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Abstract

In shallow-water waveguides a propagating field can be decomposed over three kinds of modes:
the propagating modes, the radiating modes and the evanescent modes. In this paper we consider
the propagation of a wave in a randomly perturbed waveguide and we analyze the coupling
between these three kinds of modes using an asymptotic analysis based on a separation of scales
technique. Then, we derive the asymptotic form of the distribution of the mode amplitudes
and the coupled power equation for propagating modes. From this equation, we show that the
total energy carried by the propagating modes decreases exponentially with the size of the random
section and we give an expression of the decay rate. Moreover, we show that the mean propagating
mode powers converge to the solution of a diffusion equation in the high-frequency regime.
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Introduction.
Acoustic wave propagation in shallow-water waveguides has been studied for a long time because of
its numerous domains of applications. One of the most important applications is submarine detection
with active or passive sonars, but it can also be used in underwater communication, mines or ar-
chaeological artifacts detection, and to study the ocean’s structure or ocean biology. Shallow-waters
are complicated media because they have indices of refraction with spatial and time dependences.
However, the sound speed in water, which is about 1500 m/s, is sufficiently large with respect to the
motions of water masses that we can consider this medium as being time independent. Moreover,
the presence of spatial inhomogeneities in the water produces a mode coupling which can induce
significant effects over large propagation distances.

In shallow-water waveguides the transverse section can be represented as a semi-infinite interval
(see Figure 1) and then a wave field can be decomposed over three kinds of modes: the propagating
modes which propagate over long distances, the evanescent modes which decrease exponentially with
the propagation distance, and the radiating modes representing modes which penetrate under the
bottom of the water. The main purpose of this paper is to analyze how the propagating mode powers
are affected by the radiating and evanescent modes. This analysis is carried out using an asymptotic
analysis based on a separation of scale technique, where the wavelength and the correlation lengths
of the inhomogeneities, which are of the same order, are small compared to the propagation distance,
and the fluctuations of the medium are small compared to the wavelength. In the terminology of [7]
this is the so-called weakly heterogeneous regime.

Wave propagation in random waveguides with a bounded cross-section and Dirichlet boundary
conditions (see Figure 1) has been studied in [7, Chapter 20] or [9] for instance. In this case we have
only two kinds of modes, the propagating and the evanescent modes. In such a model an asymptotic
analysis of the mode powers show total energy conservation and an equipartition of the energy carried
by the propagating modes. In [9] coupled power equations are derived under the assumption that
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Figure 1: Illustration of two kinds of waveguides. In (a) we represent a shallow-water waveguide
model with an unbounded cross-section. In (b) we represent a waveguide with a bounded cross-section.

evanescent modes are negligible. In [8] the role of evanescent modes is studied in the absence of
radiating modes. In this paper we take into account the influence of the radiating and the evanescent
modes on the coupled power equations. In this case we show a mode-dependent and frequency-
dependent attenuation on the propagating modes in Theorem 5.1, that is, the total energy carried by
the propagating modes decreases exponentially with the size of the random section and we give an
expression of the decay rate. Moreover, in the high-frequency regime, we show in Theorems 5.2 and
5.4 that the propagating mode powers converge to the solution of a diffusion equation. All the results
of this paper are also valid for electromagnetic wave propagation in dielectric waveguides and optical
fibers [17, 18, 24, 25, 29].

The organization of this paper is as follows. In Section 1 we present the waveguide model, and
in Section 2 we present the mode decomposition associated to that model and studied in detail in
[28]. In Section 3 we study the mode coupling when the three kinds of modes are taken into account.
In the same spirit as in [7, Chapter 20], we derive the coupled mode equations, we study the energy
flux for the propagating and the radiating modes, and the influence of the evanescent modes on the
two other kinds of modes. In Section 4, under the forward scattering approximation, we study the
asymptotic form of the joint distribution of the propagating and radiating mode amplitudes. We apply
this result in Section 5 to derive the coupled power equations for the propagating modes, which was
already obtained in [14] or [18] for instance. In this section, we study the influence of the radiating
and evanescent modes on the mean propagating mode powers. We show that the total energy carried
by the propagating modes decreases exponentially with the size of the random section and we give
an expression of the decay rate. In other words, the radiating modes induce a mode-dependent
attenuation on the propagating modes, that is why these modes are sometimes called dissipative
modes. Moreover, under the assumption that nearest-neighbor coupling is the main power transfer
mechanism, we show, in the high-frequency regime or in the limit of large number of propagating
modes, that the mean propagating mode powers converge to the solution of a diffusion equation. We
can refer to [14, 18] for further references and discussions about diffusion models. In that regime, we
can also observe the exponential decay behavior caused by the radiative loss.

1 Waveguide Model
We consider a two-dimensional linear acoustic wave model. The conservation equations of mass and
linear momentum are given by

ρ(x, z)
∂u
∂t

+∇p = F,

1
K(x, z)

∂p

∂t
+∇.u = 0,

(1)

where p is the acoustic pressure, u is the acoustic velocity, ρ is the density of the medium, K is
the bulk modulus, and the source is modeled by the forcing term F(t, x, z). The third coordinate z
represents the propagation axis along the waveguide. The transverse section of the waveguide is the
semi-infinite interval [0,+∞), and x ∈ [0,+∞) represents the transverse coordinate. Let d > 0, we
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Figure 2: Illustration of the shallow-water waveguide model.

assume that the medium parameters are given by

1
K(x, z)

=


1
K̄

(
n2(x) +

√
εV (x, z)

)
if x ∈ [0, d], z ∈ [0, L/ε]

1
K̄
n2(x) if

 x ∈ [0,+∞), z ∈ (−∞, 0) ∪ (L/ε,+∞)
or
x ∈ (d,+∞), z ∈ (−∞,+∞).

ρ(x, z) = ρ̄ if x ∈ [0,+∞), z ∈ R.

In this paper we consider the Pekeris waveguide model. This kind of model has been studied for half
a century [23] and in this model the index of refraction n(x) is given by

n(x) =
{
n1 > 1 if x ∈ [0, d)
1 if x ∈ [d,+∞).

This profile can model an ocean with a constant sound speed. Such conditions can be found
during the winter in Earth’s mid latitudes and in water shallower than about 30 meters. The Pekeris
profile leads us to simplified algebra but it underestimates the complexity of the medium. However,
the analysis that we present in this paper can be extended to more general profiles n(x) with general
boundary conditions. In the Pekeris model that we consider n1 represents the index of refraction of
the ocean section [0, d], where d is the depth of the ocean, and we consider that the index of refraction
of the bottom of the ocean is equal to 1. This model can also be used to study the propagation
of electromagnetic waves in a dielectric slab and an optical fiber with randomly perturbed index of
refraction [17, 18, 25, 29].

We consider a source that emits a signal in the z-direction, which is localized in the plane z = LS .

F(t, x, z) = Ψ(t, x)δ(z − LS)ez. (2)

Ψ(t, x) represents the profile of the source and ez is the unit vector pointing in the z-direction. LS < 0
is the location of the source on the propagating axis.

The random process (V (x, z), x ∈ [0, d], z ≥ 0) that we consider, and which represents the spatial
inhomogeneities is presented in Section 6.1. However, one can remark that the process V is unbounded.
This fact implies that the bulk modulus can take negative values. In order to avoid this situation, we
can work on the event (

∀(x, z) ∈ [0, d]× [0, L/ε], n1 +
√
εV (x, z) > 0

)
.

In fact, the property (55) implies

lim
ε→0

P
(
∃(x, z) ∈ [0, d]× [0, L/ε] : n1 +

√
εV (x, z) ≤ 0

)
≤ lim
ε→0

P
(√

ε sup
z∈[0,L]

sup
x∈[0,d]

∣∣∣V (x, z
ε

)∣∣∣ ≥ n1

)
= 0.
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2 Wave Propagation in a Homogeneous Waveguide
In this section, we assume that the medium parameters are given by

ρ(x, z) = ρ̄ and K(x, z) =
K̄

n2(x)
, ∀(x, z) ∈ [0,+∞)× R.

From the conservation equations (1), we can derive the wave equation for the pressure field,

∆p− 1
c(x)2

∂2p

∂t2
= ∇.F, (3)

where c(x) = c/n(x) with c =
√

K̄
ρ̄ , and ∆ = ∂2

x + ∂2
z .

In underwater acoustics the density of air is very small compared to the density of water, then it
is natural to use a pressure-release condition. The pressure is very weak outside the waveguide, and
by continuity, the pressure is zero at the free surface x = 0. This consideration leads us to consider
the Dirichlet boundary conditions

p(t, 0, z) = 0 ∀(t, z) ∈ [0,+∞)× R.

Throughout this manuscript, we consider linear models of propagation. Therefore, the pressure
p(t, x, z) can be expressed as the superposition of monochromatic waves by taking its Fourier trans-
form. Here, the Fourier transform and the inverse Fourier transform, with respect to time, are defined
by

f̂(ω) =
∫
f(t)eiωtdt, f(t) =

1
2π

∫
f̂(ω)e−iωtdω.

In the half-space z > LS (resp., z < LS), taking the Fourier transform in (3), we get that p̂(ω, x, z)
satisfies the time-harmonic wave equation without source term

∂2
z p̂(ω, x, z) + ∂2

xp̂(ω, x, z) + k2(ω)n2(x)p̂(ω, x, z) = 0, (4)

where k(ω) = ω
c is the wavenumber, and with Dirichlet boundary conditions p̂(ω, 0, z) = 0 ∀z. The

source term implies the following jump conditions for the pressure field across the plane z = LS

p̂(ω, x, L+
S )− p̂(ω, x, L−S ) = Ψ̂(ω, x),

∂z p̂(ω, x, L+
S )− ∂z p̂(ω, x, L−S ) = 0.

(5)

2.1 Spectral Decomposition in Unperturbed Waveguides
This section is devoted to the presentation of the spectral decomposition of the Pekeris operator
∂2
x + k2(ω)n2(x). The spectral analysis of this operator is carried out in [28]. Throughout this paper

we are interested in solutions of (4) such that

p̂(ω, ., .)1(LS ,+∞)(z) ∈ C0
(

(LS ,+∞), H1
0 (0,+∞) ∩H2(0,+∞)

)
∩ C2

(
(LS ,+∞), H

)
,

p̂(ω, ., .)1(−∞,LS)(z) ∈ C0
(

(−∞, LS), H1
0 (0,+∞) ∩H2(0,+∞)

)
∩ C2

(
(−∞, LS), H

)
,

where H = L2(0,+∞). H is equipped with the inner product defined by

∀(h1, h2) ∈ H ×H,
〈
h1, h2

〉
H

=
∫ +∞

0

h1(x)h2(x)dx.

Consequently, in the half-space z > LS (resp., z < LS), we can consider (4) as the operational
differential equation

d2

dz2
p̂(ω, ., z) +R(ω)

(
p̂(ω, ., z)

)
= 0 (6)

in H, where R(ω) is an unbounded operator on H with domain

D(R(ω)) = H1
0 (0,+∞) ∩H2(0,+∞),
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and defined by

R(ω)(y) =
d2

dx2
y + k2(ω)n2(x)y ∀y ∈ D(R(ω)).

According to [28], R(ω) is a self-adjoint operator on the Hilbert space H, and its spectrum is given
by

Sp
(
R(ω)

)
=
(
−∞, k2(ω)

]
∪
{
β2
N(ω)(ω), . . . , β2

1(ω)
}
. (7)

More precisely, ∀j ∈
{

1, . . . , N(ω)
}
, the modal wavenumber βj(ω)is positive and

k2(ω) < β2
N(ω)(ω) < · · · < β2

1(ω) < n2
1k

2(ω).

Moreover, there exists a resolution of the identity Πω of R(ω) such that ∀y ∈ H, ∀r ∈ R,

Πω(r,+∞)(y)(x) =
N(ω)∑
j=1

〈
y, φj(ω, .)

〉
H
φj(ω, x)1(r,+∞)

(
βj(ω)2

)
+
∫ k2(ω)

r

〈
y, φγ(ω, .)

〉
H
φγ(ω, x)dγ1(−∞,k2(ω))(r),

and ∀y ∈ D(R(ω)), ∀r ∈ R,

Πω(r,+∞)(R(ω)(y))(x) =
N(ω)∑
j=1

βj(ω)2
〈
y, φj(ω, .)

〉
H
φj(ω, x)1(r,+∞)

(
βj(ω)2

)
+
∫ k2(ω)

r

γ
〈
y, φγ(ω, x)

〉
H
φγ(ω, x)dγ1(−∞,k2(ω))(r).

Let us describe these decompositions.

Discrete part of the decomposition ∀j ∈
{

1, . . . , N(ω)
}
, the jth eigenvector is given by [28]

φj(ω, x) =
{

Aj(ω) sin(σj(ω)x/d) if 0 ≤ x ≤ d
Aj(ω) sin(σj(ω))e−ζj(ω) x−dd if d ≤ x,

where
σj(ω) = d

√
n2

1k
2(ω)− β2

j (ω), ζj(ω) = d
√
βj(ω)2 − k2(ω),

and

Aj(ω) =

√√√√ 2/d

1 + sin2(σj(ω))
ζj(ω) − sin(2σj(ω))

2σj(ω)

. (8)

According to [28], σ1(ω), . . . , σN(ω)(ω) are the solutions on (0, n1k(ω)dθ) of the equation

tan(y) = − y√
(n1kdθ)2 − y2

, (9)

such that 0 < σ1(ω) < · · · < σN(ω)(ω) < n1k(ω)dθ, and with θ =
√

1− 1/n2
1. This last equation ad-

mits exactly one solution over each interval of the form
(
π/2+(j−1)π, π/2+jπ

)
for j ∈ {1, . . . , N(ω)},

where
N(ω) =

[
n1k(ω)d

π
θ

]
,

and [·] stands for the integer part. From (9), we get the following results about the localization of the
solutions which is used to show the main result of Section 5.2.

Lemma 2.1 Let α > 1/3, we have as N(ω)→ +∞

sup
j∈{1,...,N(ω)−[N(ω)α]−1}

|σj+1(ω)− σj(ω)− π| = O
(
N(ω)

1
2−

3
2α
)
.

sup
j∈{1,...,N(ω)−[N(ω)α]−2}

∣∣σj+2(ω)− 2σj+1(ω) + σj(ω)
)∣∣ = O

(
N(ω)1−3α

)
.
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Continuous part of the decomposition For γ ∈ (−∞, k2(ω)), we have [28]

φγ(ω, x) ={
Aγ(ω) sin(η(ω)x/d) if 0 ≤ x ≤ d

Aγ(ω)
(

sin(η(ω)) cos
(
ξ(ω)x−dd

)
+ η(ω)

ξ(ω) cos(η(ω)) sin
(
ξ(ω)x−dd

))
if d ≤ x,

where
η(ω) = d

√
n2

1k
2(ω)− γ, ξ(ω) = d

√
k2(ω)− γ,

and

Aγ(ω) =

√
dξ(ω)

π
(
ξ2(ω) sin2(η(ω)) + η2(ω) cos2(η(ω))

) . (10)

It is easy to check that the function γ 7→ Aγ(ω) is continuous on
(
−∞, k2(ω)

)
and

Aγ(ω) ∼
γ→−∞

1√
π|γ|1/4

. (11)

We can remark that φγ(ω, .) does not belong to H. Then,
〈
y, φγ(ω, .)

〉
H

is not defined in the classical
way. In fact,

〈
y, φγ(ω, .)

〉
H

= lim
M→+∞

∫ M

0

y(x)φγ(ω, x)dx on L2
(
−∞, k2(ω)

)
.

Moreover, we have ∀y ∈ H

‖y‖2H =
N(ω)∑
j=1

∣∣〈y, φj(ω, .)〉H ∣∣2 +
∫ k2(ω)

−∞

∣∣〈y, φγ(ω, .)
〉
H

∣∣2dγ.
Then,

Θω : H −→ Hω

y −→
((〈

y, φj(ω, .)
〉
H

)
j=1,...,N(ω)

,
(〈
y, φγ(ω, .)

〉
H

)
γ∈(−∞,k2(ω))

)
is an isometry, from H onto Hω = CN(ω) × L2

(
−∞, k2(ω)

)
.

2.2 Modal Decomposition
In this section we apply the spectral decomposition introduced in Section 2.1 on a solution p̂(ω, x, z)
of the equation (6). Consequently, we get the modal decomposition for p̂(ω, x, z) in the half-space
z > LS ,

p̂(ω, x, z) =
N(ω)∑
j=1

p̂j(ω, z)φj(ω, x) +
∫ k2(ω)

−∞
p̂γ(ω, z)φγ(ω, x)dγ,

where p̂(ω, z) = Θω(p̂(ω, ., z)). For j ∈
{

1, . . . , N(ω)
}
, Θω◦Πω({j}) represents the projection onto the

jth propagating mode, and p̂j(ω, z) is the amplitude of the jth propagating mode. Θω ◦Πω(0, k2(ω))
represents the projection onto the radiating modes, and p̂γ(ω, z) is the amplitude of the γth radiating
mode for almost every γ ∈ (0, k2(ω)). Finally, Θω ◦ Πω(−∞, 0) represents the projection onto the
evanescent modes and p̂γ(ω, z) is the amplitude of the γth evanescent mode for almost every γ ∈
(−∞, 0).

Consequently, p̂(ω, z) satisfies

d2

dz2
p̂j(ω, z) + β2

j (ω)p̂j(ω, z) = 0,

d2

dz2
p̂γ(ω, z) + γ p̂γ(ω, z) = 0
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in Hω and the pressure field can be written as an expansion over the complete set of modes

p̂(ω, x, z) =

N(ω)∑
j=1

âj,0(ω)√
βj(ω)

eiβj(ω)zφj(ω, x) +
∫ k2(ω)

0

âγ,0(ω)
γ1/4

ei
√
γzφγ(ω, x)dγ

+
∫ 0

−∞

ĉγ,0(ω)
|γ|1/4

e−
√
|γ|zφγ(ω, x)dγ

]
1(LS ,+∞)(z)

+

N(ω)∑
j=1

b̂j,0(ω)√
βj(ω)

e−iβj(ω)zφj(ω, x) +
∫ k2(ω)

0

b̂γ,0(ω)
γ1/4

e−i
√
γzφγ(ω, x)dγ

+
∫ 0

−∞

d̂γ,0(ω)
|γ|1/4

e
√
|γ|zφγ(ω, x)dγ

]
1(−∞,LS)(z),

(12)

under the assumption that the coefficients
(
ĉγ,0(ω)e−

√
|γ|LS/|γ|1/4

)
γ
and

(
d̂γ,0(ω)e

√
|γ|LS/|γ|1/4

)
γ

belong to L2(−∞, 0).
In the previous decomposition, âj,0(ω) (resp., b̂j,0(ω)) is the amplitude of the jth right-going (resp.,

left-going) mode propagating in the right half-space z > LS (resp., left half-space z < LS), âγ,0(ω)
(resp., b̂γ,0(ω)) is the amplitude of the γth right-going (resp., left-going) mode radiating in the right
half-space z > LS (resp., left half-space z < LS), and ĉγ,0(ω) (resp., d̂γ,0(ω)) is the amplitude of the
γth right-going (resp., left-going) evanescent mode in the right half-space z > LS (resp., left half-space
z < LS).

