
|γ|

∫ +∞

0
G

(1)
jγ (z)cos

(
βjz
)
e−
√
|γ|zdzdγyj+ ik2f2

s (u)
2βj

G
(2)
j yj ,

and
〈
Gaa

〉
γ
(y) = 0 for almost every γ∈ (ξ,k2). Here, we have

G
(1)
jγ (z) =4(n1−1)2φ2

j (d)φ2
γ(d) d

2

π2

∫∫
Rs(z+w−w′)

(w2 +d2)(w′2 +d2)
dwdw′

+ 4
π2

∫∫
φj(v)φγ(v)φj(v′)φγ(v′)

∫∫
Rs(z+w−w′)

(w2 +v2)(w′2 +v′2)
dwdw′dvdv′

+ 16
π2

∫∫
φj(v)φγ(v)φj(v′)φγ(v′)v2v′

2
∫∫

Rs(z+w−w′)
(w2 +v2)2(w′2 +v′2)2

dwdw′dvdv′

− 8(n1−1)
π

φj(d)φγ(d)
∫
φj(v)φγ(v)

∫
Rs(z+w−w′)

(w2 +v2)(w′2 +d2)
dwdw′dv

+ 16(n1−1)
π

φj(d)φγ(d)
∫
φj(v)φγ(v)v2

∫
Rs(z+w−w′)

(w2 +v2)2(w′2 +d2)
dwdw′dv

− 8
π2

∫∫
φj(v)φγ(v)φj(v′)φγ(v′)v2

∫∫
Rs(z+w−w′)

(w2 +v2)2(w′2 +v′2)
dwdw′dvdv′

− 8
π2

∫∫
φj(v)φγ(v)φj(v′)φγ(v′)v′2

∫∫
Rs(z+w−w′)

(w2 +v2)(w′2 +v′2)2
dwdw′dvdv′,
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and

G
(2)
j = 2(n2

1−1)φ2
j (d)

×
[6d3

π2

∫∫
Rs(w−w′)

(w2 +d2)(w′2 +d2)2
dwdw′− 3d

π2

∫∫
Rs(w−w′)

(w2 +d2)(w′2 +d2)
dwdw′+U(R̃s)(0)

]
+4(n2

1−1)φj(d)φ′j(d)
∫∫

Rs(w−w′)
(w2 +d2)(w′2 +d2)

dwdw′

+
∫ +∞

0
φ2
j (v)n2(v)

[4v2

π2

∫∫
ww′Rs(w−w′)

(w′2 +v2)2(w2 +v2)2
dwdw′

− 4v2

π2

∫∫
Rs(w−w′)

(w2 +v2)(w′2 +v2)2
dwdw′

+ 1
π2

∫∫
Rs(w−w′)

(w2 +v2)(w′2 +v2)
dwdw′+ 4v4

π2

∫∫
Rs(w−w′)

(w2 +v2)2(w′2 +v2)2
dwdw′

]
,

where Rs is the autocorrelation function of the random process Vs, and R̃s is the correlation
function of the processes Vs and d

dzVs, that is d
dzRs. Let us note U(R̃s)(0) is well defined. In

fact, Rs is an even function so that R̃s(0) = 0.
Moreover, let us remark that the terms involving the Hilbert transform in (5.21) have dis-

appeared. In fact, taking the expectation, using the stationarity of Vs by making a change of
variable, and then passing to the limit in ε, we have

lim
ε→0

∫
dũfs(εũ) 1

π

∫
R̃s(w)
w

fs(ε(ũ−w))
[ 4v2/π(

(ũ−u/ε)2 +v2
)2 − 2/π

(ũ−u/ε)2 +v2

]
=f2

s (u)U(R̃s)(0)
[4v2

π

∫
dũ(

ũ2 +v2
)2 − 2

π

∫
dũ

ũ2 +v2

]
=f2

s (u)U(R̃s)(0)
[2
v
− 2
v

]
= 0.

We have the following proposition that describes the relation between the two transfer pro-
cesses âε,ξ and ãε,ξ.
Proposition 5.1

∀η>0, lim
ε→0

P

(
sup

u∈[0,L]
‖âε,ξ(u)− ãε,ξ(u)‖2Hω

ξ
>η

)
= 0.

Thanks to Proposition 5.1 and [4, Theorem 3.1], one can study the new process (ãε,ξ)ε in-
stead of (âε,ξ)ε. Let us remark that ãε,ξ is adapted to the filtration F̃ε0,u defined by (5.17) and
‖ãε,ξ(u)‖2Hξ =‖âξ0‖2Hξ , for all u≥0. Consequently, (ãε,ξ)ε can be studied using the perturbed test
function method.
Proof (of Proposition 5.1) This proof is in two steps. The first step consists in using Lemma
5.2 to approximate the random operator Haa

ε,ξ and Gaa
ε,ξ by H̃aa

ε,ξ and G̃aa

ε,ξ from which we can
exhibit the mixing properties of the random perturbations. The second step consists in using
the ideas developed in [21] to exploit the fast phase of the random operator Gaa

ε,ξ. The proof of
the second step follows closely the proof of Proposition 6.3 in [16]. �

5.2.3. The Perturbed Test Function Method
In this section we study the limit in distribution of the process (ãε,ξ)ε unique solution of

the differential equation (5.22), using the perturbed-test-function method and a martingale tech-
nique. The proof is in two steps. First, we prove the tightness of the process (ãε,ξ)ε, afterward
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we identify all the subsequence limits thanks to a well posed martingale problem. According
to [25, Theorem 4], the proof of the tightness is decomposed in Lemma 5.3, Lemma 5.4 , and
Lemma 5.5. The subsequence limits are identify, first by a complex martingale problem (Lemma
5.6), and then by a real martingale problem (Lemma 5.7) to use the classical uniqueness results
in [39] for instance.