We assume that the profile Ψ(t, x) of the source term (2) is given, in the frequency domain, by

Ψ̂(ω, x) = f̂(ω)

N(ω)∑
j=1

φj(ω, x0)φj(ω, x) +
∫

(−S,−ξ)∪(ξ,k2(ω))

φγ(ω, x0)φγ(ω, x)dγ

 , (13)

where x0 ∈ (0, d). The bound S in the spectral decomposition of the source profile was introduced to
have Ψ̂(ω, .) ∈ H, and ξ was introduced for technical reasons. Note that S can be arbitrarily large
and ξ can be arbitrarily small. Therefore, the spatial profile in (13) is an approximation of a Dirac
distribution at x0, which models a point source at x0.

Applying Θω on (5) and using (12), we get

âj,0(ω) = −b̂j,0(ω) =

√
βj(ω)
2

f̂(ω)φj(ω, x0)e−iβj(ω)LS ∀j ∈
{

1, . . . , N(ω)
}
,

âγ,0(ω) = −b̂γ,0(ω) =

{
γ1/4

2 f̂(ω)φγ(ω, x0)e−i
√
γLS for almost every γ ∈ (ξ, k2(ω))

0 for almost every γ ∈ (0, ξ),

ĉγ,0(ω) = −γ
1/4

2
f̂(ω)φγ(ω, x0)e

√
|γ|LS , d̂γ,0(ω) =

γ1/4

2
f̂(ω)φγ(ω, x0)e−

√
|γ|LS

for almost every γ ∈ (−S,−ξ), and
ĉγ,0(ω) = d̂γ,0(ω) = 0

for almost every γ ∈ (−∞,−S) ∪ (−ξ, 0).

3 Mode Coupling in Random Waveguides
In this section we study the expansion of p̂(ω, x, z) when a random section [0, L/ε] is inserted between
two homogeneous waveguides (see Figure 2). In this section the medium parameters are given by

1
K(x, z)

=


1
K̄

(
n2(x) +

√
εV (x, z)

)
if x ∈ [0, d], z ∈ [0, L/ε]

1
K̄
n2(x) if

 x ∈ [0,+∞), z ∈ (−∞, 0) ∪ (L/ε,+∞)
or
x ∈ (d,+∞), z ∈ (−∞,+∞).

ρ(x, z) = ρ̄ if x ∈ [0,+∞), z ∈ R.



C. GOMEZ SHALLOW-WATER PROPAGATION 8

In the perturbed section, the pressure field can be decomposed using the resolution of the identity
Πω of the unperturbed waveguide:

p̂(ω, x, z) =
N(ω)∑
j=1

p̂j(ω, z)φj(ω, x) +
∫ k2(ω)

−∞
p̂γ(ω, z)φγ(ω, x)dγ,

where p̂(ω, z) = Θω(p̂(ω, ., z)). In what follows, we shall consider solutions of the form

p̂(ω, x, z) =
N(ω)∑
j=1

p̂j(ω, z)φj(ω, x) +
∫

(−∞,−ξ)∪(ξ,k2(ω))

p̂γ(ω, z)φγ(ω, x)dγ.

This assumption leads us to simplified algebra in the proof of Theorem 4.1. In such a decomposition,
the radiating and the evanescent part are separated by the small band (−ξ, ξ) with ξ � 1. The goal
is to isolate the transition mode 0 between the radiating and the evanescent part of the spectrum
Sp
(
R(ω)

)
given by (7). Moreover, we assume that ε � ξ and therefore we have two distinct scales.

Let us remark that in this paper, we consider in a first time the asymptotic ε goes to 0 and in a second
time the asymptotic ξ goes to 0.

3.1 Coupled Mode Equations
In this section we give the coupled mode equations, which describe the coupling mechanism between
the amplitudes of the three kinds of modes.

In the random section [0, L/ε] the pressure field p̂(ω, z) satisfies the following coupled equations
in Hω:

d2

dz2
p̂j(ω, z) + β2

j (ω)p̂j(ω, z) +
√
εk2(ω)

N(ω)∑
l=1

Cωjl(z)p̂l(ω, z)

+
√
εk2(ω)

∫
(−∞,−ξ)∪(ξ,k2(ω))

Cωjγ′(z)p̂γ′(ω, z)dγ
′ = 0,

d2

dz2
p̂γ(ω, z) + γ p̂γ(ω, z) +

√
εk2(ω)

N(ω)∑
l=1

Cωγl(z)p̂l(ω, z)

+
√
εk2(ω)

∫
(−∞,−ξ)∪(ξ,k2(ω))

Cωγγ′(z)p̂γ′(ω, z)dγ
′ = 0,

(14)

where

Cωjl(z) =
〈
φj(ω, .), φl(ω, .)V (., z)

〉
H

=
∫ d

0

φj(ω, x)φl(ω, x)V (x, z)dx,

Cωjγ(z) = Cγj(z) =
〈
φj(ω, .), φγ(ω, .)V (., z)

〉
H

=
∫ d

0

φj(ω, x)φγ(ω, x)V (x, z)dx,

Cωγγ′(z) =
〈
φγ(ω, .), φγ′(ω, .)V (., z)

〉
H

=
∫ d

0

φγ(ω, x)φγ′(ω, x)V (x, z)dx.

(15)

We recall that p̂(ω, ., .) ∈ C0
(
(0,+∞), H1

0 (0,+∞) ∩H2(0,+∞)
)
∩ C2

(
(0,+∞), H

)
, then∫ −ξ

−∞
γ2|p̂γ(ω, z)|2dγ < +∞. (16)

In the previous coupled equation the coefficients Cω(z) represent the coupling between the three kinds
of modes, which are the propagating, radiating and evanescent modes.

Next, we introduce the amplitudes of the generalized right- and left-going modes â(ω, z) and
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b̂(ω, z), which are given by

p̂j(ω, z) =
1√
βj(ω)

(
âj(ω, z)eiβj(ω)z + b̂j(ω, z)e−iβj(ω)z

)
,

d

dz
p̂j(ω, z) = i

√
βj(ω)

(
âj(ω, z)eiβj(ω)z − b̂j(ω, z)e−iβj(ω)z

)
,

p̂γ(ω, z) =
1

γ1/4

(
âγ(ω, z)ei

√
γz + b̂γ(ω, z)e−i

√
γz
)
,

d

dz
p̂γ(ω, z) = iγ1/4

(
âγ(ω, z)ei

√
γz − b̂γ(ω, z)e−i

√
γz
)

∀j ∈
{

1, . . . , N(ω)
}
and almost every γ ∈ (ξ, k2(ω)). Let

Hωξ = CN(ω) × L2(ξ, k2(ω)).

From (14), we obtain the coupled mode equation in Hωξ × Hωξ × L2(−∞,−ξ) for the amplitudes(
â(ω, z), b̂(ω, z), p̂(ω, z)

)
:

d

dz
âj(ω, z) =

√
ε
ik2(ω)

2

N(ω)∑
l=1

Cωjl(z)√
βjβl

(
âl(ω, z)ei(βl−βj)z + b̂l(ω, z)e−i(βl+βj)z

)
+
√
ε
ik2(ω)

2

∫ k2(ω)

ξ

Cωjγ′(z)√
βj
√
γ′

(
âγ′(ω, z)ei(

√
γ′−βj)z + b̂γ′(ω, z)e−i(

√
γ′+βj)z

)
dγ′

+
√
ε
ik2(ω)

2

∫ −ξ
−∞

Cωjγ′(z)√
βj

p̂γ′(ω, z)dγ′e−iβjz,

(17)

d

dz
âγ(ω, z) =

√
ε
ik2(ω)

2

N(ω)∑
l=1

Cωγl(z)√√
γβl

(
âl(ω, z)ei(βl−

√
γ)z + b̂l(ω, z)e−i(βl+

√
γ)z
)

+
√
ε
ik2(ω)

2

∫ k2(ω)

ξ

Cωγγ′(z)

γ1/4γ′1/4

(
âγ′(ω, z)ei(

√
γ′−√γ)z + b̂γ′(ω, z)e−i(

√
γ′+
√
γ)z
)
dγ′

+
√
ε
ik2(ω)

2

∫ −ξ
−∞

Cωγγ′(z)
γ1/4

p̂γ′(ω, z)dγ′e−iγz,

(18)

d

dz
b̂j(ω, z) = −

√
ε
ik2(ω)

2

N(ω)∑
l=1

Cωjl(z)√
βjβl

(
âl(ω, z)ei(βl+βj)z + b̂l(ω, z)e−i(βl−βj)z

)
−
√
ε
ik2(ω)

2

∫ k2(ω)

ξ

Cωjγ′(z)√
βj
√
γ′

(
âγ′(ω, z)ei(

√
γ′+βj)z + b̂γ′(ω, z)e−i(

√
γ′−βj)z

)
dγ′

−
√
ε
ik2(ω)

2

∫ −ξ
−∞

Cωjγ′(z)√
βj

p̂γ′(ω, z)dγ′e−iβjz,

(19)

d

dz
b̂γ(ω, z) = −

√
ε
ik2(ω)

2

N(ω)∑
l=1

Cωγl(z)√√
γβl

(
âl(ω, z)ei(βl+

√
γ)z + b̂l(ω, z)e−i(βl−

√
γ)z
)

−
√
ε
ik2(ω)

2

∫ k2(ω)

ξ

Cωγγ′(z)

γ1/4γ′1/4

(
âγ′(ω, z)ei(

√
γ′+
√
γ)z + b̂γ′(ω, z)e−i(

√
γ′−√γ)z

)
dγ′

−
√
ε
ik2(ω)

2

∫ −ξ
−∞

Cωγγ′(z)
γ1/4

p̂γ′(ω, z)dγ′e−i
√
γz,

(20)

d2

dz2
p̂γ(ω, z) + γ p̂γ(ω, z) +

√
εgγ(ω, z) = 0, (21)
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where

gγ(ω, z) = k2(ω)
N(ω)∑
l=1

Cωγl(z)√
βl

(
âl(ω, z)eiβlz + b̂l(ω, z)e−iβlz

)
+ k2(ω)

∫ k2(ω)

ξ

Cωγγ′(z)

γ′1/4

(
âγ′(ω, z)ei

√
γ′z + b̂γ′(ω, z)e−i

√
γ′z
)
dγ′

+ k2(ω)
∫ −ξ
−∞

Cωγγ′(z)p̂γ′(ω, z)dγ
′.

(22)

Let us note that in absence of random perturbations, the amplitudes â(ω, z) and b̂(ω, z) are constant.
We assume that a pulse is emitted at the source plane LS < 0 and propagates toward the randomly

perturbed slab [0, L/ε]. Using the previous section, the form of this incident field at z = 0 is given by

p̂(ω, x, 0) =
N(ω)∑
j=1

âj,0(ω)√
βj(ω)

φj(ω, x) +
∫ k2(ω)

ξ

âγ,0(ω)
γ1/4

φγ(ω, x)dγ +
∫ −ξ
−S

ĉγ,0(ω)
|γ|1/4

φγ(ω, x)dγ. (23)

Consequently, by the continuity of the pressure field across the interfaces z = 0 and z = L/ε, the
coupled mode system is complemented with the boundary conditions

â(ω, 0) = â0(ω) and b̂

(
ω,
L

ε

)
= 0

in Hωξ . For j ∈
{

1, . . . , N(ω)
}
, âj,0(ω) represents the initial amplitude of the jth propagating mode,

and for γ ∈ (ξ, k2(ω)), âγ,0(ω) represents the initial amplitude of the γth radiating mode at z = 0.
Moreover, for γ ∈ (−S,−ξ), ĉγ,0(ω) represents the initial amplitude of the γth evanescent mode at
z = 0. The second condition implies that no wave comes from the right homogeneous waveguide.

3.2 Energy Flux for the Propagating and Radiating Modes
In this section we study the energy flux for the propagating and radiating modes, and the influence
of the evanescent modes on this flux.

We begin this section by introducing the radiation condition for the evanescent modes

lim
z→+∞

∥∥Πω(−∞,−ξ)
(
p̂(ω, ., z)

)∥∥2

H
= 0.

This condition means, in the homogeneous right half-space, that the energy carried by the evanescent
modes decay as the propagation distance becomes large. From the radiation condition and (21), we
get for almost every γ ∈ (−∞,−ξ)

p̂γ(ω, z) =
√
ε

2
√
|γ|

∫ z∧L/ε

0

gγ(ω, u)e
√
|γ|(u−z)du+

√
ε

2
√
|γ|

∫ L/ε

z∧L/ε
gγ(ω, u)e

√
|γ|(z−u)du

+ φγ(ω, x0)e−
√
|γ|(z−LS)1(−S,−ξ)(γ)

(24)

∀z ∈ [0,+∞). According to (12), the relation (24) can be viewed as a perturbation of the form of the
evanescent mode without a random perturbation. Using the same arguments as in [7, Chapter 20],
we get ∀z ∈ [0, L/ε],

d

dz

(
‖â(ω, z)‖2Hωξ − ‖b̂(ω, z)‖

2
Hωξ

)
= −
√
εIm

(∫ −ξ
−∞

gγ(ω, z)p̂γ(ω, z)dγ

)
,

and

‖â(ω, z)‖2Hωξ − ‖b̂(ω, z)‖
2
Hωξ

= ‖â0(ω)‖2Hωξ − ‖b̂0(ω)‖2Hωξ −
ε

2

∫ −ξ
−∞

Gγ(ω, z)√
|γ|

dγ

−
√
ε

∫ −ξ
−S

φγ(ω, x0)e
√
|γ|LS

∫ z

0

Im
(
gγ(ω, u)

)
e−
√
|γ|udu dγ,

(25)



C. GOMEZ SHALLOW-WATER PROPAGATION 11

where

Gγ(ω, z) =
∫ z

0

∫ L/ε

z

Im
(
gγ(ω, u)gγ(ω, v)

)
e
√
|γ|(u−v)dvdu.

Consequently, for z = L/ε, we get

‖â(ω,L/ε)‖2Hωξ + ‖b̂(ω, 0)‖2Hωξ = ‖â0(ω)‖2Hωξ

−
√
ε

∫ −ξ
−S

φγ(ω, x0)e
√
|γ|LS

∫ L/ε

0

Im
(
gγ(ω, u)

)
e−
√
|γ|udu dγ.

The second term on the right side of the previous relation has the factor φγ(ω, x0)e
√
|γ|LS which is the

form of the evanescent mode at z = 0 without a random perturbation. Therefore, if LS is far away
from 0 and whatever the source (evanescent modes decay exponentially from LS to 0) or if there is
no excitation of modes γ ∈ (−∞,−ξ) by the source (that is when S = ξ), we can get the conservation
of the global energy flux for the propagating and radiating modes:

‖â(ω,L/ε)‖2Hωξ + ‖b̂(ω, 0)‖2Hωξ = ‖â0(ω)‖2Hωξ .

However, from (25) and even if there is no evanescent modes in (23), the local energy flux is not
conserved. The energy related to the evanescent modes is given by the last two terms on the right
side in (25). Let us estimate these two quantities. First,

sup
z∈[0,L/ε]

∣∣∣∣∣
∫ −ξ
−∞

Gγ(ω, z)√
|γ|

dγ

∣∣∣∣∣ ≤ K(ξ, d) sup
z∈[0,L]

sup
x∈[0,d]

∣∣∣V (x, z
ε

)∣∣∣2
× sup
z∈[0,L/ε]

‖â(ω, z)‖2Hωξ + ‖b̂(ω, z)‖2Hωξ + ‖p̂(ω, z)‖2L1(−∞,−ξ).

Second,

sup
z∈[0,L/ε]

∣∣∣ ∫ −ξ
−S

φγ(ω, x0)e
√
|γ|LS

∫ z

0

Im
(
gγ(ω, u)

)
e−
√
|γ|udu dγ

∣∣∣
≤ K(ξ, d) sup

z∈[0,L]

sup
x∈[0,d]

∣∣∣V (x, z
ε

)∣∣∣
× sup
z∈[0,L/ε]

‖â(ω, z)‖Hωξ + ‖b̂(ω, z)‖Hωξ + ‖p̂(ω, z)‖L1(−∞,−ξ).

In the two previous inequalities K(ξ, d) represents a constant which can change between the different
relations. However, it is difficult to get good a priori estimates about

sup
z∈[0,L/ε]

‖â(ω, z)‖2Hωξ + ‖b̂(ω, z)‖2Hωξ + ‖p̂(ω, z)‖2L1(−∞,−ξ). (26)

For this reason, let us introduce the stopping "time"

Lε = inf

(
L > 0, sup

z∈[0,L/ε]

‖â(ω, z)‖2Hωξ + ‖b̂(ω, z)‖2Hωξ + ‖p̂(ω, z)‖2L1(−∞,−ξ) ≥
1√
ε

)
.

The role of this stopping "time" is to limit the size of the random section to ensure that the quantity
(26) is not too large. Consequently, the energy carried by the evanescent modes over the section
[0, L/ε] for L ≤ Lε, is at most of order O

(
ε1/4 supz∈[0,L/ε] supx∈[0,d]|V (x, z)|2

)
, and according to (55)

the local energy flux for the propagating and the radiating modes is conserved in the asymptotic
ε→ 0. More precisely, we can show that ∀η > 0,

lim
ε→0

P

(
sup

z∈[0,L/ε]

∣∣∣‖â(ω, z)‖2Hωξ − ‖b̂(ω, z)‖
2
Hωξ
− ‖â0(ω)‖2Hωξ + ‖b̂0(ω)‖2Hωξ

∣∣∣ > η, L ≤ Lε
)

= 0. (27)

In Section 4, we shall see, under the forward scattering approximation, that the condition L ≤ Lε is
readily fulfilled in the limit ε→ 0, that is we have limε→0 P(Lε ≤ L) = 0.
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3.3 Influence of the Evanescent Modes on the Propagating and Radiating
Modes

We analyze, in this section, the influence of the evanescent modes on the coupling mechanism between
the propagating and the radiating modes.

First of all, we recall that Θω ◦ Πω(−∞,−ξ)
(
p̂(ω, ., z)

)
represents the evanescent part of the

pressure field p̂(ω, ., z), where Θω and Πω are defined in Section 2.1. In this section we consider
F = L1(−∞,−ξ) equipped with the norm

‖y‖F =
∫ −ξ
−∞
|yγ |dγ,

which is a Banach space. Substituting (22) into (24), we get

(Id−
√
εΦω)

(
Θω ◦Πω(−∞,−ξ)

(
p̂(ω, ., .)

))
=
√
ε p̃(ω, .) + p̃0(ω, .). (28)

This equation holds in the Banach space
(
C
(
[0,+∞), F

)
, ‖.‖∞,F

)
, where

‖y‖∞,F = sup
z≥0
‖y(z)‖F ∀y ∈ C

(
[0,+∞), F

)
.

In (28), Φω is a linear bounded operator, from
(
C
(
[0,+∞), F

)
, ‖.‖∞,F

)
to itself, defined by

Φωγ (y)(z) =
k2(ω)
2
√
|γ|

∫ z∧L/ε

0

∫ −ξ
−∞

Cωγγ′(u)yγ′(u)dγ′e
√
|γ|(u−z)du

+
k2(ω)
2
√
|γ|

∫ L/ε

z∧L/ε

∫ −ξ
−∞

Cωγγ′(u)yγ′(u)dγ′e
√
|γ|(z−u)du

∀z ∈ [0,+∞), and for almost every γ ∈ (−∞,−ξ)

p̃γ(ω, z) =
k2(ω)
2
√
|γ|

∫ z∧L/ε

0

[N(ω)∑
l=1

Cωγl(u)
√
βl

(
âl(ω, u)eiβlu + b̂l(ω, u)e−iβlu

)
+
∫ k2(ω)

ξ

Cωγγ′(u)

γ′1/4
(
âγ′(ω, u)ei

√
γ′u + b̂γ′(ω, u)e−i

√
γ′u
)]
dγ′e
√
|γ|(u−z)du

+
k2(ω)
2
√
|γ|

∫ L/ε

z∧L/ε

[N(ω)∑
l=1

Cωγl(u)
√
βl

(
âl(ω, u)eiβlu + b̂l(ω, u)e−iβlu

)
+
∫ k2(ω)

ξ

Cωγγ′(u)

γ′1/4
(
âγ′(ω, u)ei

√
γ′u + b̂γ′(ω, u)e−i

√
γ′u
)]
dγ′e
√
|γ|(z−u)du

∀z ∈ [0,+∞). Finally, for almost every γ ∈ (−∞,−ξ) and ∀z ∈ [0,+∞),

p̃γ,0(ω, z) = φγ(ω, x0)e−
√
|γ|(z−LS)1(−S,−ξ)(γ).

We remark that Θω ◦ Πω(−∞,−ξ)
(
p̂(ω, ., .)

)
∈ C
(
[0,+∞), F

)
thanks to (16). Moreover, p̃(ω, .) ∈

C
(
[0,+∞), F

)
since

∫ −ξ
−∞

Aγ(ω)
|γ| dγ < +∞, where Aγ(ω) is defined by (10) and satisfies (11). We can

check that the norm of the operator Φω is bounded by

‖Φω‖ ≤ K(ξ, d) sup
z∈[0,L/ε]

sup
x∈[0,d]

|V (x, z)| .

Consequently, using (55), limε→0 P(Id−
√
εΦω is invertible) = 1. Then, the condition (Id−

√
εΦω is

invertible) is satisfied in the asymptotic ε→ 0. On the event (Id−
√
εΦω is invertible), we have

Θω ◦Πω(−∞,−ξ)
(
p̂(ω, ., .)

)
=
(
Id−

√
εΦω

)−1(
√
ε p̃(ω, .) + p̃0(ω, .))

=
√
ε p̃(ω, .) + p̃0(ω, .) +

√
εΦω(p̃0(ω, .))

+
+∞∑
j=1

(
√
εΦω)j

(√
εp̃(ω, .) +

√
εΦω(p̃0(ω, .))

)
.

(29)
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Moreover,

‖Θω ◦Πω(−∞,−ξ)
(
p̂(ω, ., .)

)
−
√
ε p̃(ω, .)− p̃0(ω, .)−

√
εΦω(p̃0(ω, .))‖∞,F

≤ 2ε‖Φω‖ ‖p̃(ω, .)‖∞,F + 2ε‖Φω‖2 ‖p̃0(ω, .)‖∞,F
≤ K(ξ, d) ε sup

z∈[0,L/ε]

sup
x∈[0,d]

|V (x, z)|2 sup
z∈[0,L/ε]

‖â(ω, z)‖Hωξ + ‖b̂(ω, z)‖Hωξ ,

and therefore

Θω ◦Πω(−∞,−ξ)
(
p̂(ω, ., .)

)
=
√
εp̃(ω, .) + p̃0(ω, .) +

√
εΦω(p̃0(ω, .))

+O
(
ε sup
z∈[0,L/ε]

sup
x∈[0,d]

|V (x, z)|2 sup
z∈[0,L/ε]

‖â(ω, z)‖Hωξ + ‖b̂(ω, z)‖Hωξ
)

in C
(
[0,+∞), F

)
. Now, we consider

p̃γ,2(ω, z) =
k2(ω)
2
√
|γ|

∫ z∧L/ε

0

[N(ω)∑
l=1

Cγl(u)√
βl

(
âl(ω, z ∧ L/ε)eiβlu + b̂l(ω, z ∧ L/ε)e−iβlu

)
+
∫ k2(ω)

ξ

Cγγ′(u)
γ′1/4

(
âγ′(ω, z ∧ L/ε)ei

√
γ′u + b̂γ′(ω, z ∧ L/ε)e−i

√
γ′u
)]
dγ′e
√
|γ|(u−z)du

+
k2(ω)
2
√
|γ|

∫ L/ε

z∧L/ε

[N(ω)∑
l=1

Cγl(u)√
βl

(
âl(ω, z ∧ L/ε)eiβlu + b̂l(ω, z ∧ L/ε)e−iβlu

)
+
∫ k2(ω)

ξ

Cγγ′(u)
γ′1/4

(
âγ′(ω, z ∧ L/ε)ei

√
γ′u + b̂γ′(ω, z ∧ L/ε)e−i

√
γ′u
)]
dγ′e
√
|γ|(z−u)du

∀z ∈ [0,+∞). Using (17), (18), (19), (20), and (29), we get

‖p̃(ω, .)− p̃2(ω, .)‖∞,F ≤ K(ξ, d)
√
ε sup
z∈[0,L/ε]

sup
x∈[0,d]

|V (x, z)|2

×
(

sup
z∈[0,L/ε]

‖â(ω, z)‖Hωξ + ‖b̂(ω, z)‖Hωξ + ‖p̂(ω, z)‖F
)

and then

Θω ◦Πω(−∞,−ξ)
(
p̂(ω, ., .)

)
=
√
ε p̃2(ω, .) + p̃0(ω, .) +

√
εΦω(p̃0(ω, .))

+O
(
ε sup
z∈[0,L/ε]

sup
x∈[0,d]

|V (x, z)|2 sup
z∈[0,L/ε]

‖â(ω, z)‖Hωξ + ‖b̂(ω, z)‖Hωξ + ‖p̂(ω, z)‖F
)

in C
(
[0,+∞), F

)
. Consequently, we can rewrite (17), (18), (19), and (20) in a closed form in Hωξ ×Hωξ .

∀z ∈ [0, L/ε], we get

d

dz
â(ω, z) =

√
εHaa(ω, z)

(
â(ω, z)

)
+
√
εHab(ω, z)

(
b̂(ω, z)

)
+
√
εRa,LS (ω, z)

+ εGaa(ω, z)
(
â(ω, z)

)
+ εGab(ω, z)

(
b̂(ω, z)

)
+ ε R̃

a,LS (ω, z)

+O
(
ε3/2 sup

z∈[0,L/ε]

sup
x∈[0,d]

|V (x, z)|2 sup
z∈[0,L/ε]

‖â(ω, z)‖Hωξ + ‖b̂(ω, z)‖Hωξ + ‖p̂(ω, z)‖F
)
,

d

dz
b̂(ω, z) =

√
εHba(ω, z)

(
â(ω, z)

)
+
√
εHbb(ω, z)

(
b̂(ω, z)

)
+
√
εRb,LS (ω, z)

+ εGba(ω, z)
(
â(ω, z)

)
+ εGbb(ω, z)

(
b̂(ω, z)

)
+ εR̃

b,LS (ω, z)

+O
(
ε3/2 sup

z∈[0,L/ε]

sup
x∈[0,d]

|V (x, z)|2 sup
z∈[0,L/ε]

‖â(ω, z)‖Hωξ + ‖b̂(ω, z)‖Hωξ + ‖p̂(ω, z)‖F
)
.

Let us recall that these equations hold on the event
(
Id −

√
εΦω is invertible

)
which satisfies the

condition limε→0 P(Id−
√
εΦω is invertible) = 1. In these equations, Haa(ω, z), Hab(ω, z), Hba(ω, z),



C. GOMEZ SHALLOW-WATER PROPAGATION 14

Hbb(ω, z), Gaa(ω, z), Gab(ω, z), Gba(ω, z) and Gbb(ω, z) are operators from Hωξ to itself defined by:

Haa
j (ω, z)(y) = Hbb

j (ω, z)(y) =
ik2(ω)

2

[N(ω)∑
l=1

Cωjl(z)√
βj(ω)βl(ω)

yle
i(βl(ω)−βj(ω))z

+
∫ k2(ω)

ξ

Cωjγ′(z)√
βj(ω)

√
γ′
yγ′e

i(
√
γ′−βj(ω))zdγ′

]
,

(30)

Haa
γ (ω, z)(y) = Hbb

γ (ω, z)(y) =
ik2(ω)

2

[N(ω)∑
l=1

Cωγl(z)√√
γβl(ω)

yle
i(βl(ω)−√γ)z

+
∫ k2(ω)

ξ

Cωγγ′(z)

γ1/4γ′1/4
yγ′e

i(
√
γ′−√γ)zdγ′

]
,

(31)

Hab
j (ω, z)(y) = Hba

j (ω, z)(y) =
ik2(ω)

2

[N(ω)∑
l=1

Cωjl(z)√
βj(ω)βl(ω)

yle
−i(βl(ω)+βj(ω))z

+
∫ k2(ω)

ξ

Cωjγ′(z)√
βj(ω)

√
γ′
yγ′e

−i(
√
γ′+βj(ω))zdγ′

]
,

(32)

Hab
γ (ω, z)(y) = Hba

γ (ω, z)(y) =
ik2(ω)

2

[N(ω)∑
l=1

Cωγl(z)√√
γβl(ω)

yle
−i(βl(ω)+

√
γ)z

+
∫ k2(ω)

ξ

Cγγ′(z)
γ1/4γ′1/4

yγ′e
−i(
√
γ′+
√
γ)zdγ′

]
,

(33)

Gaa
j (ω, z)(y) = Gbb

j (ω, z)(y) =

ik4(ω)
4

[N(ω)∑
l=1

∫ −ξ
−∞

[ ∫ z

0

Cωjγ′(z)C
ω
γ′l(u)√

βj(ω)|γ′|βl(ω)
eiβl(ω)u−

√
|γ′|(z−u)du

+
∫ L/ε

z

Cωjγ′(z)C
ω
γ′l(u)√

βj(ω)|γ′|βl(ω)
eiβl(ω)u−

√
|γ′|(u−z)du

]
dγ′e−iβj(ω)zyl

]
+
ik4(ω)

4

[ ∫ k2(ω)

ξ

∫ −ξ
−∞

[ ∫ z

0

Cωjγ′(z)C
ω
γ′γ′′(u)√

βj(ω)|γ′|
√
γ′′

ei
√
γ′′u−

√
|γ′|(z−u)du

+
∫ L/ε

z

Cωjγ′(z)C
ω
γ′γ′′(u)√

βj(ω)|γ′|
√
γ′′

ei
√
γ′′u−

√
|γ′|(u−z)du

]
dγ′e−iβj(ω)zyγ′′dγ

′′
]
,

(34)

Gaa
γ (ω, z)(y) = Gbb

γ (ω, z)(y) =

ik4(ω)
4

[N(ω)∑
l=1

∫ −ξ
−∞

[ ∫ z

0

Cωγγ′(z)C
ω
γ′l(u)√√

γ|γ′|βl(ω)
eiβl(ω)u−

√
|γ′|(z−u)du

+
∫ L/ε

z

Cωγγ′(z)C
ω
γ′l(u)√√

γ|γ′|βl(ω)
eiβl(ω)u−

√
|γ′|(u−z)du

]
dγ′e−i

√
γzyl

]
+
ik4(ω)

4

[ ∫ k2(ω)

ξ

∫ −ξ
−∞

[ ∫ z

0

Cωγγ′(z)C
ω
γ′γ′′(u)√√

γ|γ′|
√
γ′′

ei
√
γ′′u−

√
|γ′|(z−u)du

+
∫ L/ε

z

Cωγγ′(z)C
ω
γ′γ′′(u)√√

γ|γ′|
√
γ′′

ei
√
γ′′u−

√
|γ′|(u−z)du

]
dγ′e−i

√
γzyγ′′dγ

′′
]
,

(35)
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Gab
j (ω, z)(y) = Gba

j (ω, z)(y) =

ik4(ω)
4

[N(ω)∑
l=1

∫ −ξ
−∞

[ ∫ z

0

Cωjγ′(z)C
ω
γ′l(u)√

βj(ω)|γ′|βl(ω)
e−iβl(ω)u−

√
|γ′|(z−u)du

+
∫ L/ε

z

Cωjγ′(z)C
ω
γ′l(u)√

βj(ω)|γ′|βl(ω)
e−iβl(ω)u−

√
|γ′|(u−z)du

]
dγ′e−iβj(ω)zyl

]
+
ik4(ω)

4

[ ∫ k2(ω)

ξ

∫ −ξ
−∞

[ ∫ z

0

Cωjγ′(z)C
ω
γ′γ′′(u)√

βj(ω)|γ′|
√
γ′′

e−i
√
γ′′u−

√
|γ′|(z−u)du

+
∫ L/ε

z

Cωjγ′(z)C
ω
γ′γ′′(u)√

βj(ω)|γ′|
√
γ′′

e−i
√
γ′′u−

√
|γ′|(u−z)du

]
dγ′e−iβj(ω)zyγ′′dγ

′′
]
,

(36)

Gab
γ (ω, z)(y) = Gba

γ (ω, z)(y) =

ik4(ω)
4

[N(ω)∑
l=1

∫ −ξ
−∞

[ ∫ z

0

Cωγγ′(z)C
ω
γ′l(u)√√

γ|γ′|βl(ω)
e−iβl(ω)u−

√
|γ′|(z−u)du

+
∫ L/ε

z

Cωγγ′(z)C
ω
γ′l(u)√√

γ|γ′|βl(ω)
e−iβl(ω)u−

√
|γ′|(u−z)du

]
dγ′e−i

√
γzyl

]
+
ik4(ω)

4

[ ∫ k2(ω)

ξ

∫ −ξ
−∞

[ ∫ z

0

Cωγγ′(z)C
ω
γ′γ′′(u)√√

γ|γ′|
√
γ′′

e−i
√
γ′′u−

√
|γ′|(z−u)du

+
∫ L/ε

z

Cωγγ′(z)C
ω
γ′γ′′(u)√√

γ|γ′|
√
γ′′

e−i
√
γ′′u−

√
|γ′|(u−z)du

]
dγ′e−i

√
γzyγ′′dγ

′′
]
.

(37)

The operators Haa(ω, z) and Hab(ω, z) represent the coupling between the propagating and the ra-
diating modes with themselves, while the operators Gaa(ω, z) and Gab(ω, z) represent the coupling
between the evanescent modes with the propagating and the radiating modes. Moreover, Ra,LS (ω, z),
R̃
a,LS (ω, z), Rb,LS (ω, z), and R̃

b,LS (ω, z) represent the influence of the evanescent modes produced
by the source term on the propagating and the radiating modes. These terms are defined by

Ra,LS
j (ω, z) = Rb,LS

j (ω, z) =
ik2(ω)

2

∫ −ξ
−S

Cωjγ′(z)√
βj(ω)

φγ′(ω, x0)e−
√
|γ′|(z−LS)dγ′e−iβj(ω)z, (38)

Ra,LS
γ (ω, z) = Rb,LS

γ (ω, z) =
ik2(ω)

2

∫ −ξ
−S

Cωγγ′(z)
|γ|1/4

φγ′(ω, x0)e−
√
|γ′|(z−LS)dγ′e−i

√
γz, (39)

R̃a,LS
j (ω, z) = R̃

b,LS
j (ω, z) =

ik4(ω)
4

∫ −ξ
−∞

∫ −ξ
−S

[∫ z

0

Cωjγ′(z)C
ω
γ′γ′′(u)√

βj(ω)|γ′|
φγ′′(ω, x0)e−

√
|γ′′|(u−LS)e−

√
|γ′|(z−u)du

+
∫ L/ε

z

Cωjγ′(z)C
ω
γ′γ′′(u)√

βj(ω)|γ′|
φγ′′(ω, x0)e−

√
|γ′′|(u−LS)e−

√
|γ′|(u−z)du

]
dγ′′dγ′ e−iβj(ω)z,

(40)

R̃a,LS
γ (ω, z) = R̃

b,LS
γ (ω, z) =

ik4(ω)
4

∫ −ξ
−∞

∫ −ξ
−S

[∫ z

0

Cωγγ′(z)C
ω
γ′γ′′(u)√√
γ|γ′|

φγ′′(ω, x0)e−
√
|γ′′|(u−LS)e−

√
|γ′|(z−u)du

+
∫ L/ε

z

Cωγγ′(z)C
ω
γ′γ′′(u)√√
γ|γ′|

φγ′′(ω, x0)e−
√
|γ′′|(u−LS)e−

√
|γ′|(u−z)du

]
dγ′′dγ′ e−i

√
γz.

(41)
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3.4 Forward Scattering Approximation
In this section we introduce the forward scattering approximation, which is widely used in the lit-
erature. In this approximation the coupling between forward- and backward-propagating modes is
assumed to be negligible compared to the coupling between the forward-propagating modes. We refer
to [9, 11] for justifications on the validity of this approximation.

The justification of this approximation is as follows. The coupling between a right-going propa-
gating mode and a left-going propagating mode involves a coefficient of the form∫ +∞

0

E[Cωjl(0)Cωjl(z)] cos
(
(βl(ω) + βj(ω))z

)
dz,

and the coupling between two right-going propagating modes or two left-going propagating modes
involves a coefficient of the form∫ +∞

0

E[Cωjl(0)Cωjl(z)] cos
(
(βl(ω)− βj(ω))z

)
dz

∀(j, l) ∈
{

1, . . . , N(ω)
}2. Therefore, if we assume that∫ +∞

0

E[Cωjl(0)Cωjl(z)] cos
(
(βl(ω) + βj(ω))z

)
dz = 0 ∀(j, l) ∈

{
1, . . . , N(ω)

}2
,

then there is no coupling between right-going and left-going propagating modes, which justifies the
forward scattering approximation, but there is still coupling between right-going propagating modes
which will be described in Section 4.