Now, let us defined the good space to apply the asymptotic analysis. Let r=‖âξ0‖Hξ ,

Br,Hξ =
{
λ∈Hξ,‖λ‖Hξ =

√
〈λ,λ〉Hξ ≤ ry

}
the closed ball with radius r, and {gn,n≥1} a dense subset of Br,Hξ . We equip Br,Hξ with the
distance dBr,Hξ defined by

dBr,Hξ (λ,µ) =
+∞∑
j=1

1
2j
∣∣∣〈λ−µ,gn〉Hξ ∣∣∣

for all (λ,µ)∈Br,Hξ . As a result, (BHξ ,dBr,Hξ ) is a compact metric space. From the definition
of the metric dBr,Hξ , we have the following criterion.
Theorem 5.2 A family of processes (Xε)ε∈(0,1) is tight in C([0,+∞),(Br,Hξ ,dBr,Hξ )) if and only
if
(〈
Xε,λ

〉
Hξ

)
ε∈(0,1) is tight on C([0,+∞),C) for all λ∈Hξ.

This last theorem looks like the tightness criterion of Mitoma and Fouque [29, 9]. For any
λ∈Hξ, we set ãε,ξλ (u) =

〈
ãε,ξ(u),λ

〉
Hξ

. According to Theorem 5.2, the family (ãε,ξ(.))ε is tight
on C([0,+∞),(Br,Hξ ,dBr,Hξ )) if and only if the family (ãε,ξλ (.))ε is tight on C([0,+∞),C) for all
λ∈Hξ. Furthermore, (ãε,ξ(.))ε is a family of continuous processes and then it is sufficient to prove
that for all λ∈Hξ, (ãε,ξλ (.))ε is tight in the space of cad-lag functions D([0,+∞),C) equipped
with the Skorokhod topology [4, Theorem 13.4].

Using the notion of a pseudogenerator, we prove tightness and characterize all subsequence
limits. Let us recall the techniques developed by Kurtz and Kushner. LetMε be the set of all
Fε-measurable functions f(u) for which supu≤LE[|f(u)|]<+∞ and where L>0 is fixed. The
p− lim and the pseudogenerator are defined as follows. Let f and fδ inMε for all δ>0. We say
that f =p− limδ f

δ if

sup
u,δ

E[|fδ(u)|]<+∞ and lim
δ→0

E[|fδ(u)−f(u)|] = 0 ∀u.

The domain of Aε is denoted by D(Aε). We say that f ∈D(Aε) and Aεf =g if f and g are in
D(Aε) and

p− lim
δ→0

[
Eεu[f(u+δ)]−f(u)

δ
−g(u)

]
= 0,

where Eεu is the conditional expectation given Fεu and Fεu=Fu/ε. A useful result about Aε is
given by the following theorem.
Theorem 5.3 Let f ∈D(Aε). Then,

M ε
f (u) =f(u)−

∫ u

0
Aεf(v)dv

is an (Fεu)-martingale.
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In what follows, we consider the classical complex derivative with the following notation: If
v=α+ iβ, then ∂v = 1

2 (∂α− i∂β) and ∂v = 1
2 (∂α+ i∂β).

Proposition 5.2 For all λ∈Hξ, the family
(
ãε,ξλ (.)

)
ε∈(0,1) is tight in D([0,+∞),C).

Proof First, we easily obtain for all T >0,

lim
M→+∞

lim
ε→0

P
(

sup
0≤u≤T

|ãε,ξλ (u)|≥M
)

= 0,

since (ãε,ξ(.))ε is a bounded process. To show the tightness of the process
(
ãε,ξ(u)

)
u≥0, according

to [25, Theorem 4], we need to show the three following lemmas. Let λ∈Hξ, f be a smooth
function, and f ε0(u) =f

(
ãε,ξλ (u)

)
. We have,

Aεf ε0(u) =∂vf
(
ãε,ξλ (t)

)[ 1√
ε
Hλ

(
ãε,ξ(u),C1/2,ε

(u
ε

)
,
u

ε

)
+Gλ

(
ãε,ξ(u)

)]
+∂vf

(
ãε,ξλ (u)

)[ 1√
ε
Hλ

(
ãε,ξ(u),C1/2,ε

(u
ε

)
,
u

ε

)
+Gλ (ãε,ξ(u))

]
,

where

Hλ

(
ãε,ξ(u),C1/2,ε

(u
ε

)
,
u

ε

)
=
〈
H̃aa

ε,ξ

(u
ε

)
ãε,ξ(u)(y),λ

〉
Hω
ξ

,

and Gλ(ãε,ξ(u)) =
〈〈
G̃aa〉(u)ãε,ξ(u),λ

〉
Hω
ξ

. Let us consider

f ε1(u) = 1√
ε
∂vf

(
ãε,ξλ (u)

)∫ +∞

u

Eεu
[
Hλ

(
ãε,ξ(u),C1/2,ε

(w
ε

)
,
w

ε

)]
dw

+ 1√
ε
∂vf

(
ãε,ξλ (u)

)∫ +∞

t

Eεu
[
Hλ

(
ãε,ξ(u),C1/2,ε

(w
ε

)
,
w

ε

)]
dw.

Here, Eεu stands for the conditional expectation with respect to the filtration F̃ε0,u defined by
(5.17).
Lemma 5.3 For all T >0, we have limε sup0≤u≤T |f ε1(u)|= 0 almost surely, and
supu≥0E[|f ε1(u)|] =O(ε1/2−η) for all η>0.
Proof (of Lemma 5.3) Using a change of variable and thanks to (5.18), we obtain

|f ε1(u)|≤K
√
ε

∫ +∞

0
φ(w)dw

∫ +∞

0
ψ(w)(1+1/(2w))dw

+K
√
εln(1+1/(d2ε2α0))+K

√
ε

∫ +∞

0
ψ(w)(ln(1+1/(w2ε2α0))+1/(2w))(1+1/w)dw,

where, thanks to Assumption 3, ψ is a function coming from the propagating modes φj such
that the integral in w is well defined. More precisely, ψ(w)∼w2 as w goes to 0 and ψ decay
exponentially at infinity. The second and third part of the previous expression come from the
fact that in (5.18) s1 has to be greater than 2/εα0 . Indexes s1 smaller than 2/εα0 are not covered
by the mixing property and then lead us to explicit computation using a primitive of arctan(w)
given by warctan(w)−1/2ln(1+w2). That concludes the proof of Lemma 5.3.�



36 Waveguides with Rough Boundaries

A computation gives us

Aε
(
f ε0 +f ε1

)
(u) =∂vf

(
ãε,ξλ (u)

)[∫ +∞

0
H

(1)
λ

(
ãε,ξ(u),Eεu

[
C1/2,ε

(u
ε

)
⊗C1/2,ε

(u
ε

+w
)]
,
u

ε
,
u

ε
+w

)
dw

+Gλ

(
ãε,ξ(u)

)]
+∂vf

(
ãε,ξλ (u)

)[∫ +∞

0
H

(1)
λ

(
ãε,ξ(u),Eεu

[
C1/2,ε

(u
ε

)
⊗C1/2,ε

(u
ε

+w
)]
,
u

ε
,
u

ε
+w

)
dw

+Gλ

(
ãε,ξ(u)

)]

+∂2
vf
(
ãε,ξλ (u)

)∫ +∞

0
H

(2)
λ

(
ãε,ξ(u),Eεu

[
C1/2,ε

(u
ε

)
⊗C1/2,ε

(u
ε

+w
)]
,
u

ε
,
u

ε
+w

)
dw

+∂2
vf
(
ãε,ξλ (u)

)∫ +∞

0
H

(2)
λ

(
ãε,ξ(u),Eεu

[
C1/2,ε

(u
ε

)
⊗C1/2,ε

(u
ε

+w
)]
,
u

ε
,
u

ε
+w

)
dw

+∂v∂vf
(
ãε,ξλ (u)

)∫ +∞

0
H

(3)
λ

(
ãε,ξ(u),Eεu

[
C1/2,ε

(u
ε

)
⊗C1/2,ε

(u
ε

+w
)]
,
u

ε
,
u

ε
+w

)
dw

+∂v∂vf
(
ãε,ξλ (u)

)∫ +∞

0
H

(3)
λ

(
ãε,ξ(u),Eεu

[
C1/2,ε

(u
ε

)
⊗C1/2,ε

(u
ε

+w
)]
,
u

ε
,
u

ε
+w

)
dw

+o(1),

where

H
(1)
λ (T,C,s,s̃) =−k

4

4

N∑
j=1

λj

[ N∑
l,l′=1

Cjlll′√
βjβ2

l βl′
ei(βl−βj)s̃+i(βl′−βl)sTl′

+
N∑
l=1

∫ k2

ξ

Cjllγ′√
βjβ2

l

√
γ′
ei(βl−βj)s̃+i(

√
γ′−βl)sTγ′+

Cjγ′γ′l√
βjγ′βl

ei(
√
γ′−βj)s̃+i(βl−

√
γ′)sTldγ′

]

− k
4

4

∫ k2

ξ

[ N∑
l,l′=1

Cγlll′√√
γβ2

l βl′
ei(βl−

√
γ)s̃+i(βl′−βl)sTl′

+
N∑
l=1

∫ k2

ξ

Cγllγ′′√√
γβ2

l

√
γ′′
ei(βl−

√
γ)s̃+i(

√
γ′′−βl)sTγ′′dγ′′

]
λγdγ,

H
(j)
λ (T,C,s,s̃) = (−1)j−1 k

4

4

N∑
j,j′=1

[ N∑
l,l′=1

Cjlj′l′√
βjβlβj′βl′

ei(βl−βj)s̃−i(−1)j−1(βl′−βj′ )sTlTl′

+
N∑
l=1

∫ k2

ξ

Cjlj′γ′2√
βjβlβj′

√
γ′2

ei(βl−βj)s̃−i(−1)j−1(
√
γ′2−βj′ )sTlTγ′2dγ

′
2

+
∫ k2

ξ

N∑
l′=1

Cjγ′1j′l′√
βj
√
γ′1βj′βl′

ei(
√
γ′1−βj)s̃−i(−1)j−1(βl′−βj′ )sTγ′1Tl′dγ

′
1

+
∫ k2

ξ

∫ k2

ξ

Cjγ′1j′γ′2√
βj
√
γ′1βj′

√
γ′2

ei(
√
γ′1−βj)s̃−i(−1)j−1(

√
γ′2−βj′ )sTγ′1Tγ′2dγ

′
1dγ
′
2

]
λjλj′
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− k
4

4

N∑
j=1

∫ k2

ξ

[ N∑
l,l′=1

Cjlγ2l′√
βjβl
√
γ2βl′

ei(βl−βj)s̃−i(−1)j−1(βl′−
√
γ2)sTlTl′

+
∫ k2

ξ

N∑
l′=1

Cjγ′1γ2l′√
βj
√
γ′1γ2βl′

ei(
√
γ′1−βj)s̃−i(−1)j−1(βl′−

√
γ2)sTγ′1Tl′dγ

′
1

]
λjλγ2dγ2

− k
4

4

∫ k2

ξ

N∑
j′=1

[ N∑
l,l′=1

Cγ1lj′l′√√
γ1βlβj′βl′

ei(βl−
√
γ1)s̃−i(−1)j−1(βl′−βj′ )sTlTl′

+
N∑
l=1

∫ k2

ξ

Cγ1lj′γ′2√√
γ1βlβj′

√
γ′2

ei(βl−
√
γ1)s̃−i(−1)j−1(

√
γ′2−βj′ )sTlTγ′2dγ

′
2

]
λγ1λj′

− k
4

4

∫ k2

ξ

∫ k2

ξ

[ N∑
l,l′=1

Cγ1lγ2l′√√
γ1βl
√
γ2βl′

ei(βl−
√
γ1)s̃−i(−1)j−1(βl′−

√
γ2)sTlTl′

]
λγ1λγ2dγ1dγ2,

where j∈{2,3}. Let us note that a quick computation shows thatAε(f ε0 +f ε1)(u) is not necessarily
uniformly integrable. In fact, we obtain for E

[
|Aε(f ε0 +f ε1)(u)|2

]
the same bound as the one

obtained for f ε1(u) in Lemma 5.3 but without
√
ε, so that this bound blows up as ε goes to 0.