In our context the operator R(ω), introduced in Section 2.1, has a continuous spectrum and it
becomes technically complex to apply a limit theorem for the rescaled process (â(ω, z/ε), b̂(ω, z/ε)).
The reason is the following. This process is not bounded and the stopping times which are the first
exit times of closed balls are not lower semicontinuous for the topology of C([0, L],Hωξ,w), where Hωξ,w
stands for Hωξ equipped with the weak topology. In our context the continuous part (ξ, k2(ω)) of
the spectrum imposes us to use the norm ‖.‖Hωξ to control some quantities. Moreover, according to
Theorem 4.1, in which the energy of the limit process is not conserved, it seems not possible to show
a limit theorem on C

(
[0, L], (Hωξ , ‖.‖Hωξ )

)
in view of (27). In [7] and [9] there is a finite number of

propagating modes, so that the weak topology and the strong topology are the same. In [11] the
number of propagating modes increases as ε goes to 0. However, in this last case, the problem can
be corrected by considering the first exit times of a closed ball related to the weak topology and by
considering the process in an appropriate finite-dimensional dual space.

In our context if we forget these technical problems, according to [7, 9] the forward scattering
approximation should be valid in the asymptotic ε→ 0 under the assumption that the power spectral
density of the process V , i.e. the Fourier transform of its z-autocorrelation function, possesses a
cut-off wavenumber. In other words, we can consider the case where∫ +∞

0

E[Cωjl(0)Cωjl(z)] cos
(
(βl(ω) + βj(ω))z

)
dz = 0 ∀(j, l) ∈

{
1, . . . , N(ω)

}2
.

Let us remark that the continuous part (0, k2(ω)) of the spectrum, which corresponds to the radiating
modes, does not play any role in the previous assumption. The reason is that the radiating part of
the process plays no role in the coupling mechanism as we can see in Theorems 4.1 and 4.2 below and
therefore remains constant.

Finally, we shall consider the simplified equation on [0, L/ε],

d

dz
â(ω, z) =

√
εHaa(ω, z) (â(ω, z)) +

√
εRa,LS (ω, z)

+ εGaa(ω, z) (â(ω, z)) + ε R̃
a,LS (ω, z)

+O
(
ε3/2 sup

z∈[0,L/ε]

sup
x∈[0,d]

|V (x, z)|2 sup
z∈[0,L/ε]

‖â(ω, z)‖Hωξ + ‖p̂(ω, z)‖F
)

in Hωξ . We shall see in Section 4, under the forward scattering approximation, that

lim
ε→0

P (Lε ≤ L) = 0 ∀L > 0,
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where
Lε = inf

(
L > 0, sup

z∈[0,L/ε]

‖â(ω, z)‖2Hωξ + ‖p̂(ω, z)‖2F ≥
1√
ε

)
.

Consequently, we can show that ∀ η > 0

lim
ε→0

P
(

sup
z∈[0,L/ε]

∣∣∣‖â(ω, z)‖2Hωξ − ‖â0(ω)‖2Hωξ
∣∣∣ > η

)
= 0.

This result means that the local energy flux for the propagating and the radiating modes is conserved
in the asymptotic ε→ 0.

4 Coupled Mode Processes
In this section, we study the asymptotic behavior, as ε → 0 in first and ξ → 0 in second, of the
statistical properties of the coupling mechanism in terms of a diffusion process.

Let us define the rescaled process

âε(ω, z) = â
(
ω,
z

ε

)
∀z ∈ [0, L].

This scaling corresponds to the size of the random section [0, L/ε]. This process satisfies the rescaled
coupled mode equations on [0, L]

d

dz
âε(ω, z) =

1√
ε
Haa

(
ω,
z

ε

)
(âε(ω, z)) +

1√
ε
Ra,LS

(
ω,
z

ε

)
+ Gaa

(
ω,
z

ε

)
(âε(ω, z)) + R̃

a,LS
(
ω,
z

ε

)
+O

(√
ε sup
z∈[0,L/ε]

sup
x∈[0,d]

|V (x, z)|2 sup
z∈[0,L]

‖âε(ω, z)‖Hωξ + ‖p̂(ω, z/ε)‖F
) (42)

in Hωξ , with the initial condition âε(ω, 0) = â0(ω). We shall see that under the forward scattering
approximation the condition Lε > L is readily fulfilled in the asymptotic ε goes to 0.

Proposition 4.1 ∀L > 0,
lim
ε→0

P (Lε ≤ L) = 0,

where
Lε = inf

(
L > 0, sup

z∈[0,L/ε]

‖â(ω, z)‖2Hωξ + ‖p̂(ω, z)‖2F ≥
1√
ε

)
,

and

lim
M→+∞

lim
ε→0

P

(
sup

z∈[0,L]

‖âε(ω, z)‖2Hωξ ≥M

)
= 0.

This result means that the amplitude âε(ω, z) is asymptotically uniformly bounded in the limit ε→ 0
on [0, L]. More precisely, according to Section 3.2, we have ∀ η > 0

lim
ε→0

P
(

sup
z∈[0,L]

∣∣∣‖âε(ω, z)‖2Hωξ − ‖â0(ω)‖2Hωξ
∣∣∣ > η

)
= 0,

that is the local energy flux for the propagating and the radiating modes is conserved in the asymptotic
ε→ 0.

Proof Using Gronwall’s inequality, ∀L > 0 we get

lim
M→+∞

lim
ε→0

P

(
sup

z∈[0,L]

‖âε(ω, z)‖2Hωξ ≥M, L ≤ Lε
)

= 0.
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This result means that the process âε(ω, .) is asymptotically uniformly bounded on [0, L] and then Lε
is large compared to L in the asymptotic ε→ 0. In fact, ∀L > 0 and ∀M > 0

P (Lε ≤ L) ≤ P

(
Lε ≤ L, sup

z∈[0,L∧Lε]
‖âε(ω, z)‖2Hωξ ≤M

)

+ P

(
sup

z∈[0,L∧Lε]
‖âε(ω, z)‖2Hωξ ≥M

)
.

Moreover,

P

(
Lε ≤ L, sup

z∈[0,L∧Lε]
‖âε(ω, z)‖2Hωξ ≤M

)
= 0

for ε small enough, since for Lε ≤ L

ε−1/2 ≤ sup
z∈[0,Lε]

‖âε(ω, z)‖2Hωξ + ‖p̂(ω, .)‖2F

≤M +K(ξ, d)ε sup
z∈[0,L/ε]

sup
x∈[0,d]

|V (x, z)|2M + 2‖p̃0(ω, .)‖2∞,F

according to (29). �

Let us introduce âε1(ω, .) the unique solution of the differential equation on [0, L]

d

dz
âε1(ω, z) =

1√
ε
Haa

(
ω,
z

ε

)
(âε1(ω, z)) + Gaa

(
ω,
z

ε

)
(âε1(ω, z)) (43)

in Hωξ , with initial condition âε1(ω, 0) = â0(ω). Using Gronwall’s inequality and (54) we can state that

lim
M→+∞

lim
ε→0

P

(
sup

z∈[0,L]

‖âε1(ω, z)‖Hωξ ≥M

)
= 0.

The relation between the solution of the full system (42) and the one of the simplified system (43) is
given by the following proposition.

Proposition 4.2

∀η > 0 and ∀µ > 0, lim
ε→0

P

(
sup

z∈[µ,L]

‖âε(ω, z)− âε1(ω, z)‖Hωξ > η

)
= 0.

Proposition 4.2 means that the information about the evanescent part of the source profile is lost in the
asymptotic ε goes to 0. In fact, the coupling mechanism described by the system (42) implies that the
information about the evanescent part of the source profile is transmitted to the propagating modes
through the coefficients Ra,LS (ω, z) and R̃

a,LS (ω, z) defined by (38), (39), (40) and (41). In these
expressions we have the term φγ′(ω, x)e−

√
|γ′|(z−LS) which comes from the right-hand side of (24)

and which is the form of evanescent modes without a random perturbation. This term is responsible
for the loss of information about the evanescent part of the source profile because of its exponentially
decreasing behavior.

Proof We begin by proving that ∀L > 0, ∀η > 0 and ∀µ > 0

lim
ε→0

P

(
sup

z∈[µ,L]

‖âε(ω, z)− âε1(ω, z)‖2Hωξ > η, L ≤ Lε
)

= 0.

In fact, Ra,LS (ω, z) decreases exponentially fast with the propagation distance. Moreover, R̃
a,LS (ω, z)

can be treated as Gaa in the proof of Theorem 4.1 because e−
√
|γ′|(u−LS) cannot be compensated by

e−iβj(ω)z nor by e−i
√
γz. Moreover, using Proposition 4.1 we get the result. �
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Finally, we introduce the transfer operatorTξ,ε(ω, z) fromHωξ to itself, which is the unique operator
solution of the differential equation

d

dz
Tξ,ε(ω, z) =

1√
ε
Haa

(
ω,
z

ε

)
Tξ,ε(ω, z) + Gaa

(
ω,
z

ε

)
Tξ,ε(ω, z) (44)

with Tξ,ε(ω, 0) = Id. Then,

∀z ∈ [0, L], â1(ω, z) = Tξ,ε(ω, z)(â0(ω)),

and we get the following result.

Proposition 4.3

∀η > 0 and ∀µ > 0, lim
ε→0

P

(
sup

z∈[µ,L]

‖âε(ω, z)−Tξ,ε(ω, z)(â0(ω))‖2Hωξ > η

)
= 0.

4.1 Limit Theorem
This section presents the basic theoretical results of this paper. In [9] and [14], the authors used
the limit theorem stated in [22] since the number of propagating modes was fixed. However, in
our configuration, in addition to the N(ω)-discrete propagating modes the wave field consists of a
continuum of radiating modes. The two following results are based on a diffusion-approximation
result for the solution of an ordinary differential equation with random coefficients. This result is an
extension of that stated in [22] to the case of processes with values in a Hilbert space.

Theorem 4.1 ∀L > 0 and ∀y ∈ Hωξ = CN(ω)×L2(ξ, k2(ω)), the family
(
Tξ,ε(ω, .)(y)

)
ε∈(0,1)

, solution
of the differential equation (44), converges in distribution on C([0, L],Hωξ,w) as ε→ 0 to a limit denoted
by Tξ(ω, .)(y). Here Hωξ,w stands for the Hilbert space Hωξ equipped with the weak topology. This limit
is the unique diffusion process on Hωξ , starting from y, associated to the infinitesimal generator

Lωξ = Lω1 + Lω2,ξ + Lω3,ξ,

where

Lω1 =
1
2

N(ω)∑
j,l=1
j 6=l

Γcjl(ω)
(
TjTj∂Tl∂Tl + TlTl∂Tj∂Tj − TjTl∂Tj∂Tl − TjTl∂Tj∂Tl

)

+
1
2

N(ω)∑
j,l=1

Γ1
jl(ω)

(
TjTl∂Tj∂Tl + TjTl∂Tj∂Tl − TjTl∂Tj∂Tl − TjTl∂Tj∂Tl

)

+
1
2

N(ω)∑
j=1

(
Γcjj(ω)− Γ1

jj(ω)
) (
Tj∂Tj + Tj∂Tj

)
+
i

2

N(ω)∑
j=1

Γsjj(ω)
(
Tj∂Tj − Tj∂Tj

)
,

and

Lω2,ξ = −1
2

N(ω)∑
j=1

(
Λc,ξj (ω) + iΛs,ξj (ω)

)
Tj∂Tj +

(
Λc,ξj (ω)− iΛs,ξj (ω)

)
Tj∂Tj ,

Lω3,ξ = i

N(ω)∑
j=1

κξj(ω)
(
Tj∂Tj − Tj∂Tj

)
.

Here, we have considered the classical complex derivative with the following notation: If v = v1 + iv2,
then ∂v = 1

2 (∂v1 − i∂v2) and ∂v = 1
2 (∂v1 + i∂v2). We have used the following notations. ∀(j, l) ∈
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{
1, . . . , N(ω)

}2 and j 6= l

Γcjl(ω) =
k4(ω)

2βj(ω)βl(ω)

∫ +∞

0

E
[
Cωjl(0)Cωjl(z)

]
cos
(
(βl(ω)− βj(ω))z

)
dz,

Γcjj(ω) = −
N(ω)∑
l=1
l 6=j

Γcjl(ω),

Γsjl(ω) =
k4(ω)

2βj(ω)βl(ω)

∫ +∞

0

E
[
Cωjl(0)Cωjl(z)

]
sin
(
(βl(ω)− βj(ω))z

)
dz,

Γsjj(ω) = −
N(ω)∑
l=1
l 6=j

Γsjl(ω),

and ∀(j, l) ∈
{

1, . . . , N(ω)
}2,

Γ1
jl(ω) =

k4(ω)
2βj(ω)βl(ω)

∫ +∞

0

E
[
Cωjj(0)Cωll (z)

]
dz,

Λc,ξj (ω) =
∫ k2(ω)

ξ

k4(ω)
2
√
γ′βj(ω)

∫ +∞

0

E
[
Cωjγ′(0)Cωjγ′(z)

]
cos
(
(
√
γ′ − βj(ω))z

)
dzdγ′,

Λs,ξj (ω) =
∫ k2(ω)

ξ

k4(ω)
2
√
γ′βj(ω)

∫ +∞

0

E
[
Cωjγ′(0)Cωjγ′(z)

]
sin
(
(
√
γ′ − βj(ω))z

)
dzdγ′,

κξj(ω) =
∫ −ξ
−∞

k4(ω)
2βj(ω)

√
|γ′|

∫ +∞

0

E
[
Cωjγ′(0)Cωjγ′(z)

]
cos
(
βj(ω)z

)
e−
√
|γ′|zdzdγ′.

The coupling coefficients Cω(z) are defined by (15). We get the following result in the asymptotic
ξ → 0.

Theorem 4.2 ∀L > 0 and ∀y ∈ Hω0 = CN(ω)×L2(0, k2(ω)), the family
(
Tξ(ω, .)(y)

)
ξ∈(0,1)

converges
in distribution on C([0, L], (Hω0 , ‖.‖Hω0 )) as ξ → 0 to a limit denoted by T0(ω, .)(y). This limit is the
unique diffusion process on Hω0 , starting from y, associated to the infinitesimal generator

Lω = Lω1 + Lω2 + Lω3 ,

where

Lω2 = −1
2

N(ω)∑
j=1

(
Λcj(ω) + iΛsj(ω)

)
Tj∂Tj +

(
Λcj(ω)− iΛsj(ω)

)
Tj∂Tj ,

Lω3 = i

N(ω)∑
j=1

κj(ω)
(
Tj∂Tj − Tj∂Tj

)
.

Here, we have ∀j ∈
{

1, . . . , N(ω)
}

Λcj(ω) = lim
ξ→0

Λc,ξj (ω), Λsj(ω) = lim
ξ→0

Λs,ξj (ω), κj(ω) = lim
ξ→0

κξj(ω).

Theorems 4.1 and 4.2 describe the asymptotic behavior, as ε → 0 first and ξ → 0 second, of
the statistical properties of the transfer operator Tξ,ε(ω,L), in terms of a diffusion process. In the
appendix we give the proofs of Theorems 4.1 and 4.2, which are based on a martingale approach using
the perturbed-test-function method. In a first step we show the tightness of the processes, and in a
second step we characterize all subsequence limits by mean of a well-posed martingale problem in a
Hilbert space.

The infinitesimal generator Lω is composed of three parts which represent different behaviors on
the diffusion process. We can remark that the infinitesimal generator depends only on the N(ω)-
discrete coordinates. The first operator Lω1 describes the coupling between the N(ω)-propagating
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modes. This part is of the form of the infinitesimal generator obtained in [7, 9], and the total energy
is conserved. The second operator Lω2 describes the coupling between the propagating modes with
the radiating modes. This part implies a mode-dependent and frequency-dependent attenuation on
the N(ω)-propagating modes that we study in Section 5.1, and a mode-dependent and frequency-
dependent phase modulation. The third operator Lω3 describes the coupling between the propagating
and the evanescent modes, and implies a mode-dependent and frequency-dependent phase modulation.
The purely imaginary part of the operator Lω does not remove energy from the propagating modes
but gives an effective dispersion.

Moreover, let us remark that the convergence in Theorem 4.1 holds also on C([0, L], (Hωξ , ‖.‖Hωξ ))
for the N(ω)-discrete propagating mode amplitudes.

4.2 Mean Mode Amplitudes
In this section we study the asymptotic mean mode amplitudes. From Theorem 4.2, we get the
following result about the mean mode amplitudes.

Proposition 4.4 ∀y ∈ Hω0 , ∀z ∈ [0, L], ∀j ∈
{

1, . . . , N(ω)
}

lim
ξ→0

lim
ε→0

E
[
Tξ,εj (ω, z)(y)

]
= E

[
T0
j (ω, z)(y)

]
= exp

[(
Γcjj(ω)− Γ1

jj(ω)− Λcj(ω)
2

)
z + i

(
Γsjj(ω)− Λsjj(ω)

2
+ kj(ω)

)
z

]
yj(ω).

(45)

First, let us remark that the mean amplitude of the radiating part remains constant on L2(0, k2(ω)).
Second, ∀j ∈

{
1, . . . , N(ω)

}
, the coefficient (Γ1

jj(ω) + Λcj(ω) − Γcjj(ω))/2 is nonnegative. In fact,
for (j, l) ∈ {1, . . . , N(ω)}2 such that j 6= l, Γcjl(ω) and Γ1

jj(ω) are nonnegative because they are
proportional to the power spectral density of Cωjl and C

ω
jj at βl(ω)−βj(ω) and 0 frequencies. Therefore,

−Γcjj(ω) is also nonnegative. Moreover, Λcj(ω) is also nonnegative because it is proportional to the
integral over (0, k2(ω)) of the power spectral density of Cωjγ at √γ − βj(ω) frequency.

The exponential decay rate for the mean jth-propagating mode is given by

∣∣∣E[T0
j (ω,L)(y)

]∣∣∣ =
∣∣yj∣∣ exp

[
−

(
Γ1
jj(ω)− Γcjj(ω) + Λcj(ω)

2

)
L

]
,

which depends on the effective coupling between the propagating modes, and the coupling between
the propagating and the radiating modes. This exponential decay corresponds to a loss of coherence
of the transmitted field.