The problem comes from the indexes not covered by the mixing property (5.18). To show the
tightness of the process ãε,ξ we have to introduce a second perturbed test function to correct the
problem. This second perturbed test function f ε2 is given by

f ε2(u) =
∫ +∞

u

F̃λ

(
ãε,ξ(u),Eεu

[
Cε
(w
ε

)]
−E
[
Cε
(w
ε

)]
,
w

ε

)
dw,

where

F̃λ(T,C,w) =∂vf(Tλ
)∫ +∞

0
H

(1)
λ (T,C(w)⊗C(w+ w̃),w,w+ w̃)dw̃

+∂vf(Tλ)
∫ +∞

0
H

(1)
λ (T,C(w)⊗C(w+ w̃),w,w+ w̃)dw̃

+∂2
vf(Tλ)

∫ +∞

0
H

(2)
λ (T,C(w)⊗C(w+ w̃),w,w+ w̃)dw̃

+∂2
vf(Tλ)

∫ +∞

0
H

(2)
λ (T,C(w)⊗C(w+ w̃),w,w+ w̃)dw̃

+∂v∂vf(Tλ)
∫ +∞

0
H

(3)
λ (T,C(w)⊗C(w+ w̃),w,w+ w̃)dw̃

+∂v∂vf(Tλ)
∫ +∞

0
H

(3)
λ (T,C(w)⊗C(w+ w̃),w,w+ w̃)dw̃.

Lemma 5.4 For all T >0, we have limε sup0≤u≤T |f ε2(u)|= 0 almost surely, and
supu≥0E[|f ε2(u)|] =O(ε1−η), for all η>0.
Proof (of Lemma 5.4) Using a change of variable and thanks to (5.19), we obtain

|f ε2(u)|≤Kε
(∫ +∞

0
φ1/2(w)dw

∫ +∞

0
ψ(w)(1+1/(2w))dw

)2

+Kε
(

ln(1+1/(d2ε2α0))
)2

+Kε
(∫ +∞

0
ψ(w)(ln(1+1/(w2ε2α0))+1/(2w))(1+1/w)dw

)2
,
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where ψ has been described in the proof of Lemma 5.3. We recall that indexes s1 smaller than
2/εα0 in (5.18) are not covered by the mixing property. These indexes lead us to explicit com-
putations using a primitive of arctan(w) given by warctan(w)−1/2ln(1+w2). That concludes
the proof of Lemma 5.4.�

Finally, the tightness of ãε,ξ is given by the following lemma.
Lemma 5.5

{
Aε
(
f ε0 +f ε1 +f ε2

)
(u),ε∈ (0,1),0≤u≤T

}
is uniformly integrable for all T >0,

where

Aε
(
f ε0 +f ε1 +f ε2

)
(u) =∂vf

(
ãε,ξλ (u)

)[∫ +∞

0
H

(1)
λ

(
ãε,ξ(u),E[C1/2,ε(0)⊗C1/2,ε(w)], u

ε
,
u

ε
+w

)
dw

+Gλ

(
ãε,ξ(u)

)]
+∂vf

(
ãε,ξλ (u)

)[∫ +∞

0
H

(1)
λ

(
ãε,ξ(u),E[C1/2,ε(0)⊗C1/2,ε(w)], u

ε
,
u

ε
+w

)
dw+Gλ

(
ãε,ξ(u)

)]

+∂2
vf
(
ãε,ξλ (u)

)∫ +∞

0
H

(2)
λ

(
ãε,ξ(u),E[C1/2,ε(0)⊗C1/2,ε(w)], u

ε
,
u

ε
+w

)
dw

+∂2
vf
(
ãε,ξλ (u)

)∫ +∞

0
H

(2)
λ

(
ãε,ξ(u),E[C1/2,ε(0)⊗C1/2,ε(w)], u

ε
,
u

ε
+w

)
dw

+∂v∂vf
(
ãε,ξλ (u)

)∫ +∞

0
H

(3)
λ

(
ãε,ξ(u),E[C1/2,ε(0)⊗C1/2,ε(w)], u

ε
,
u

ε
+w

)
dw

+∂v∂vf
(
ãε,ξλ (u)

)∫ +∞

0
H

(3)
λ

(
ãε,ξ(u),E[C1/2,ε(0)⊗C1/2,ε(w)], u

ε
,
u

ε
+w

)
dw

+o(1).

Proof (of Lemma 5.5) This lemma is a consequence of a long but straightforward computa-
tion. The terms of order one in Aε

(
f ε0 +f ε1 +f ε2

)
are uniformly integrable. Moreover, the terms

bring by f ε2 in o(1) can be bounded using the bound obtain in the proof of Lemma 5.4 with
√
ε

instead of ε. Therefore, the unbounded logarithm which was a problem in Aε
(
f ε0 +f ε1) can be

killed. � That completes the proof of Proposition 5.2. �
Now, we characterize all the subsequence limits (Proposition 5.3), using first by a complex
martingale problem (Lemma 5.6), and then a real martingale problem (Lemma 5.7) to use the
classical uniqueness results in [39] for instance.
Proposition 5.3 All the subsequence limits of (ãε,ξ(.))ε∈(0,1) are solution of a well posed mar-
tingale problem associated to the infinitesimal generator defined by (4.2).
Proof (of Proposition 5.3) To do that, we consider a converging subsequence of (ãε,ξ(.))ε∈(0,1)
which converges to a limit âξ(.). For the sake of simplicity we denote by (ãε,ξ(.))ε∈(0,1) such a
subsequence. To exhibit the well-posed martingale problem, we need first to extract all the fast
oscillating phase, as done in [16, Proposition 6.5], in Aε

(
f ε0 +f ε1 +f ε2

)
using Assumption 6.

Lemma 5.6 For all λ∈Hξ and for all f smooth test function,

f
(
âξλ(u)

)
−
∫ u

0
∂vf

(
âξλ(w)

)〈
Jξ(âξ(w)),λ

〉
Hξ

+∂vf
(
âξλ(w)

)
〈Jξ(âξ(w)),λ〉Hξ

+∂2
vf
(
âξλ(w)

)〈
K
(
âξ(w)

)
(λ),λ

〉
Hξ

+∂2
vf
(
âξλ(w)

)〈
K
(
âξ(w)

)
(λ),λ

〉
Hξ

+∂v∂vf
(
âξλ(w)

)〈
L
(
âξ(w)

)
(λ),λ

〉
Hξ

+∂v∂vf
(
âξλ(w)

)〈
L
(
âξ(w)

)
(λ),λ

〉
Hξ
dw
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is a martingale, where

Jξ(T)j =
[

Γc,sjj
2 −Λc,s,ξj + i

(
Γs,sjj

2 −Λs,s,ξj +κs,ξj

)]
Tj ,

K(T)(λ)j =−1
2

N∑
l=1
l 6=j

(
Γc,sjl + iΓs,sjl

)
TjTlλl, L(T)(λ)j = 1

2

N∑
l=1
l 6=j

Γc,sjl TlTlλj ,
(5.23)

and Jξ(T)γ =K(T)(λ)γ =L(T)(λ)γ = 0 for almost every γ∈ (ξ,k2), and for (T,λ)∈H2
ξ . Here,

Γ1,s, Γc,s, Γs,s, Λc,s,ξ, Λs,s,ξ, and κs,ξ are defined in Section 4.1.1.
In order to prove uniqueness, we decompose âξ(.) into real and imaginary parts. Then, let us
consider the new process

Yξ(u) =
[
Y1,ξ(u)
Y2,ξ(u)

]
, where Y1,ξ(u) =Re

(
âξ(u)

)
and Y2,ξ(u) = Im

(
âξ(u)

)
.

This new process takes its values in Gξ×Gξ, where Gξ =RN ×L2((ξ,k2),R), and we introduce
the operator

Υ :Gξ×Gξ−→Gξ×Gξ,[
T1

T2

]
7−→

[
T2

−T1

]
.

Lemma 5.7 For all f ∈C2
b (Gξ×Gξ),

Mξ
f (u) =f(Yξ(u))−

∫ u

0
Lξf(Yξ(w))dw

is a continuous martingale, where for all (Y,λ)∈ (Gξ×Gξ)2

Lξf(Y) = 1
2 trace

(
A(Y)D2f(Y)

)
+
〈
Bξ(Y),Df(Y)

〉
Gξ×Gξ

, (5.24)

with A(Y)(λ) =A1(Y)(λ)+A2(Y)(λ). Moreover, for j∈{1,. ..,N},

Bξ(Y)j =
[

Γc,sjj
2 −Λc,s,ξj

]
Yj−

[
Γs,sjj

2 +κs,ξj −Λs,s,ξj

]
Υj(Y)

A1(Y)(λ)j =−Yj

N∑
l=1
l 6=j

Γc,sjl
[
Y1
l λ

1
l +Y2

l λ
2
l

]
+Υj(Y)

N∑
l=1
l 6=j

Γc,sjl
[
Υ1
l (Y)λ1

l +Υ2
l (Y)λ2

l

]

A2(Y)(λ)j =λj

N∑
l=1
l 6=j

Γc,sjl
[
(Y1

l )2 +(Y2
l )2],

and Bξγ(Y) =Aγ(Y)(λ) =Aγ(Y)(λ) =Aγ(Y)(λ) = 0 for almost every γ∈ (ξ,k2). Moreover, the
martingale problem associated to the generator Lξ is well-posed.
Proof (of Lemma 5.7) Following the proof of Theorem 4.1.4 in [39], to prove that Mξ

f is a
martingale it suffices to show that〈

Mξ(u),λ
〉
Gξ×Gξ

=Mξ
λ(u) =

〈
Yξ(u)−

∫ u

0
Bξ(Yξ(w))dw,λ

〉
Gξ×Gξ
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is a continuous martingale with quadratic variation

<Mξ
λ> (u) =

∫ u

0

〈
A(Yξ(w))(λ),λ

〉
Gξ×Gξ

dw.

Moreover, for all (Y,λ)∈ (Gξ×Gξ)2, we have 〈A(Y)(λ),λ〉Gξ×Gξ ≥0 and trace(A(Y))<+∞. Ac-
cording to Theorem 3.2.2 and 4.4.1 in [39], the martingale problem associated to Lξ is therefore
well-posed. �
Finally, to recover rigorously the form of the generator (4.7) for the complex diffusion process
âξ(ω,·), we use formula (5.24) where

g(Y) =f(T) and T=Y1 + iY2,

with

∂Y1
j
g(Y) = (∂Tj +∂Tj )f(T) and ∂Y2

j
g(Y) = i(∂Tj −∂Tj )f(T).

In fact, for the drift term, we have

〈
Bξ(Y),Dg(Y)

〉
Gξ×Gξ

=
N∑
j=1

[
Γc,sjj

2 −Λc,s,ξj

]
Y1
j∂Y1

j
g(Y)−

[
Γs,sjj

2 +κs,ξj −Λs,s,ξj

]
Y2
j∂Y1

j
g(Y)

+
[

Γc,sjj
2 −Λc,s,ξj

]
Y2
j∂Y2

j
g(Y)+

[
Γs,sjj

2 +κs,ξj −Λs,s,ξj

]
Y1
j∂Y2

j
g(Y)

=
N∑
j=1

[
Γc,sjj

2 −Λc,s,ξj + i

(
Γs,sjj

2 +κs,ξj −Λs,s,ξj

)]
Tj∂Tjg+c.c,

where c.c means complex conjugate of the previous term. To obtain the diffusion term, a for-
mal but fast way to do consists in replacing the component of the test function λj by ∂Tj in〈
K
(
âξ(w)

)
(λ),λ

〉
Hξ

and
〈
L
(
âξ(w)

)
(λ),λ

〉
Hξ

defined by (5.23). In fact, in the proof of Proposi-
tion 5.7, one can see that the real part λ1

j corresponds to ∂Y1
j
and the imaginary λ2

j corresponds
to ∂Y2

j
, so that λj =λ1

j + iλ2
j correspond to ∂Y1

j
+ i∂Y2

j
= 2∂Tj .