5 Coupled Power Equations
This section is devoted to the analysis of the asymptotic mean mode powers of the propagating modes.
More precisely, we study the asymptotic effects of the coupling between the propagating modes with
the radiating modes. Let

T lj (ω, z) = lim
ξ→0

lim
ε→0

E
[∣∣Tξ,εj (ω,L)(yl)

∣∣2] = E
[∣∣T0

j (ω, z)(y
l)
∣∣2], (46)

be the asymptotic mean mode power of the jth propagating modes. T lj (ω,L) is the expected power
of the jth propagating mode at the propagation distance z = L. Here yl ∈ Hω0 is defined by ylj = δjl
and ylγ = 0 for γ ∈ (0, k2(ω)), and where δjl is the Kronecker symbol. The initial condition yl means
that an impulse equal to one charges only the lth propagating mode. From Theorem 4.2, we have the
coupled power equations:

d

dz
T lj (ω, z) = −Λcj(ω)T lj (ω, z) +

N(ω)∑
n=1
n 6=j

Γcnj(ω)
(
T ln(ω, z)− T lj (ω, z)

)
, (47)
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Figure 3: Illustration of the radiative loss in the shallow-water random waveguide model.

with initial conditions T lj (ω, 0) = δjl. These equations describe the transfer of energy between the
propagating modes and Γc(ω) is the energy transport matrix. In our context, we also have the
coefficients Λcj(ω) given by the coupling between the propagating modes with the radiating modes.
These coefficients, defined in Theorem 4.2, are responsible for the radiative loss of energy in the ocean
bottom (see Figure 3). This loss of energy is described more precisely in the following section.

5.1 Exponential Decay of the Propagating Modes Energy
In this section, we assume that at least one of the coefficients Λc(ω) is positive. With this assumption,
we show that the total energy carried by the propagating modes decays exponentially with the size L
of the random section. In the opposite situation, that is when there is no radiative loss Λc(ω) = 0, it
has been shown in [7] and [9, Chapter 20] that the energy of the propagating modes is conserved and
for large L the asymptotic distribution of the energy becomes uniform over the propagating modes.

Let us defined

SN(ω)
+ =

{
X ∈ RN(ω), Xj ≥ 0 ∀j ∈ {1, . . . , N(ω)} and ‖X‖22,RN(ω) =

〈
X,X

〉
RN(ω) = 1

}
with

〈
X,Y

〉
RN(ω) =

∑N(ω)
j=1 XjYj for (X,Y ) ∈ (RN(ω))2, and

Λcd(ω) = diag
(
Λc1(ω), . . . ,ΛcN(ω)(ω)

)
.

Theorem 5.1 Let us assume that the energy transport matrix Γc(ω) is irreducible. Then, we have

lim
L→+∞

1
L

ln

N(ω)∑
j=1

T lj (ω,L)

 = −Λ∞(ω)

with
Λ∞(ω) = inf

X∈SN(ω)
+

〈(
− Γc(ω) + Λcd(ω)

)
X,X

〉
RN(ω) , (48)

which is positive as soon as one of the coefficients Λcj(ω) is positive.

This result means that the total energy carried by the expected powers of the propagating modes
decays exponentially with the propagation distance, and the decay rate can be expressed in terms of
a variational formula over a finite-dimensional space.

Proof The coupled power equations admit a probabilistic representation in terms of a jump Markov
process. If we denote by

(
Y
N(ω)
t

)
t≥0

a jump Markov process with state space {1, . . . , N(ω)} and
intensity matrix Γc(ω), then we have using the Feynman-Kac formula:

T lj (ω, z) = E
[
exp

(
−
∫ z

0

Λc
Y
N(ω)
s

(ω)ds
)
1“

Y
N(ω)
z =j

”∣∣∣Y N(ω)
0 = l

]
. (49)
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Moreover, we have supposed that Γc(ω) is irreducible. Then,
(
Y
N(ω)
t

)
t≥0

in an ergodic process with
invariant measure µN(ω), which is the uniform distribution over {1, . . . , N(ω)}. That is, µN(ω)(j) =
1/N(ω) ∀j ∈ {1, . . . , N(ω)}. The self-adjoint generator of the jump Markov process (Y N(ω)

t )t≥0 is
given by

LN(ω)φ(j) =
N(ω)∑
n=1

Γcnj(ω) (φ(n)− φ(j)) ,

for every function φ from {1, . . . , N(ω)} to R, and it is easy to check that LN(ω)µN(ω) = 0. Let us
consider the local times

lT (j) =
∫ T

0

1“
Y
N(ω)
s =j

”ds
for j ∈ {1, . . . , N(ω)} and T > 0, which corresponds to the time spent by the process

(
Y
N(ω)
t

)
t≥0

in
the state j during the time interval [0, T ]. According to [5], we have a large deviation principle for
1
T lT viewed as a random process with values in MN(ω)

1 which is the set of probability measures on
{1, . . . , N(ω)}. More precisely, we have

lim
L→+∞

1
L

ln E
[

exp
(
− L

〈
Λc,

1
L
lL
〉

RN(ω)

)∣∣∣Y N(ω)
0 = l

]
= lim
L→+∞

1
L

ln E
[

exp
(
−
∫ L

0

Λc
Y
N(ω)
s

ds
)∣∣∣Y N(ω)

0 = l
]

= − inf
µ∈MN(ω)

1

(
I(µ) +

〈
Λc(ω), µ

〉)
with

I(µ) =
∥∥(− Γc(ω)

)1/2√
µ
∥∥2

2,RN(ω) =
〈(
− Γc(ω)

)√
µ,
√
µ
〉

RN(ω) .

Consequently,

lim
L→+∞

1
L

ln

N(ω)∑
j=1

T lj (ω,L)

 = −Λ∞(ω).

Let us assume that Λ∞(ω) = 0. As SN(ω)
+ is a compact space, there exists X0 ∈ SN(ω)

+ such that

Λ∞(ω) =
〈(
− Γc(ω) + Λcd(ω)

)
X0, X0

〉
RN(ω) = 0.

Moreover, −Γc(ω) and Λcd(ω) are two nonnegative matrices and 0 is a simple eigenvalue of −Γc(ω) by
the Perron-Frobenius theorem. Then,〈

(−Γc(ω))X0, X0

〉
RN(ω) = 0⇔ X0 = √µN(ω),

and 〈
Λcd(ω)X0, X0

〉
RN(ω) = 0⇒ ∃j ∈ {1, . . . , N(ω)}, X0(j) = 0.

Therefore,
Λ∞(ω) > 0.

�

The expression (48) of Λ∞(ω) is not simple. However, we have the following inequalities.

min
j∈{1,...,N(ω)}

Λcj(ω) ≤ Λ∞(ω) ≤ Λ(ω) =
1

N(ω)

N(ω)∑
j=1

Λcj(ω). (50)

First, we assume that ∀j ∈ {1, . . . , N(ω)}, Λcj(ω) = Λ(ω) > 0. In this case, using (50)

Λ∞(ω) = Λ(ω).

This means that if all the coefficients which represent the radiation losses are equal, the decay rate
of the total energy of the propagating modes is given by this coefficient.
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Second, we assume that the coupling matrix is small, that is, we replace Γc(ω) by τΓc(ω) with
τ � 1. If ∀j ∈ {1, . . . , N(ω)}, Λcj(ω) > 0 we have

lim
τ→0

Λτ∞(ω) = min
j∈{1,...,N(ω)}

Λcj(ω).

From (50), it is the smallest value that Λ∞(ω) can take. This result is consistent with the fact that
the coupling process on the transfer of energy between propagating modes is negligible and the decay
rate of the energy of a particular propagating mode j is given by its own decay coefficient Λj(ω).
Then, for the total energy of propagating modes the decay rate is given by the minimum of those
decay coefficients. Consequently, if there exists Λcj0(ω) = 0, we have

lim
τ→0

Λτ∞(ω) = 0.

The reason is the energy of the j0th propagating mode stays approximately constant with a weak
transfer of energy, and

lim
τ→0

1
τ

Λτ∞(ω) = inf
X∈Ṽ

〈(
− Γc(ω)

)
X,X

〉
RN(ω) > 0,

where
Ṽ =

{
X ∈ SN(ω)

+ , suppX ⊂ {1, . . . , N(ω)} \ supp(Λc(ω))
}
,

because √µN(ω) 6∈ Ṽ .
Now, we assume that the coupling matrix is large, that is we replace Γc(ω) by 1

τ Γc(ω) with τ � 1.
In this case, we have

lim
τ→0

Λτ∞(ω) = Λ(ω).

From (50), it is the largest value that Λ∞(ω) can take. The strong coupling produces a uniform
distribution of energy over the propagating modes and the decay rate becomes

〈
Λc(ω), µN(ω)

〉
RN(ω) =

Λ(ω) for each mode. A more convenient way to get this result is to use a probabilistic representation.
In fact, we have

T lj (ω, z) = E
[
exp

(
−
∫ z

0

Λc
Y
N(ω)
s/τ

(ω)
)
1“

Y
N(ω)
z =j

”∣∣∣Y N(ω)
0 = l

]
= E

[
exp

(
−z τ

z

∫ z/τ

0

Λc
Y
N(ω)
s

(ω)

)
1“

Y
N(ω)
z/τ

=j
”∣∣∣Y N(ω)

0 = l

]
,

where
(
Y
N(ω)
t

)
t≥0

is a jump Markov process with state space {1, . . . , N(ω)} and intensity matrix

Γc(ω). Using the ergodic properties of
(
Y
N(ω)
t

)
t≥0

, we get that

lim
τ→0
T τ,lj (ω,L) =

1
N(ω)

exp
(
−Λ(ω)L

)
.

Finally, if we assume that the radiation losses are negligible, that is we replace Λc(ω) by τΛc(ω) with
τ � 1, we have

lim
τ→0

Λτ∞(ω) = 0.

In fact, if the radiative loss is negligible, the coupling process becomes dominant, and we can show
that

∀L > 0, sup
z∈[0,L]

‖T τ,lj (ω, z)− T 0,l
j (ω, z)‖2,RN(ω) = O(τ),

where T 0,l(ω, .) satisfies (47) without the coefficient Λc(ω). In this situation

T 0,l
j (ω,L) = P

(
Y
N(ω)
L = j

∣∣∣Y N(ω)
0 = l

)
,

and the total energy is conserved (see Figure 4), and

lim
τ→0

1
τ

Λτ∞(ω) = Λ(ω) > 0.

As it was already observed in [9] the modal energy distribution converges as L → +∞ to a uniform
distribution:

lim
L→+∞

T 0,l
j (ω,L) =

1
N(ω)

.
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Figure 4: Illustration of negligible radiation losses in the shallow-water random waveguide model.

5.2 High-Frequency Approximation to Coupled Power Equations
In this section, under the assumption that nearest-neighbor coupling, introduced in Section 5.2.1, is
the main power transfer mechanism, we give an approximate solution of the coupled power equations
(47) in the high-frequency regime or in the limit of large number of propagating modes N(ω) � 1.
Let us note that the limit of a large number of propagating modes N(ω) � 1 corresponds to the
high-frequency regime ω → +∞. Next, we analyze the energy carried by the propagating modes in
this regime.

The coupled power equations can be approximated in the high-frequency regime by a diffusion
equation. This approximation has been already obtained in [14] for instance, in which we can find fur-
ther references about this topic. We can also refer to [18] for more discussions on this approximation.
For an application of such a diffusion model to acoustic propagation in randomly sound channels we
refer to [19], and for applications to time reversal of waves we refer to [11].

Using the form of the covariance function (52), we find

Γcjl(ω) =
ak4(ω)Ij,l(ω)

2βj(ω)βl(ω)(a2 + (βj(ω)− βl(ω))2)

and

Λcj(ω) =
∫ k2(ω)

0

ak4(ω)Ij,γ(ω)
2βj(ω)

√
γ(a2 + (βj(ω)−√γ)2)

dγ,

where

Ijl =
1
4
A2
jA

2
l

[
S
(
σj − σl, σj − σl

)
+ S

(
σj + σl, σj + σl

)
− S

(
σj − σl, σj + σl

)
− S

(
σj + σl, σj − σl

)]
,

Ijγ =
1
4
A2
jA

2
γ

[
S
(
σj − η, σj − η

)
+ S

(
σj + η, σj + η

)
− S

(
σj − η, σj + η

)
− S

(
σj + η, σj − η

)]
,

with

S(v1, v2) =
∫ d

0

∫ d

0

γ0(x1, x2) cos
(v1

d
x1

)
cos
(v2

d
x2

)
dx1dx2,

and where Aj(ω), Aγ(ω), σj(ω), η(ω), φj(ω, x), and φγ(ω, x) are defined in Section 2.1.

5.2.1 Band-Limiting Idealization

In this section, we introduce a band-limiting idealization hypothesis in which the power spectral
density of the random fluctuations is assumed to be limited in both the transverse and the longitudinal
directions.
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We assume that the support of S lies in the square
[
− 3π

2 ,
3π
2

]
×
[
− 3π

2 ,
3π
2

]
. Then,

Ijl(ω) =
{

1
4A

2
j (ω)A2

l (ω)S
(
σj(ω)− σl(ω), σj(ω)− σl(ω)

)
if |j − l| = 1

0 otherwise,

and

Ijγ(ω) =
{

1
4A

2
j (ω)A2

l (ω)S
(
σj(ω)− η(ω), σj(ω)− η(ω)

)
if |σj(ω)− η(ω)| ≤ 3π

2

0 otherwise.

From this assumption we get ∀ 0 < γ < k2(ω) and j ∈ {1, . . . , N(ω)− 2},

η(ω)− σj(ω) ≥ n1k(ω)d

√
1− 1

n2
1

− σj(ω) ≥ n1k(ω)dθ − (N(ω)− 2)π

≥ π
(
n1k(ω)d

π
θ −N(ω)

)
︸ ︷︷ ︸

∈[0,1)

+2π.

Then, for j ∈ {1, . . . , N(ω)− 2},

inf
0<γ<k2

η(ω)− σj(ω) >
3π
2
,

and
Λcj(ω) = 0, ∀j ∈ {1, . . . , N(ω)− 2}.

Consequently, the coupled power equations (47) become

d

dz
T lN (z) = −ΛcNT lN (z) + ΓcN−1N

(
T lN−1(z)− T lN (z)

)
,

d

dz
T lN−1(z) = −ΛcN−1T lN−1(z) + ΓcN−1N−2

(
T lN−2(z)− T lN−1(z)

)
+ ΓcN−1N

(
T lN (z)− T lN−1(z)

)
,

d

dz
T lj (z) = Γcj−1 j

(
T lj−1(z)− T lj (z)

)
+ Γcj+1 j

(
T lj+1(z)− T lj (z)

)
for j ∈ {2, . . . , N − 2},

d

dz
T l1 (z) = Γc2 1

(
T l2 (z)− T l1 (z)

)
,

(51)

with T lj (0) = δjl.
The band-limiting idealization hypothesis is tantamount to a nearest-neighbor coupling. More

precisely, this assumption implies that ∀(j, l) ∈ {1, . . . , N(ω)}2 the jth mode amplitude can exchange
informations with the lth amplitude mode if they are direct neighbors, that is, if they satisfy |j−l| ≤ 1.

5.2.2 High-Frequency Approximation

The evolution of the mean mode powers of the propagating modes can be described, in the high-
frequency regime or in the limit of a large number of propagating modes N(ω) � 1, by a diffusion
model. This diffusive continuous model is equipped with boundary conditions which take into account
the effect of the radiating modes at the bottom and the free surface of the waveguide (see Figure 3
page 22).

Let, ∀ϕ ∈ C0([0, 1]), ∀u ∈ [0, 1], and z ≥ 0,

T N(ω)
ϕ (z, u) = T [N(ω)u]

ϕ (ω, z) =
N(ω)∑
j=1

ϕ
( j

N(ω)

)
T [N(ω)u]
j (ω, z),

where ϕ 7→ T N(ω)
ϕ (z, .) can be extended to an operator from L2(0, 1) to itself. Here, L2(0, 1) is

equipped with the inner product defined as follows: ∀(ϕ,ψ) ∈ L2(0, 1)2

〈
ϕ,ψ

〉
L2(0,1)

=
∫ 1

0

ϕ(v)ψ(v)dv.



C. GOMEZ SHALLOW-WATER PROPAGATION 27

Theorem 5.2 We have

1. ∀ϕ ∈ L2(0, 1) and ∀z ≥ 0,

lim
ω→+∞

T N(ω)
ϕ (z, u) = Tϕ(z, u) in L2(0, 1),

where Tϕ(z, u) satisfies the partial differential equation : ∀(z, u) ∈ (0,+∞)× (0, 1),

∂

∂z
Tϕ(z, u) =

∂

∂u

(
a∞(·) ∂

∂u
Tϕ
)

(z, u),

with the boundary conditions

∂

∂u
Tϕ(z, 0) = 0, Tϕ(z, 1) = 0, and Tϕ(0, u) = ϕ(u),

∀z > 0.

2. ∀u ∈ [0, 1], ∀z ≥ 0, and ∀ϕ ∈ C0([0, 1]) such that ϕ(1) = 0, we have

lim
ω→+∞

T N(ω)
ϕ (z, u) = Tϕ(z, u).

Here,
a∞(u) =

a0

1−
(
1− π2

a2d2

)
(θu)2

,

with a0 = π2S0
2an4

1d
4θ2

, θ =
√

1− 1/n2
1, S0 =

∫ d
0

∫ d
0
γ0(x1, x2) cos

(
π
dx1

)
cos
(
π
dx2

)
dx1dx2. n1 is the index

of refraction in the ocean section [0, d], 1/a is the correlation length of the random inhomogeneities
in the longitudinal direction, and γ0 is the covariance function of the random inhomogeneities in the
transverse direction.

This theorem is a continuum approximation in the limit of a large number of propagating modes
N(ω) � 1. This approximation gives us, in the high-frequency regime, a diffusion model for the
transfer of energy between the N(ω)-discrete propagating modes, with a reflecting boundary condition
at x = 0 (the top of the waveguide in Figure 2 page 3) and an absorbing boundary condition at u = 1
(the bottom of the waveguide in Figure 2) which represents the radiative loss (see Figure 3).

5.2.3 Exponential Decay in the High-Frequency Regime

In the high-frequency regime, we also observe that the energy carried by the continuum of propagating
modes decays exponentially with the propagation distance. The exponential decay of the energy in
the high-frequency regime is given by the following result.

Theorem 5.3 ∀ϕ ∈ L2(0, 1) \ {0} such that ϕ ≥ 0, and ∀u ∈ [0, 1),

lim
L→+∞

1
L

ln [Tϕ(L, u)] = −Λ∞,

where

Λ∞ = inf
ϕ∈D

∫ 1

0

a∞(v)ϕ′(v)2dv > 0

and
D =

{
ϕ ∈ C∞([0, 1]), ‖ϕ‖L2(0,1) = 1,

∂

∂v
ϕ(0) = 0, ϕ(1) = 0

}
.

This result means that the energy carried by each propagating modes decays exponentially with the
propagation propagation, and the decay rate can be expressed in terms of a variational formula.
Consequently, the spatial inhomogeneities of the medium and the geometry of the shallow-water
waveguide lead us to an exponential decay phenomenon caused by the radiative loss into the ocean
bottom.
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Proof We can see that the operator P∞ = ∂
∂v

(
a∞(·) ∂∂v

)
on L2([0, 1]), with domain

D(P∞) =
{
ϕ ∈ H2(0, 1),

∂

∂v
ϕ(0) = 0, ϕ(1) = 0

}
is self-adjoint. P∞ has a compact resolvent Rλ = (λId − P∞)−1 because [0, 1] is a compact set and
then it has a point spectrum (λj)j≥1 with eigenvectors denoted by (φ∞,j)j≥1. Moreover, all the
eigenspaces are finite-dimensional subspaces of D(P∞) and ∀ϕ ∈ D(P∞) \ {0}〈

P∞(ϕ), ϕ
〉
L2(0,1)

< 0.

Let us organize the point spectrum in the nonincreasing way, · · · < λ2 < λ1 < 0. We have

Tϕ(L, v) =
∑
j≥1

〈
ϕ, φ∞,j

〉
L2(0,1)

eλjLφ∞,j(v).

Lemma 5.1 λ1 is a simple eigenvalue and one can choose φ∞,1 such that φ∞,1(v) > 0 ∀v ∈ [0, 1).

Proof (of Lemma 5.1) This lemma is a consequence of the Krein-Rutman theorem, but not its
strongest form [26]. Indeed, the set of nonnegative functions in L2([0, 1]) has an empty interior.
However, using the smoothness of the eigenvector the proof also works in our case as we shall see it.

Using the maximum principle we know that if ϕ ∈ L2([0, 1]) such that ϕ ≥ 0, we have Tϕ(L, .) ≥ 0,
and then Rλ(ϕ) ≥ 0. Consequently, applying the Krein-Rutman theorem [26] to the resolvent operator
Rλ with λ > 0 and which is a compact operator, the spectral radius ρ(Rλ) is an eigenvalue, for which
one can associate an eigenvector ϕρ(Rλ) such that ∀v ∈ [0, 1], ϕρ(Rλ)(v) ≥ 0. However, we have
∀v ∈ [0, 1), ϕρ(Rλ)(v) > 0. In fact, let us assume that there exists v0 ∈ [0, 1) such that ϕρ(Rλ)(v0) = 0,
then Rλ(ϕRλ)(v0) = 0. Moreover, Rλ(ϕRλ) = ρ(Rλ)ϕρ(Rλ) is an eigenvector for P∞, and then ϕρ(Rλ)

is a smooth function on [0, 1]. Therefore, according to the proof of Theorem 5.2 we have

Rλ(ϕRλ)(v0) =
∫ +∞

0

e−λtTϕρ(Rλ)(t, v0)dt

=
∫ +∞

0

e−λtEPv0
[
ϕρ(Rλ)(x(t))1(t<τ1)

]
dt

= EPv0
[ ∫ τ1

0

e−λtϕρ(Rλ)(|x(t)|)dt
]

= 0,

where Pv0 is the unique solution of the martingale problem associated to La∞ = ∂
∂v

(
a∞(·) ∂∂v

)
and

starting from v0. Here, we have chosen a∞ such that ∀v ∈ [0, 1], a∞(v) = a∞(−v) = a∞(v), and
the martingale problem associated to La∞ is well-posed. Moreover, τ1 = inf(t ≥ 0, |x(t)| ≥ 1).
Consequently, Pv0

( ∫ τ1
0
e−λtϕρ(Rλ)(|x(t)|)dt = 0

)
= 1. However, we know that there exists v1 ∈ (0, 1)

such that ϕρ(Rλ)(v1) > 0, and then v1 < v0 < 1. Therefore, Pv0(τ1 < τv1) = 1, and by the Markov
property

0 < EPv0
[
e−τv11(τv1<+∞)

]
= EPv0

[
e−τv11(τv1<+∞,τ1<τv1 )

]
< EP1

[
e−τv11(τv1<+∞)

]
< EPv0

[
e−τv11(τv1<+∞)

]
,

which is impossible. Therefore, ∀v ∈ [0, 1), ϕρ(Rλ) > 0. Now, to see that the eigenvalue ρ(Rλ) is
simple, let ϕ ∈ L2(0, 1) \ {0} such that Rλ(ϕ) = ρ(Rλ)ϕ, and let

PRλ : R −→ C0([0, 1])
t 7−→ ϕRλ − tϕ,

which is a continuous function. We recall that ϕ is a smooth function on [0, 1]. Let us show that
∃t ∈ R such that ϕ = t ϕρ(Rλ), that is 0 ∈ PRλ(R). To do this let us assume that 0 6∈ PRλ(R). By
linearity one can assume that ∃v0 ∈ [0, 1) such that ϕ(v0) > 0. Let η > 0 be small enough to have
v0 ∈ [0, 1 − η]. Let K+

η =
{
ϕ ∈ C0([0, 1 − η]),∀v ∈ [0, 1 − η], ϕ(v) ≥ 0

}
, then the interior of K+

η

for the sup norm on [0, 1] is K++
η =

{
ϕ ∈ C0([0, 1 − η]),∀v ∈ [0, 1 − η], ϕ(v) > 0

}
. Moreover, for t



C. GOMEZ SHALLOW-WATER PROPAGATION 29

small enough ϕRλ − tϕ ∈ K++
η , and ϕRλ − tϕ 6∈ K+

η for t large enough. Then ∃t0 ∈ R such that
ϕRλ − t0ϕ ∈ K+

η \K++
η . However, ϕRλ − t0ϕ ≥ 0, but ϕRλ − t0ϕ 6= 0 because 0 6∈ PRλ(R). Following

the previous work we have

ρ(Rλ)(ϕRλ − t0ϕ) = Rλ(ϕRλ − t0ϕ) ∈ K++
η .

Consequently, ρ(Rλ) = 1/(λ− λ1) implies that λ1 is also a simple eigenvalue and one can choose

φ∞,1 = Rλ(ϕRλ) = ρ(Rλ)ϕRλ ∈ K++
η .

That concludes the proof of Lemma 5.1. �

As a result, ∀ϕ ∈ L2(0, 1) \ {0} such that ϕ ≥ 0, ∀v ∈ [0, 1) we get

lim
L→+∞

1
L

ln [Tϕ(L, v)] = λ1,

and
λ1 = sup

ϕ∈D(P∞)
‖ϕ‖L2([0,1])=1

〈
P∞(ϕ), ϕ

〉
L2([0,1])

= −Λ∞ < 0.

�

In Theorem 5.3, we take ϕ ∈ L2(0, 1) \ {0} such that ϕ ≥ 0, which can be consider as being the initial
repartition of energy over the continuum of modes. However, the result of Theorem 5.3 is also valid
for any ϕ ∈ L2(0, 1) \ {0} such that

〈
ϕ, φ∞,1

〉
L2(0,d)

> 0.

5.3 High-Frequency Approximation to Coupled Power Equation with Neg-
ligible Radiation Losses

In the case of negligible radiation losses, we also get a continuous diffusive model for the coupled
power equations in the high-frequency regime or in the limit of a large number of propagating modes
N(ω) � 1. This diffusive continuous model is equipped with boundary conditions which take into
account the negligible effect of the radiation losses at the bottom and the free surface of the waveguide
(see Figure 4 page 25).

Now, let us assume that the radiation losses are negligible, that is, Λc(ω) = τ Λ̃c(ω) with τ � 1.
We have already remarked that, if the radiation losses are negligible, then the coupling process is
predominant and we have

∀L > 0, sup
z∈[0,L]

‖T τ,lj (ω, z)− T 0,l
j (ω, z)‖2,RN(ω) = O(τ),

where T 0,l(ω, .) satisfies

d

dz
T 0,l
N (z) = ΓcN−1N

(
T 0,l
N−1(z)− T 0,l

N (z)
)
,

d

dz
T 0,l
j (z) = Γcj−1 j

(
T 0,l
j−1(z)− T 0,l

j (z)
)

+ Γcj+1 j

(
T 0,l
j+1(z)− T 0,l

j (z)
)

for j ∈ {2, . . . , N − 1},

d

dz
T 0,l

1 (z) = Γc2 1

(
T 0,l

2 (z)− T 0,l
1 (z)

)
,

with T 0,l
j (0) = δjl.

5.3.1 High Frequency Approximation

Let, ∀ϕ ∈ C0([0, 1]), ∀u ∈ [0, 1], and z ≥ 0,

T N(ω)
ϕ (z, u) = T [N(ω)u]

ϕ (z) =
N(ω)∑
j=1

ϕ
( j

N(ω)

)
T [N(ω)u]
j (z),

where ϕ 7→ T N(ω)
ϕ (z, .) can be extended into an operator from L2(0, 1) to itself.
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Theorem 5.4 We have

1. ∀ϕ ∈ L2(0, 1) and ∀z ≥ 0,

lim
ω→+∞

T N(ω)
ϕ (z, u) = Tϕ(z, u) in L2(0, 1),

where Tϕ(z, u) satisfies the partial differential equation : ∀(z, u) ∈ (0,+∞)× (0, 1),

∂

∂z
Tϕ(z, u) =

∂

∂u

(
a∞(·) ∂

∂u
Tϕ
)

(z, u),

with the boundary conditions

∂

∂u
Tϕ(z, 0) = 0,

∂

∂v
Tϕ(z, 1) = 0, and Tϕ(0, u) = ϕ(u),

∀z > 0.

2. ∀u ∈ [0, 1), ∀z ≥ 0, and ∀ϕ ∈ C0([0, 1]) such that ϕ(1) = 0, we have

lim
ω→+∞

T N(ω)
ϕ (z, u) = Tϕ(z, u).

Here,
a∞(u) =

a0

1−
(
1− π2

a2d2

)
(θu)2

,

with a0 = π2S0
2an4

1d
4θ2

, θ =
√

1− 1/n2
1, S0 =

∫ d
0

∫ d
0
γ0(x1, x2) cos

(
π
dx1

)
cos
(
π
dx2

)
dx1dx2. n1 is the index

of refraction in the ocean section [0, d], 1/a is the correlation length of the random inhomogeneities
in the longitudinal direction, and γ0 is the covariance function of the random inhomogeneities in the
transverse direction.

This theorem is a continuum approximation in the limit of a large number of propagating modes in
the case where the radiation losses are negligible.This approximation gives us, in the high-frequency
regime, a diffusion model for the transfer of energy between the N(ω)-discrete propagating modes,
with two reflecting boundary conditions at u = 0 (the top of the waveguide in Figure 2 page 3) and
u = 1 (the bottom of the waveguide in Figure 2). Here, the two reflecting boundary conditions mean
that there is no radiative loss anymore (see Figure 4).

5.3.2 Asymptotic behavior of T (L, v) as L→ +∞

In the case where the radiation losses are negligible, we have seen in Section 5.1 that the decay rate
satisfies limτ→0 Λτ∞(ω) = 0 and T 0,l(ω,L) converge to the uniform distribution over {1, . . . , N(ω)} as
L→ +∞ [9]. In the high-frequency regime we have the following continuous version.

Theorem 5.5 ∀ϕ ∈ L2(0, 1) and ∀u ∈ [0, 1],

lim
L→+∞

Tϕ(L, u) =
∫ 1

0

ϕ(v)dv,

that is, the energy carried by the continuum of propagating modes converges exponentially fast to the
uniform distribution over [0, 1] as L→ +∞.

As a result, the energy is conserved and the modal energy distribution converges to a uniform distri-
bution as L→ +∞.

Proof We can see that the operator P∞ = ∂
∂v

(
a∞(·) ∂∂v

)
on L2([0, 1]), with domain

D(P∞) =
{
ϕ ∈ H2(0, 1),

∂

∂v
ϕ(0) = 0,

∂

∂v
ϕ(1) = 0

}
is self-adjoint. Moreover, P∞ has a compact resolvant because [0, 1] is a compact set and then it has
a point spectrum (λj)j≥0 with eigenvectors denoted by (φ∞,j)j≥0. Moreover, all the eigenspaces are
finite-dimensional subspaces of D(P∞) and ∀ϕ ∈ D(P∞) \ {0}〈

P∞(ϕ), ϕ
〉
L2(0,1)

≤ 0.
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Let us remark that λ0 = 0 is a simple eigenvalue with eigenvector φ∞,0 = 1. Then, the spectrum is
include in (−∞, 0] and we have the following decomposition

Tϕ(z, v) =
∫ 1

0

ϕ(v)dv +
∑
j≥1

〈
ϕ, φ∞,j

〉
L2(0,1)

eλjzφ∞,j(v).

Therefore, ∀u ∈ [0, 1],

lim
L→+∞

Tϕ(L, u) =
∫ 1

0

ϕ(v)dv,

with exponential rate λ1 < 0. �

Conclusion
In this paper we have analyzed the propagation of waves in a shallow-water acoustic waveguide with
random perturbations. In such a waveguide, the wave field can be decomposed into three kinds
of modes, which are the propagating, the radiating, and the evanescent modes, and the random
perturbations produce a coupling between these modes.

We have shown that the evolution of the propagating mode amplitudes can be described as a
diffusion process (Theorems 4.1 and 4.2). This diffusion takes into account the main coupling mecha-
nisms: The coupling with the evanescent modes induces a mode-dependent and frequency-dependent
phase modulation on the propagating modes, the coupling with the radiating modes, in addition
to a mode-dependent and frequency-dependent phase modulation, induces a mode-dependent and
frequency-dependent attenuation on the propagating modes. In other words, the propagating modes
lose energy in the form of radiation into the bottom of the waveguide and their total energy decays
exponentially with the propagation distance. We can express the decay rate in terms of a variational
formula over a finite-dimensional space (Theorem 5.1).

Under the assumption that nearest-neighbor coupling is the main power transfer mechanism, the
evolution of the mean mode powers of the propagating modes can be described, in the high frequency
regime or in the limit of a large number of propagating modes, by a continuous diffusive model with
boundary conditions which take into account the effect of the radiation losses at the bottom and the
free surface of the waveguide. In this regime, we observe that the energy carried by the continuum of
propagating modes also decay exponentially with the propagation distance. The exponential decay
rate can be express in terms of a variational formula (Theorem 5.3).

The diffusive systems obtained in this paper can be used to analyze pulse propagation and refo-
cusing during time-reversal experiments in underwater acoustics [11].

6 Appendix

6.1 Gaussian Random Field
This section is a short remainder about some properties of Gaussian random fields that we use in the
proofs of Theorems 4.1, and in Sections 3.2 and 3.3. All the results exposed in this section can be
shown using the standard properties of Gaussian random fields presented in [1] and [2] for instance.

In this paper, the random perturbations of the medium parameters are modeled using a random
process denoted by (V (x, t), x ∈ [0, d], t ≥ 0). Throughout this paper the process V is a continuous
real-valued zero-mean Gaussian field with a covariance function given by

E [V (x, z1)V (y, z2)] = γ0(x, y)e−a|z1−z2| ∀(x, y) ∈ [0, d]2 and ∀(z1, z2) ∈ [0,+∞)2. (52)

Here, a > 0; γ0 : [0, d]×[0, d]→ R is a Lipschitz function, which is the kernel of a nonnegative operator,
that is, there exists a nonnegative operator Qγ0 from L2(0, d) to itself such that ∀(ϕ,ψ) ∈ L2(0, d)2

〈
Qγ0(ϕ), ψ

〉
L2(0,d)

=
∫ d

0

∫ d

0

γ0(x, y)ϕ(x)ψ(y)dxdy.

Consequently, one can consider the process (V (., t))t≥0 as being a continuous zero-mean Gaussian
field with values in L2(0, d) and covariance operator Qγ0 . In other words, ∀n ∈ N∗, ∀(ϕ1, . . . , ϕn) ∈
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L2(0, d)n, and ∀(t1 . . . , tn) ∈ [0,+∞)n(
Vϕ1(t1), . . . , Vϕn(tn)

)
=
(〈
V (., t1), ϕ1

〉
L2(0,d)

, . . . ,
〈
V (., tn), ϕn

〉
L2(0,d)

)
is a real-valued zero-mean Gaussian vector such that ∀(j, l) ∈ {1, . . . , n}2

E
[
Vϕj (tj)Vϕl(tl)

]
=
〈
Qγ0(ϕj), ϕl

〉
L2(0,d)

e−a|tj−tl|. (53)

With this point of view we have the following proposition.

Proposition 6.1 We have

1. (V (., t))t≥0 is a continuous zero-mean stationary Gaussian field with values in L2(0, d) and
autocorrelation function given by (53). Then, we have ∀n ∈ N∗ and ∀t ≥ 0,

E

[(∫ d

0

∣∣V (x, t)∣∣2dx)n] = E

[(∫ d

0

∣∣V (x, 0)∣∣2dx)n] < +∞. (54)

2. We have the following Markov property. Let

Ft = σ(V (., s), s ≤ t)

be the σ-algebra generated by (V (., s), s ≤ t). We have(
V (., t+ h)

∣∣∣Ft) =
(
V (., t+ h)

∣∣∣σ(V (., t))
)
,

where the equality holds in law, and this law is the one of a Gaussian field with mean

E
[
V (., t+ h)|Ft

]
= e−ahV (., t)

and covariance, ∀(ϕ,ψ) ∈ L2(0, d)2,

E
[
Vϕ(t+ h)Vψ(t+ h)− E

[
Vϕ(t+ h)|Ft

]
E
[
Vψ(t+ h)|Ft

]∣∣∣Ft]
=
〈
Qγ0(ϕ), ψ

〉
L2(0,d)

(
1− e−2ah

)
.

The Markov property of the random process (V (., t))t≥0 is a direct consequence of the exponential
form of the autocorrelation function (53) with respect to the variable t [1]. This property will be used
in the proof of Theorems 4.1, which are based on the perturbed-test-function method.

Now, we are interested in some estimation on the supremum of V (x, t) with respect to the two
variables x and t. To this end, let us introduce some notations [2]. Let ε > 0 be a small parameter
and L > 0. We consider the following pseudo-metric on the square [0, d]× [0, L/ε] defined by

m
(
(x, t), (y, s)

)
= E

[
(V (x, t)− V (y, s))2

]1/2 ≤ Kγ0

[
|t− s|+ |x− y|

]
.

Let us remark that [0, d]× [0, L/ε] associated to the pseudo-metric m is a compact set. From Theorem
1.3.3 in [2], we have

E

 sup
x∈[0,d]
t∈[0,L/ε]

∣∣V (x, t)
∣∣
 ≤ K ∫ diam([0,d]×[0,L/ε])/2

0

H1/2(r)dr

≤ K1

∫ supx∈[0,d] γ0(x,x)

0

√
ln
(
K2

dL

r2ε

)
dr,

where H(r) = ln(N(r)), and N(r) denotes the smallest number of balls, for the pseudo-metric m,
with radius r to cover the square [0, d]× [0, L/ε]. Here, diam stands for the diameter with respect to
the pseudo-metric m. Consequently, we have the following proposition.