Finally, using the fact that

Rs(z+w−w′) = 1
2π

∫
duR̂s(u)eiuzeiu(w−w′),

and
∫

e−iwu

A2+w2 dw= π
Ae
−A|u|,

∫
we−iwu

(A2+w2)2 dw=−iu π
2Ae
−A|u|,

∫
e−iwu

(A2+w2)2 dw= π(1+A|u|)
2A3 e−A|u| for A>

0, we obtain after long but straightforward computations the expression of the diffusion coeffi-
cients in Theorem 4.1. That completes the proof of Proposition 5.3. �

5.3. Proof of Proposition 4.2
The proof of this proposition follows the idea of the one of [2, Proposition 5.1]. We restrict the

proof to the case of a randomly perturbed bottom. For the case of a randomly perturbed surface
the proof remains the same but with more terms and lengthier computations. Proposition 4.2 is
a consequence of the three following lemmas allowing us to study the behavior of the coupling
coefficients Γ1,b

jj (ω), Γc,bjj (ω), and dissipation coefficients Λc,bj (ω) in the asymptotic k(ω)→+∞.
However, we restrict the proof to the ones of Γc,bjj (ω), and Λc,bj (ω) since for Γ1,b

jj (ω) it is a simple
application of Lemma 5.10.
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Lemma 5.8 Let us denote

Γ̃j(ω) =
N(ω)∑
l=1
l 6=j

φ2
l (ω,d)
βl(ω) Ib(βj(ω)−βl(ω)).

We have the three following asymptotic behaviors.
1. For η1∈ [0,1/2) and ν1>0, we have

sup
j∈{1,...,[ν1N(ω)η1 ]}

∣∣∣Γ̃j(ω)−
√

2
πθ2(n1k(ω))3/2

∫ +∞

0

√
vIb(v)dv

∣∣∣=o
( 1
N(ω)3/2

)
.

2. For η2∈ (1/2,1]2 and µ2>ν2>0 (and ν2<µ2≤1 if η2 = 1), we have

sup
j∈{[ν2N(ω)η2 ],...,[µ2N(ω)η2 ]}

∣∣∣Γ̃j(ω)− 2j
π2N(ω)2

∫ +∞

−∞
Ib(v)dv

∣∣∣=o
( 1
N(ω)2−η2

)
.

3. For j= [νN(ω)1/2], we have∣∣∣Γ̃j(ω)− 2
πθ2(n1k(ω))3/2

∫ +∞

−ν2πθ/(2d)

√
ν2θπ

d
+2vIb(v)dv

∣∣∣=o
( 1
N(ω)3/2

)
.

Regarding the dissipation coefficients, we have the following result.
Lemma 5.9 Let η∈ [0,1], ν1>0,ν2≥0 with ν1<1 if η= 1, and let us denote

Λ̃j(ω) =
∫ k2(ω)

0

φ2
γ′(ω,d)
√
γ′

Ib(βj(ω)−
√
γ′)dγ′.

We have the two following asymptotic behaviors.
1. For j= [νN(ω)η] with η∈ [0,1] and ν >0 (ν <1 if η= 1), we have

C1

(n1k(ω))αI ≤ Λ̃j≤
C2

(n1k(ω))αI ,

where C1 and C2 are two positive constants.
2. For j=N(ω)− [ν] with ν >0, we have

C3

N(ω)1/2 ≤ Λ̃j≤
C4

N(ω)1/2 .

Proof (of Lemma 5.8) To prove this results, we need the following lemma.
Lemma 5.10 We have for all l∈{1,. ..,N(ω)}

θ

π(N(ω)+1)
2

1+ 1

πN(ω)
√

1− (l−1)2
(N(ω)+1)2

(l−1)2

(N(ω)+1)2√
1−θ2 (l−1)2

(N(ω)+1)2

≤ φ
2
l (ω,d)
βl(ω) ≤

2θ
πN(ω)

l2

N(ω)2√
1−θ2 l2

N(ω)2

.

Proof (of Lemma 5.10) In fact, using relation (5.8) and the relation sin(arctan(x)) =
x/
√

1+x2 we have

sin(σj(ω)) =−sin(arctan(σj(ω)/
√

(n1k(ω)dθ)2−σ2
j (ω))) =−σj(ω)/(n1k(ω)dθ).
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In the same way, using the relation cos(arctan(x)) = 1/
√

1+x2, we have

A2
j (ω) = 2/d

1+ 1
n1k(ω)dθ

√
1−σ2

j (ω)/(n1k(ω)dθ)2

where Aj(ω) is defined by (5.7). Therefore, using the fact that σj(ω)∈ [(j−1)π,jπ] and the
definitions (5.6) and (5.10), we obtain the desired result. �
According to Lemma 5.10 we have for all j∈{1,. ..,N(ω)} the two following inequalities

θ

π(N(ω)+1)

N(ω)∑
l=1
l 6=j

2
1+ 1

πN(ω)
√

1−(l−1)2/(N(ω)+1)2

(l−1)2/(N(ω)+1)2√
1−θ2(l−1)2/(N(ω)+1)2

×Ib(n1k(ω)(
√

1−θ2(j−1)2/(N(ω)+1)2−
√

1−θ2l2/N(ω)2))

≤
N(ω)∑
l=1
l 6=j

φ2
l (ω,d)
βl(ω) Ib(βj(ω)−βl(ω))≤ 2θ

πN(ω)

N(ω)∑
l=1
l 6=j

l2/N(ω)2√
1−θ2l2/N(ω)2

×Ib(n1k(ω)(
√

1−θ2j2/N(ω)2−
√

1−θ2(l−1)2/(N(ω)+1)2))
(5.25)

so that for all η∈ (0,1) and j∈{1,. .., [νN(ω)η]}

∣∣∣N(ω)∑
l=1
l 6=j

φ2
l (ω,d)
βl(ω) I(βj(ω)−βl(ω))− 2θ

π

∫ 1

0

y2√
1−θ2y2

Ib(n1k(ω)(
√

1−θ2j2/N(ω)2−
√

1−θ2y2))dy
∣∣∣

≤C
[ 1
N(ω)

[j+N(ω)α

N(ω)

]2
+ 1
N(ω)

1
[N(ω)α−1(N(ω)α+2j)]αI

]
.

(5.26)

Here αI is the decaying power of the function Ib. To obtain this estimate we have split the
set of indexes into two parts |j− l|≤N(ω)α and |j− l|>N(ω)α. The reason is that for the
first set of indexes the term Ib(n1k(ω)(

√
1−θ2j2/N(ω)2−

√
1−θ2l2/N(ω)2)) is considered to

be bounded, but decays fast for the second set of indexes. Moreover, for all η1∈ (0,1/2) and
j∈{1,. .., [ν1N(ω)η1 ]}, using a change of variable, we have

2θ
π

∫ 1

0

y2√
1−θ2y2

Ib(n1k(ω)(
√

1−θ2j2/N(ω)2−
√

1−θ2y2))dy

= 2
πθ2n1k(ω)

∫ n1k(ω)(
√

1−θ2j2/N(ω)2−
√

1−θ2)

n1k(ω)(
√

1−θ2j2/N(ω)2−1)

√
1−
(√

1−θ2j2/N(ω)2−v/(n1k)
)2
Ib(v)dv

so that∣∣∣2θ
π

∫ 1

0

y2√
1−θ2y2

Ib(n1k(ω)(
√

1−θ2j2/N(ω)2−
√

1−θ2y2))dy

−
√

2(1−θ2j2/N(ω)2)1/4

πθ2(n1k(ω))3/2

∫ n1k(ω)(
√

1−θ2j2/N(ω)2−
√

1−θ2)

n1k(ω)(
√

1−θ2j2/N(ω)2−1)

√
|v|Ib(v)dv

∣∣∣
≤ C

(n1k(ω))3/2

∫ n1k(ω)(
√

1−θ2j2/N(ω)2−
√

1−θ2)

n1k(ω)(
√

1−θ2j2/N(ω)2−1)

( j2

N(ω)v + v2

n1k(ω)

)√
|v|Ib(v)dv,
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and choosing properly α∈ (1/2+1/(4αI),3/4) in (5.26), all the previous error estimates are
negligible with respect to N(ω)−3/2,

sup
j∈{1,...,[ν1N(ω)η1 ]}

∣∣∣Γ̃j(ω)−
√

2
πθ2(n1k(ω))3/2

∫ +∞

0

√
vIb(v)dv

∣∣∣=o
(
N(ω)−3/2

)
.

Now, for all η2∈ (1/2,1) and j∈{[ν2N(ω)η2 ],. .., [µ3N(ω)η2 ]}, using a change of variable, we have

2θ
π

∫ 1

0

y2√
1−θ2y2

Ib(n1k(ω)(
√

1−θ2j2/N(ω)2−
√

1−θ2y2))dy

= 2
πθ2n1k(ω)

∫ n1k(ω)(
√

1−θ2j2/N(ω)2−
√

1−θ2)

n1k(ω)(
√

1−θ2j2/N(ω)2−1)

√
1−
(√

1−θ2j2/N(ω)2−v/(n1k)
)2
Ib(v)dv

so that∣∣∣2θ
π

∫ 1

0

y2√
1−θ2y2

Ib(n1k(ω)(
√

1−θ2j2/N(ω)2−
√

1−θ2y2))dy

− 2jd
π2N(ω)2

∫ n1k(ω)(
√

1−θ2j2/N(ω)2
√

1−θ2)

n1k(ω)(
√

1−θ2j2/N(ω)2−1)
Ib(v)dv

∣∣∣
≤ Cj

N(ω)2

∫ n1k(ω)(
√

1−θ2j2/N(ω)2
√

1−θ2)

n1k(ω)(
√

1−θ2j2/N(ω)2−1)

(v2

j2 + vN

j2

)
Ib(v)dv,

and ∣∣∣∫ n1k(ω)(
√

1−θ2j2/N(ω)2−
√

1−θ2)

n1k(ω)(
√

1−θ2j2/N(ω)2−1)
Ib(v)dv−

∫ +∞

−∞
Ib(v)dv

∣∣∣≤C(N(ω)
j2

)αI−1
.

Then, choosing properly α∈ (η2,(1+η2)/2) and α>1/2+(1−η2)/(2αI) in (5.26), we obtain

sup
j∈{[ν2N(ω)η2],...,[µ2N(ω)η2 ]}

∣∣∣Γ̃j(ω)− 2jd
π2N(ω)2

∫ +∞

−∞
Ib(v)dv

∣∣∣=o
(
N(ω)−2+η2

)
.

Finally, for all ν ∈ (0,1) and j∈{[νN(ω)],. ..,N(ω)}, we have using (5.25)∣∣∣Γ̃j(ω)− 2θ
π

∫ 1

0

y2√
1−θ2y2

Ib(n1k(ω)(
√

1−θ2j2/N(ω)2−
√

1−θ2y2))dy
∣∣∣

≤ C

N(ω)2−α + C

N(ω)1+αI(1−α) .