Proposition 6.2 ∀µ > 0 and ∀K > 0,

lim
ε→0

P
(
εµ sup

x∈[0,d]

sup
t∈[0,L/ε]

∣∣V (x, t)
∣∣ ≥ K) = 0. (55)

Moreover, according to Theorem 2.1.1 in [2], one can show that the limit (55) is obtained exponentially
fast as ε→ 0.
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6.2 Proof of Theorem 4.1
The proof of this theorem is in two parts. The process

(
Tξ,ε(z)

)
z≥0

is not adapted with respect to
the filtration Fεz = Fz/ε. Then, the first part of the proof consists in simplifying the problem and
introducing a new process for which the martingale approach can be used. The first part of the proof
follows the ideas of [15]. The second part of proof of this theorem is based on a martingale approach
using the perturbed-test-function method and follows the ideas developed in [4].

Then, let us introduce T̃
ξ,ε

(.) the unique solution of the differential equation

d

dz
T̃
ξ,ε

(z) =
1√
ε
Haa

(z
ε

)
T̃
ξ,ε

(z) +
〈
Gaa

〉
T̃
ξ,ε

(z), (56)

with Tξ,ε(0) = Id and where
〈
Gaa

〉
is defined, ∀y ∈ Hξ, by

〈
Gaa

〉
j
(y) =

∫ −ξ
−∞

ik4

2βj
√
|γ′|

∫ +∞

0

E
[
Cjγ′(0)Cjγ′(z)

]
cos
(
βjz
)
e−
√
|γ′|zdzdγ′yj

∀j ∈
{

1, . . . , N
}
and

〈
Gaa

〉
γ
(y) = 0 for γ ∈ (ξ, k2). We have the following proposition that describes

the relation between the two processes Tξ,ε(z) and T̃
ξ,ε

(z).

Proposition 6.3

∀y ∈ Hξ and ∀η > 0, lim
ε→0

P

(
sup

z∈[0,L]

‖Tξ,ε(z)(y)− T̃
ξ,ε

(z)(y)‖2Hξ > η

)
= 0.

Let us remark that the new process
(
T̃
ξ,ε

(z)
)
z≥0

is adapted to the filtration Fεz and

‖T̃ξ,ε(z)(y)‖2Hξ = ‖y‖2Hξ ∀z ≥ 0.

Let ry = ‖y‖Hξ ,
Bry,Hξ =

{
λ ∈ Hξ, ‖λ‖Hξ =

√
〈λ, λ〉Hξ ≤ ry

}
the closed ball with radius ry, and {gn, n ≥ 1} a dense subset of Bry,Hξ . We equip Bry,Hξ with the
distance dBry,Hξ defined by

dBry,Hξ (λ, µ) =
+∞∑
j=1

1
2j

∣∣∣〈λ− µ, gn〉Hξ ∣∣∣
∀(λ, µ) ∈ (Bry,Hξ)2, and then (BHξ , dBry,Hξ ) is a compact metric space.

Using a particular tightness criterion, we prove the tightness of the family (T̃
ξ,ε

(.))ε∈(0,1) on
C([0,+∞), (Bry,Hξ , dBry,Hξ )), which is a polish space. We have chosen such a space to be able to
apply the Portmanteau theorem. In a second part, we shall characterize all subsequence limits as
solutions of a well-posed martingale problem in the Hilbert space Hξ.

We have the following version of the Arzelà-Ascoli theorem [3, 13] for processes with values in a
complete separable metric space.

Theorem 6.1 A set B ⊂ C([0,+∞), (Bry,Hξ , dBry,Hξ )) has a compact closure if and only if

∀T > 0, lim
η→0

sup
g∈A

mT (g, η) = 0,

with
mT (g, η) = sup

(s,t)∈[0,T ]2

|t−s|≤η

dBry,Hξ (g(s), g(t)).

From this result, we obtain the classical tightness criterion.
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Theorem 6.2 A family of probability measure
(
Pε
)
ε∈(0,1)

on C([0,+∞), (Bry,Hξ , dBry,Hξ )) is tight if
and only if

∀T > 0, η′ > 0 lim
η→0

sup
ε∈(0,1)

Pε
(
g ; mT (g, η) > η′

)
= 0.

From the definition of the metric dBry,Hξ , the tightness criterion becomes the following.

Theorem 6.3 A family of processes (Xε)ε∈(0,1) is tight in C([0,+∞), (Bry,Hξ , dBry,Hξ )) if and only
if
(〈
Xε, λ

〉
Hξ

)
ε∈(0,1)

is tight on C([0,+∞),C) ∀λ ∈ Hξ.

This last theorem looks like the tightness criterion of Mitoma and Fouque [21, 6].
For any λ ∈ Hξ, we set T̃

ξ,ε

λ (z)(y) =
〈
T̃
ξ,ε

(z)(y), λ
〉
Hξ

. According to Theorem 6.3, the family

(T̃
ξ,ε

(.)(y))ε is tight in C([0,+∞), (Bry,Hξ , dBry,Hξ )) if and only if the family (T̃
ξ,ε

λ (.)(y))ε is tight on

C([0,+∞),C) ∀λ ∈ Hξ. Furthermore, (T̃
ξ,ε

(.)(y))ε is a family of continuous processes. Then, it is
sufficient to prove that ∀λ ∈ Hξ, (T̃

ξ,ε

λ (.)(y))ε is tight in D([0,+∞),C), which is the set of cad-lag
functions with values in C equipped with the Skorokhod topology.

Proof (of Proposition 6.3) Differentiating the square norm and using the fact that Haa(z) is skew
Hermitian, we get

‖Tξ,ε(z)(y)− T̃
ξ,ε

(z)(y)‖2Hξ

≤ 2
∣∣∣ ∫ z

0

〈(
Gaa

(z
ε

)
−
〈
Gaa

〉)
Tξ,ε(z)(y),Tξ,ε(z)(y)− T̃

ξ,ε
(z)(y)

〉
Hξ
du
∣∣∣

+ 2
∥∥〈Gaa

〉∥∥ ∫ z

0

‖Tξ,ε(u)(y)− T̃
ξ,ε

(u)(y)‖2Hξ .

Let η′ > 0, we will split the interval [0, z/ε] into intervals of length η′/
√
ε. The idea is that over these

intervals the fast dynamic of Gaa averages out while Tξ,ε does not move significantly. We have∣∣∣ε∫ z/ε

0

〈(
Gaa(u))−

〈
Gaa

〉)
Tξ,ε(εu)(y),Tξ,ε(εu)(y)− T̃

ξ,ε
(εu)(y)

〉
Hξ
du
∣∣∣

≤
∣∣∣ε∫

[
z√
εη′

]
η′√
ε

0

〈(
Gaa(u)−

〈
Gaa

〉)
Tξ,ε(εu)(y),Tξ,ε(εu)(y)− T̃

ξ,ε
(εu)(y)

〉
Hξ
du
∣∣∣

+
∣∣∣ε ∫ z/ε[

z√
εη′

]
η′√
ε

〈(
Gaa(u)−

〈
Gaa

〉)
Tξ,ε(εu)(y),Tξ,ε(εu)(y)− T̃

ξ,ε
(εu)(y)

〉
Hξ
du
∣∣∣,

with ∣∣∣ε ∫ z/ε[
z√
εη′

]
η′√
ε

〈(
Gaa(u)−

〈
Gaa

〉)
Tξ,ε(εu)(y),Tξ,ε(εu)(y)− T̃

ξ,ε
(εu)(y)

〉
Hξ
du
∣∣∣

≤

ε1/4√η′(∫ L

0

∥∥Gaa
(u
ε

)∥∥2
du

)1/2

+
√
εη′‖

〈
Gaa

〉
‖


× sup
z∈[0,L]

‖Tξ,ε(z)(y)‖Hξ‖T
ξ,ε(z)(y)− T̃

ξ,ε
(z)(y)‖Hξ

since 0 ≤ z −
[

z√
εη′

]√
εη′ ≤

√
εη′, and

∣∣∣ε∫
[

z√
εη′

]
η′√
ε

0

〈(
Gaa(u)−

〈
Gaa

〉)
Tξ,ε(εu)(y),Tξ,ε(εu)(y)− T̃

ξ,ε
(εu)(y)

〉
Hξ
du
∣∣∣

≤
√
ε

[
L√
εη′

]
−1∑

m=0

∣∣∣√ε∫ (m+1) η
′
√
ε

m η′√
ε

〈(
Gaa(u)−

〈
Gaa

〉)
Tξ,ε(εu)(y),Tξ,ε(εu)(y)− T̃

ξ,ε
(εu)(y)

〉
Hξ
du
∣∣∣.
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Moreover,

Tξ,ε(εu)(y) = Tξ,ε(mη′
√
ε)(y) +

∫ u

m η′√
ε

√
εHaa(v)Tξ,ε(εv)(y) + εGaa(v)Tξ,ε(εv)(y)dv

and
T̃
ξ,ε

(εu)(y) = T̃
ξ,ε

(mη′
√
ε)(y) +

∫ u

m η′√
ε

√
εHaa(v)T̃

ξ,ε
(εv)(y) + ε

〈
Gaa

〉
T̃
ξ,ε

(εv)(y)dv.

Therefore, we have

√
ε

∫ (m+1) η
′
√
ε

m η′√
ε

〈(
Gaa(u)−

〈
Gaa

〉)
Tξ,ε(εu)(y),Tξ,ε(εu)(y)− T̃

ξ,ε
(εu)(y)

〉
Hξ
du

=
√
ε

∫ (m+1) η
′
√
ε

m η′√
ε

〈(
Gaa(u)−

〈
Gaa

〉)
Tξ,ε(mη′

√
ε)(y),Tξ,ε(mη′

√
ε)(y)− T̃

ξ,ε
(mη′

√
ε)(y)

〉
Hξ
du

+
∫ (m+1) η

′
√
ε

m η′√
ε

∫ u

m η′√
ε

ε
〈(
Gaa(u)−

〈
Gaa

〉)
Haa(v)Tξ,ε(εv)(y),Tξ,ε(εu)(y)− T̃

ξ,ε
(εu)(y)

〉
Hξ

+ ε3/2
〈(
Gaa(u)−

〈
Gaa

〉)
Gaa(v)Tξ,ε(εv)(y),Tξ,ε(εu)(y)− T̃

ξ,ε
(εu)(y)

〉
Hξ

+ ε
〈(
Gaa(u)−

〈
Gaa

〉)
Tξ,ε(mη′

√
ε)(y),Haa(v)

(
Tξ,ε(εv)(y)− T̃

ξ,ε
(εv)(y)

)〉
Hξ

+ ε3/2
〈(
Gaa(u)−

〈
Gaa

〉)
Tξ,ε(mη′

√
ε)(y),Gaa(v)Tξ,ε(εv)(y)−

〈
Gaa

〉
T̃
ξ,ε

(εv)(y)
〉
Hξ
du.

Consequently, by the Gronwall’s inequality

sup
z∈[0,L]

‖Tξ,ε(z)(y)− T̃
ξ,ε

(z)(y)‖2Hξ ≤ B(ε, η′)e2
∥∥〈Gaa〉∥∥L,

where

B(ε, η′) = 2

ε1/4√η′(∫ L

0

∥∥Gaa
(u
ε

)∥∥2
du

)1/2

+
√
εη′‖

〈
Gaa

〉
‖


× sup
z∈[0,L]

‖Tξ,ε(z)(y)‖Hξ‖T
ξ,ε(z)(y)− T̃

ξ,ε
(z)(y)‖Hξ

+ 2
√
ε

[
L√
εη′

]
−1∑

m=0

∫ (m+1) η
′
√
ε

m η′√
ε

∫ u

m η′√
ε

(
2ε
[
‖Gaa(u)‖+ ‖

〈
Gaa

〉
‖
]
‖Haa(v)‖

+ ε3/2
[
‖Gaa(u)‖+ ‖

〈
Gaa

〉
‖
]2) sup

z∈[0,L]

‖Tξ,ε(z)(y)‖Hξ‖T
ξ,ε(z)(y)− T̃

ξ,ε
(z)(y)‖Hξdv du

+
∣∣∣√ε∫ (m+1) η

′
√
ε

m η′√
ε

〈(
Gaa(u)−

〈
Gaa

〉)
Tξ,ε(mη′

√
ε)(y),Tξ,ε(mη′

√
ε)(y)− T̃

ξ,ε
(mη′

√
ε)(y)

〉
Hξ
du
∣∣∣,

and
P
(

sup
z∈[0,L]

‖Tξ,ε(z)(y)− T̃
ξ,ε

(z)(y)‖2Hξ > η
)
≤ P

(
B(ε, η′) ≥ ηe−2

∥∥〈Gaa〉∥∥L).
Setting η′′ = ηe−2

∥∥〈Gaa〉∥∥L, we have

P
(
B(ε, η′) ≥ η′′

)
≤ P

(
B(ε, η′) ≥ η′′, sup

z∈[0,L]

‖Tξ,ε(z)(y)‖2Hξ ≤M
)

+ P
(

sup
z∈[0,L]

‖Tξ,ε(z)(y)‖2Hξ ≥M
)
.
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We already know that the process T̃
ξ,ε

(.)(y) is bounded. Moreover,

P
(
B(ε, η′) ≥ η′′, sup

z∈[0,L]

‖Tξ,ε(z)(y)‖2Hξ ≤M
)
≤ 1
η′′

E
[
B(ε, η′)1(

supz∈[0,L] ‖Tξ,ε(z)(y)‖2Hξ≤M
)]

with

E
[
B(ε, η′)1(

supz∈[0,L] ‖Tξ,ε(z)(y)‖2Hξ≤M
)] ≤ K[η′2 + ε1/4

√
η′ +

√
ε(η′ + η′2)

]

+ 2
√
ε

[
L√
εη′

]
−1∑

m=0

E
[
1(

supz∈[0,L] ‖Tξ,ε(z)(y)‖2Hξ≤M
)

×
∣∣∣√ε∫ (m+1) η

′
√
ε

m η′√
ε

〈(
Gaa(u)−

〈
Gaa

〉)
Tξ,ε(mη′

√
ε)(y),Tξ,ε(mη′

√
ε)(y)− T̃

ξ,ε
(mη′

√
ε)(y)

〉
Hξ
du
∣∣∣]

≤ K
[
η′2 + ε1/4

√
η′ +

√
ε(η′ + η′2)

]
+ 2
√
εK

[
L√
εη′

]
−1∑

m=0

E

∥∥∥√ε∫ (m+1) η
′
√
ε

m η′√
ε

Gaa(u)−
〈
Gaa

〉
du
∥∥∥2

1/2

,

since
∫ (m+1) η

′
√
ε

m η′√
ε

∫ u
m η′√

ε

dv du = η′

ε and

E
[∥∥Gaa

(u
ε

)∥∥2
]
≤ K E

[(∫ d

0

|V (x, 0)|2dx
)2
]

(57)

for u ∈ [0, L]. As a result, it remains us to estimate only one term.

Lemma 6.1

lim
ε→0

√
ε

[
L√
εη′

]
−1∑

m=0

E

∥∥∥√ε∫ (m+1) η
′
√
ε

m η′√
ε

Gaa(u)−
〈
Gaa

〉
du
∥∥∥2

1/2

= 0.

Proof (of Lemma 6.1) Let us remark that we have the following decomposition. For each j ∈{
1, . . . , N

}
, almost every γ ∈ (ξ, k2), and ∀y ∈ Hξ,

Gaa
j (z)(y) =

N∑
l=1

Gaa
jl (z)yl +

∫ k2

ξ

Gaa
jγ′(z)yγ′dγ

′,

Gaa
γ (z)(y) =

N∑
l=1

Gaa
γl (z)yl +

∫ k2

ξ

Gaa
γγ′(z)yγ′dγ

′.

Letting

P =
√
ε

∫ (m+1) η
′
√
ε

m η′√
ε

Gaa(u)−
〈
Gaa

〉
du,
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we have (j, l)2 ∈
{

1, . . . , N
}2 such that j 6= l, and almost every γ ∈ (ξ, k2)

Pjj =
√
ε

∫ (m+1) η
′
√
ε

m η′√
ε

Gaa
jj (u)−

〈
Gaa

〉
jj
du,

Pjl =
√
ε

∫ (m+1) η
′
√
ε

m η′√
ε

Gaa
jl (u)du,

Pjγ′ =
√
ε

∫ (m+1) η
′
√
ε

m η′√
ε

Gaa
jγ′(u)du,

Pγl =
√
ε

∫ (m+1) η
′
√
ε

m η′√
ε

Gaa
γl (u)du,

Pγγ′ =
√
ε

∫ (m+1) η
′
√
ε

m η′√
ε

Gaa
γγ′(u)du,

and

1
2
‖P‖2 ≤

N∑
j,l=1

|Pjl|2 +
N∑
j=1

∫ k2

ξ

|Pjγ′ |2dγ′ +
∫ k2

ξ

N∑
l=1

|Pγl|2dγ +
∫ k2

ξ

∫ k2

ξ

|Pγγ′ |2dγ′ dγ.

Moreover,

E
[
V (x1, z1)V (x2, z2)V (x3, z3)V (x4, z4)

]
=E
[
V (x1, z1)V (x2, z2)

]
E
[
V (x3, z3)V (x4, z4)

]
+ E

[
V (x1, z1)V (x3, z3)

]
E
[
V (x2, z2)V (x4, z4)

]
+ E

[
V (x1, z1)V (x4, z4)

]
E
[
V (x2, z2)V (x3, z3)

]
= γ0(x1, x2)γ0(x3, x4)e−a|z1−z2|e−a|z3−z4|

+ γ0(x1, x3)γ0(x2, x4)e−a|z1−z3|e−a|z2−z4|

+ γ0(x1, x4)γ0(x2, x3)e−a|z1−z4|e−a|z2−z3|,

which is the fourth order moment of a Gaussian field. To compute the expectation of the square
norm of P we must know these moments. Following that decomposition, the square norm of P can be
decomposed in three parts. First, after a long computation, the two parts corresponding to the two
last terms of the previous decomposition are dominated by

√
ε uniformly in m. Then, we focus our

attention on the part corresponding to the first part of the previous decomposition. For E
[
|Pjγ′ |2

]
,

E
[
|Pγl|2

]
, and E

[
|Pjl|2

]
with j 6= l, we get after a long computation terms of the form

ε

∫ (m+1) η
′
√
ε

m η′√
ε

∫ (m+1) η
′
√
ε

m η′√
ε

ei(
√
γ′−βj)u1e−i(

√
γ′−βj)u2du1 du2 = O(ε),

ε

∫ (m+1) η
′
√
ε

m η′√
ε

∫ (m+1) η
′
√
ε

m η′√
ε

ei(βl−
√
γ)u1e−i(βl−

√
γ)u2du1 du2 = O(ε),

ε

∫ (m+1) η
′
√
ε

m η′√
ε

∫ (m+1) η
′
√
ε

m η′√
ε

ei(βl−βj)u1e−i(βl−βj)u2du1 du2 = O(ε).