The exponent α∈ (0,1) comes from the fact that we have split the sum between {1,. .., [νN(ω)]−
[N(ω)α]} and {[νN(ω)]− [N(ω)α],. ..,N(ω}) in the same sprit of (5.26). As in the previous case,
we obtain

sup
j∈{N(ω)−[N(ω)η],...,N(ω)}

∣∣∣Γ̃j(ω)− 2j
π2N(ω)2

∫ +∞

−∞
Ib(v)dv

∣∣∣=o
(
N(ω)−1

)
,

which concludes the proof of Lemma 5.8. The case η3 = 1/2 needs just a more accurate truncated
expansion but brings no significant difficulty. �
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Proof (of Lemma 5.9) We have

Λ̃j(ω) =
∫ k2(ω)

0

φ2
γ′(ω,d)
√
γ′

Ib(βj(ω)−
√
γ′)dγ′

= 2
π

∫ 1/θ

1

v
√
v2−1sin2(n1k(ω)dθv)

(v2−sin2(n1k(ω)dθv))
√

1−θ2v2
Ib
(
n1k(ω)

(√
1−

σ2
j (ω)

(n1k(ω)d)2 −
√

1−θ2v2))dv,

so that

J1≤ Λ̃j(ω)≤J2,

where

J1 = 2
π

∫ 1/θ

1

√
v2−1sin2(n1k(ω)dθv)

v
√

1−θ2v2
Ib(n1k(ω)(

√
1−σ2

j (ω)/(n1k(ω)d)2−
√

1−θ2v2))dv

J2 = 2
π

∫ 1/θ

1

v√
v2−1

√
1−θ2v2

Ib(n1k(ω)(
√

1−σ2
j (ω)/(n1k(ω)d)2−

√
1−θ2v2))dv.

First, for J2, using the change of variable u=
√

1−θ2−
√

1−θ2v2 we have

J2 = Cb
2π2θ(n1k(ω))αI

∫ √1−θ2

0

1[
(
√

1−σ2
j (ω)/(n1k(ω)d)2−

√
1−θ2 +u)2 + 1

(n1k(ω))2

]αI/2
× du√

2u
√

1−θ2−u2
du,

(5.27)

so that for all η∈ [0,1)

sup
j∈{1,...,[ν1N(ω)η ]}

∣∣∣J2−
Cb

2π2θ(n1k(ω))αI

∫ √1−θ2

0

1
(1−
√

1−θ2 +u)αI
√

2u
√

1−θ2−u2
du
∣∣∣

=o(N(ω)−αI ),

and if j= [ν1N(ω)]∣∣∣J2−
Cb

2π2θ(n1k(ω))αI

∫ √1−θ2

0

1
(
√

1−θ2ν2
1−
√

1−θ2 +u)αI
√

2u
√

1−θ2−u2
du
∣∣∣

=o(N(ω)−αI ).

Moreover, for the case j of the form N(ω)− [ν], we have

J2≤ J̃2(η) = Cb
2π2θ(n1k(ω))αI

∫ √1−θ2

0

1[
(
√

1−θ2(1−ν/N(ω))2−
√

1−θ2 +u)2 + 1
(n1k(ω))2

]αI/2
× du√

2u
√

1−θ2−u2
du,

so that using the change of variable v=uN(ω) we obtain∣∣∣J̃2(η)− Cbd
αIθαI−1

23/2παI+2(1−θ2)1/4N(ω)1/2

∫ +∞

0

1
[( θ2√

1−θ2 +v)2 +(dθπ )2]αI/2
√
v
dv
∣∣∣=o(N(ω)−1/2).
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Now, for J1, let us note that we have to take care of the sinus. To do so, we split the integral in
many parts over which the sinus will be close to 1,

J1≥
2θ
π
Ib(n1k(ω)

√
1−π2/(n1k(ω)d)2)

m2∑
m=m1

∫ π
n1k(ω)dθ (1/2+ν+m)

π
n1k(ω)dθ (1/2−ν+m)

√
v2−1sin2(n1k(ω)dθv)dv,

where ν0 is such that sin2(π/2±ν0π)≥1/2, and with

m1 =
[n1k(ω)dθ

π
+ν0−1/2

]
and m2 =

[n1k(ω)d
π

−ν0−1/2
]
.

Then, for the case j= [νN(ω)η], with η∈ [0,1] and ν ∈ (0,1) if η= 1, we have

J1≥
θ

4π2(n1k(ω))αI
Cb[

1+ 1
(n1k(ω))2

]αI/2 ν0

N(ω)+1

m2∑
m=m1

√
m2/(N(ω)+1)2−1

with

1
N(ω)+1

m2∑
m=m1

√
m2/(N(ω)+1)2−1 ∼

N(ω)�1

∫ 1/θ−1

0

√
u(u+2)du>0.

Now, in the case j=N(ω)− [ν] with ν >0, we have for µ∈ (0,1)

Λ̃j(ω)≥ 2
π

[µN(ω)]∑
m=1

∫ 1+ 2m+1
2N(ω) + 1

N(ω)3/2

1+ 2m+1
2N(ω)−

1
N(ω)3/2

v
√
v2−1sin2(N(ω)πv)

(v2−sin2(N(ω)πv))
√

1−θ2v2

×Ib
(
n1k(ω)

(√
1−θ2j2/N(ω)2−

√
1−θ2

))
dv

≥ 1
π

[µN(ω)]∑
m=1

∫ 1+ 2m+1
2N(ω) + 1

N(ω)3/2

1+ 2m+1
2N(ω)−

1
N(ω)3/2

v
√
v2−1

(v2−sin2(N(ω)πv))
√

1−θ2v2

×Ib
(
n1k(ω) θ2ν√

1−θ2N(ω)
)
dv.

Moreover, using the fact that sin2(N(ω)πv)≥1−sin2(π/N(ω)1/2)≥1−π2/N(ω), we obtain

Λ̃j(ω)≥ Cb(1−θ
2)(αI−1)/2dαI

4παI+2(νθ)αI
1[

1+ N(ω)2
√

1−θ2

(n1k(ω)θ2)2

]αI/2
× 1
N(ω)3/2

[µN(ω)]∑
m=1

√
2m+1
2N(ω)−

1
N(ω)3/2

2m+1
2N(ω)−

1
N(ω)3/2 +π2/N(ω)

where

1
[µN(ω)]

[µN(ω)]∑
m=1

√
2m+1
2N(ω)−

1
N(ω)3/2

2m+1
2N(ω)−

1
N(ω)3/2 +π2/N(ω)

∼
N(ω)�1

1
√
µ

∫ 1

0

du√
u
,

which concludes the proof of Lemma 5.9. �
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