For E
[
|Pγγ′ |2

]
we separate the integral into two parts.∫ k2

ξ

∫ k2

ξ

E
[
|Pγγ′ |2

]
dγ′ dγ =

∫
I≥µ

E
[
|Pγγ′ |2

]
dγ′ dγ +

∫
I<µ

E
[
|Pγγ′ |2

]
dγ′ dγ,

where µ > 0 and

I≥µ =
{

(γ, γ′) ∈ (ξ, k2)2,
∣∣√γ −√γ′∣∣ ≥ µ},

I<µ =
{

(γ, γ′) ∈ (ξ, k2)2,
∣∣√γ −√γ′∣∣ < µ

}
.
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Consequently, ∫
I<µ

E
[
|Pγγ′ |2

]
dγ′ dγ ≤ K

∫
I<µ

dγ′ dγ,

and on I≥µ we get terms of the form

ε

∫
I≥µ

∫ (m+1) η
′
√
ε

m η′√
ε

∫ (m+1) η
′
√
ε

m η′√
ε

ei(
√
γ′−√γ)u1e−i(

√
γ′−√γ)u2du1 du2dγ

′dγ = O(ε).

Now, it remains us to study E
[
|Pjj |2

]
. After a long computation, the terms of order one produced

by Gaa
jj are compensated by the terms of order one given by

〈
Gaa

〉
j
. Moreover, the other terms are

dominated by
√
ε.

As a result, we get

lim
ε→0

√
ε

[
L√
εη′

]
−1∑

m=0

E

∥∥∥√ε∫ (m+1) η
′
√
ε

m η′√
ε

Gaa(u)−
〈
Gaa

〉
du
∥∥∥2

1/2

≤ K
√∫

I<µ

dγ′ dγ

and one can conclude the proof of Lemma 6.1 by letting µ→ 0.�

From the previous lemma, we finally get, ∀η′ > 0

lim
ε→0

P
(

sup
z∈[0,L]

‖Tξ,ε(z)(y)− T̃
ξ,ε

(z)(y)‖2Hξ > η
)
≤ e2

∥∥〈Gaa〉∥∥L
η

Kη′2,

since using the Gronwall’s inequality and (57) we have

lim
M→+∞

lim
ε→0

P
(

sup
z∈[0,L]

‖Tξ,ε(z)(y)‖2Hξ ≥M
)

= 0.

Consequently, we conclude the proof of Proposition 6.3 by letting η′ → 0. �

According to Proposition 6.3, to study the convergence in distribution of the process
(
Tξ,ε(.)(y)

)
ε

it suffices to study the convergence for
(
T̃
ξ,ε

(.)(y)
)
ε
. Moreover, we shall consider the complex case

for more convenient manipulations. Letting λ ∈ Hξ, we consider the equation

d

dt
T̃
ξ,ε

λ (t)(y) =
1√
ε
Hλ

(
T̃
ξ,ε

(t)(y), C
(
t

ε

)
,
t

ε

)
+Gλ

(
T̃
ξ,ε

(t)(y)
)
,

with Hλ =
〈
H,λ

〉
Hξ

, Gλ =
〈〈
Gaa

〉
(.), λ

〉
Hξ

, where, for j ∈
{

1, . . . , N
}
and almost every γ ∈ (ξ, k2)

Hj (T, C, s) =
ik2

2

[ N∑
l=1

Cjl√
βjβl

ei(βl−βj)sTl +
∫ k2

ξ

Cjγ′√
βj
√
γ′
ei(
√
γ′−βj)sTγ′dγ′

]
,

Hγ (T, C, s) =
ik2

2

[ N∑
l=1

Cγl√√
γβl

ei(βl−
√
γ)sTl +

∫ k2

ξ

Cγγ′

γ1/4γ′1/4
ei(
√
γ′−√γ)sTγ′dγ′

]
.

The proof of Theorem 4.1 is based on the perturbed-test-function approach. Using the notion of
a pseudogenerator, we prove tightness and characterize all subsequence limits.

6.2.1 Pseudogenerator

We recall the techniques developed by Kurtz and Kushner [16]. LetMε be the set of all Fε-measurable
functions f(t) for which supt≤T E [|f(t)|] < +∞ and where T > 0 is fixed. The p − lim and the
pseudogenerator are defined as follows. Let f and fδ inMε ∀δ > 0. We say that f = p− limδ f

δ if

sup
t,δ

E[|fδ(t)|] < +∞ and lim
δ→0

E[|fδ(t)− f(t)|] = 0 ∀t.
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The domain of Aε is denoted by D (Aε). We say that f ∈ D (Aε) and Aεf = g if f and g are in
D (Aε) and

p− lim
δ→0

[
Eεt[f(t+ δ)]− f(t)

δ
− g(t)

]
= 0,

where Eεt is the conditional expectation given Fεt and Fεt = Ft/ε. A useful result about Aε is given
by the following theorem.

Theorem 6.4 Let f ∈ D (Aε). Then

M ε
f (t) = f(t)−

∫ t

0

Aεf(u)du

is an (Fεt )-martingale.

6.2.2 Tightness

We consider the classical complex derivative with the following notation: If v = α + iβ, then ∂v =
1
2 (∂α − i∂β) and ∂v = 1

2 (∂α + i∂β).

Proposition 6.4 ∀λ ∈ Hξ, the family
(
T̃
ξ,ε

λ (.)(y)
)
ε∈(0,1)

is tight on D ([0,+∞),C).

Proof According to Theorem 4 in [16], we need to show the three following lemmas. Let λ ∈ Hξ, f
be a smooth function, and f ε0(t) = f

(
T̃
ξ,ε

λ (t)(y)
)
. We have,

Aεf ε0(t) = ∂vf
(
T̃
ξ,ε

λ (t)(y)
)[ 1√

ε
Hλ

(
T̃
ξ,ε

(t)(y), C
(
t

ε

)
,
t

ε

)
+Gλ

(
T̃
ξ,ε

(t)(y)
)]

+ ∂vf
(
T̃
ξ,ε

λ (t)(y)
)[ 1√

ε
Hλ

(
T̃
ξ,ε

(t)(y), C
(
t

ε

)
,
t

ε

)
+Gλ

(
T̃
ξ,ε

(t)(y)
)]
.

Let

f ε1(t) =
1√
ε
∂vf

(
T̃
ξ,ε

λ (t)(y)
)∫ +∞

t

Eεt
[
Hλ

(
T̃
ξ,ε

(t)(y), C
(u
ε

)
,
u

ε

)]
du

+
1√
ε
∂vf

(
T̃
ξ,ε

λ (t)(y)
)∫ +∞

t

Eεt
[
Hλ

(
T̃
ξ,ε

(t)(y), C
(u
ε

)
,
u

ε

)]
du.

Lemma 6.2 ∀T > 0, limε sup0≤t≤T |f ε1(t)| = 0 almost surely, and supt≥0 E [|f ε1(t)|] = O (
√
ε).

Proof (of Lemma 6.2) Using the Markov property of the Gaussian field V , we have

f ε1(t) =
ik2
√
ε

2
∂vf

(
T̃
ξ,ε

λ (t)(y)
)
F ε1,λ(t)− ik2

√
ε

2
∂vf

(
T̃
ξ,ε

λ (t)(y)
)
F ε1,λ(t)

with

F ε1,λ(t) =
N∑
j=1

[
N∑
l=1

Cjl
(
t
ε

)√
βjβl

ei(βl−βj)
t
ε T̃

ξ,ε

l (t)(y)
a+ i(βl − βj)
a2 + (βl − βj)2

+
∫ k2

ξ

Cjγ′
(
t
ε

)√
βεj
√
γ′
ei(
√
γ′−βj) tε T̃

ξ,ε

γ′ (t)(y)
a+ i(

√
γ′ − βj)

a2 + (
√
γ′ − βj)2

dγ′

λj
+
∫ k2

ξ

[
N∑
l=1

Cγl
(
t
ε

)√√
γβl

ei(βl−
√
γ) tε T̃

ξ,ε

l (t)(y)
a+ i(βl −

√
γ)

a2 + (βl −
√
γ)2

+
∫ k2

ξ

Cγγ′
(
t
ε

)
γ1/4γ′1/4

ei(
√
γ′−√γ) tε T̃

ξ,ε

γ′ (t)(y)
a+ i(

√
γ′ −√γ)

a2 + (
√
γ′ −√γ)2

dγ′

]
λγdγ.
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Using (54), we easily get
E [|f ε1(t)|] ≤

√
εK(f, λ).

and
|f ε1(t)| ≤ K(λ, f)

√
ε sup

0≤t≤T/ε
sup
x∈[0,d]

|V (x, t)| .

Then, we can conclude with (55).�

Lemma 6.3 {Aε (f ε0 + f ε1) (t), ε ∈ (0, 1), 0 ≤ t ≤ T} is uniformly integrable ∀T > 0.

Proof (of Lemma 6.3) A computation gives us

Aε (f ε0 + f ε1) (t) = F̃λ

(
T̃
ξ,ε

(t)(y), C
(
t

ε

)
⊗ C

(
t

ε

)
,
t

ε

)
,

where
C(T )⊗ C(T )q1 q2 q3 q4 = Cq1 q2(T )Cq3 q4(T )

for (q1, q2, q3, q4) ∈
(
{1, . . . , N} ∪ (ξ, k2)

)4, with
F̃λ (T, C, s) = ∂vf(T)

[
F̃ 1,ε
λ (T, C, s) +Gλ (T)

]
+ ∂vf(T)

[
F̃ 1
λ(T, C, s) +Gλ (T)

]
+ ∂2

vf(T)F̃ 2
λ(T, C, s) + ∂2

vf(T)F̃ 2
λ(T, C, s)

+ ∂v∂vf(T)F̃ 3
λ(T, C, s) + ∂v∂vf(T)F̃ 3

λ(T, C, s),

and

F̃ 1
λ(T, C, s) =

− k4

4

N∑
j=1

 N∑
l,l′=1

Cjlll′√
βjβ2

l βl′
ei(βl′−βj)sTl′

a+ i(βl − βj)
a2 + (βl − βj)2

+
N∑
l=1

∫ k2

ξ

Cjllγ′′√
βjβ2

l

√
γ′′
ei(
√
γ′′−βj)sTγ′′

a+ i(βl − βj)
a2 + (βl − βj)2

dγ′′

+
∫ k2

ξ

N∑
l′=1

Cjγ′γ′l′√
βjγ′βl′

ei(βl′−βj)sTl′
a+ i(

√
γ′ − βj)

a2 + (
√
γ′ − βj)2

dγ′

+
∫ k2

ξ

∫ k2

ξ

Cjγ′γ′γ′′√
βjγ′
√
γ′′
ei(
√
γ′′−βj)sTγ′′

a+ i(
√
γ′ − βj)

a2 + (
√
γ′ − βj)2

dγ′dγ′′

λj

− k4

4

∫ k2

ξ

 N∑
l,l′=1

Cγlll′√√
γβ2

l βl′
ei(βl′−

√
γ)sTl′

a+ i(βl −
√
γ)

a2 + (βl −
√
γ)2

+
N∑
l=1

∫ k2

ξ

Cγllγ′′√√
γβ2

l

√
γ′′
ei(
√
γ′′−√γ)sTγ′′

a+ i(βl −
√
γ)

a2 + (βl −
√
γ)2

dγ′′

+
∫ k2

ξ

N∑
l′=1

Cγγ′γ′l′√√
γγ′βl′

ei(βl′−
√
γ)sTl′

a+ i(
√
γ′ −√γ)

a2 + (
√
γ′ −√γ)2

dγ′

+
∫ k2

ξ

∫ k2

ξ

Cγγ′γ′γ′′√√
γγ′
√
γ′′
ei(
√
γ′′−√γ)sTγ′′

a+ i(
√
γ′ − βj)

a2 + (
√
γ′ −√γ)2

dγ′dγ′′

λγdγ,
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F̃ 2
λ(T, C, s)

= −k
4

4

N∑
j,j′=1

 N∑
l,l′=1

Cjlj′l′√
βjβlβj′βl′

ei(βl−βj+βl′−βj′ )sTlTl′
a+ i(βl − βj)
a2 + (βl − βj)2

+
N∑
l=1

∫ k2

ξ

Cjlj′γ′2√
βjβlβj′

√
γ′2

ei(βl−βj+
√
γ′2−βj′ )sTlTγ′2

a+ i(βl − βj)
a2 + (βl − βj)2

dγ′2

+
∫ k2

ξ

N∑
l′=1

Cjγ′1j′l′√
βj
√
γ′1βj′βl′

ei(
√
γ′1−βj+βl′−βj′ )sTγ′1Tl′

a+ i(
√
γ′1 − βj)

a2 + (
√
γ′1 − βj)2

dγ′1

+
∫ k2

ξ

∫ k2

ξ

Cjγ′1j′γ′2√
βj
√
γ′1βj′

√
γ′2

ei(
√
γ′1−βj+

√
γ′2−βj′ )sTγ′1Tγ′2

a+ i(
√
γ′1 − βj)

a2 + (
√
γ′1 − βj)2

dγ′1dγ
′
2

λjλj′
− k4

4

N∑
j=1

∫ k2

ξ

 N∑
l,l′=1

Cjlγ2l′√
βjβl
√
γ2βl′

ei(βl−βj+βl′−
√
γ2)sTlTl′

a+ i(βl − βj)
a2 + (βl − βj)2

+
N∑
l=1

∫ k2

ξ

Cjlγ2γ′2√
βjβl
√
γ

2
γ′2

ei(βl−βj+
√
γ′2−
√
γ2)sTlTγ′2

a+ i(βl − βj)
a2 + (βl − βj)2

dγ′2

+
∫ k2

ξ

N∑
l′=1

Cjγ′1γ2l′√
βj
√
γ′1γ2βl′

ei(
√
γ′1−βj+βl′−

√
γ2)sTγ′1Tl′

a+ i(
√
γ′1 − βj)

a2 + (
√
γ′1 − βj)2

dγ′1

+
∫ k2

ξ

∫ k2

ξ

Cjγ′1γ2γ′2√
βj
√
γ′1γ2γ′2

ei(
√
γ′1−βj+

√
γ′2−
√
γ2)sTγ′1Tγ′2

a+ i(
√
γ′1 − βj)

a2 + (
√
γ′1 − βj)2

dγ′1dγ
′
2

λjλγ2dγ2

− k4

4

∫ k2

ξ

N∑
j′=1

 N∑
l,l′=1

Cγ1lj′l′√√
γ1βlβj′βl′

ei(βl−
√
γ1+βl′−βj′ )sTlTl′

a+ i(βl −
√
γ1)

a2 + (βl −
√
γ1)2

+
N∑
l=1

∫ k2

ξ

Cγ1lj′γ′2√√
γ1βlβj′

√
γ′2

ei(βl−
√
γ1+
√
γ′2−βj′ )sTlTγ′2

a+ i(βl −
√
γ1)

a2 + (βl −
√
γ1)2

dγ′2

+
∫ k2

ξ

N∑
l′=1

Cγ1γ′1j′l′√√
γ1γ′1βj′βl′

ei(
√
γ′1−
√
γ1+βl′−βj′ )sTγ′1Tl′

a+ i(
√
γ′1 −

√
γ1)

a2 + (
√
γ′1 −

√
γ1)2

dγ′1

+
∫ k2

ξ

∫ k2

ξ

Cγ1γ′1j′γ′2√√
γ1γ′1βj′

√
γ′2

ei(
√
γ′1−
√
γ1+
√
γ′2−βj′ )sTγ′1Tγ′2

a+ i(
√
γ′1 −

√
γ1)

a2 + (
√
γ′1 −

√
γ1)2

dγ′1dγ
′
2

λγ1λj′

− k4

4

∫ k2

ξ

∫ k2

ξ

 N∑
l,l′=1

Cγ1lγ2l′√√
γ1βl
√
γ2βl′

ei(βl−
√
γ1+βl′−

√
γ2)sTlTl′

a+ i(βl −
√
γ1)

a2 + (βl −
√
γ1)2

+
N∑
l=1

∫ k2

ξ

Cγ1lγ2γ′2√√
γ1βl

√
γ2γ′2

ei(βl−
√
γ1+
√
γ′2−
√
γ2)sTlTγ′2

a+ i(βl −
√
γ1)

a2 + (βl −
√
γ1)2

dγ′2

+
∫ k2

ξ

N∑
l′=1

Cγ1γ′1γ2l′√√
γ1γ′1γ2βl′

ei(
√
γ′1−
√
γ1+βl′−

√
γ2)sTγ′1Tl′

a+ i(
√
γ′1 −

√
γ1)

a2 + (
√
γ′1 −

√
γ1)2

dγ′1

+
∫ k2

ξ

∫ k2

ξ

Cγ1γ′1γ2γ′2
(γ′1γ2γ′2)1/4

ei(
√
γ′1−
√
γ1+
√
γ′2−
√
γ2)sTγ′1Tγ′2

a+ i(
√
γ′1 −

√
γ1)

a2 + (
√
γ′1 −

√
γ1)2

dγ′1dγ
′
2

]
λγ1λγ2dγ1dγ2,
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F̃ 3
λ(T, C, s)

=
k4

4

N∑
j,j′=1

 N∑
l,l′=1

Cjlj′l′√
βjβlβj′βl′

ei(βl−βj−βl′+βj′ )sTlTl′
a+ i(βl − βj)
a2 + (βl − βj)2

+
N∑
l=1

∫ k2

ξ

Cjlj′γ′2√
βjβlβj′

√
γ′2

ei(βl−βj−
√
γ′2+βj′ )sTlTγ′2

a+ i(βl − βj)
a2 + (βl − βj)2

dγ′2

+
∫ k2

ξ

N∑
l′=1

Cjγ′1j′l′√
βj
√
γ′1βj′βl′

ei(
√
γ′1−βj−βl′+βj′ )sTγ′1Tl′

a+ i(
√
γ′1 − βj)

a2 + (
√
γ′1 − βj)2

dγ′1

+
∫ k2

ξ

∫ k2

ξ

Cjγ′1j′γ′2√
βj
√
γ′1βj′

√
γ′2

ei(
√
γ′1−βj−

√
γ′2+βj′ )sTγ′1Tγ′2

a+ i(
√
γ′1 − βj)

a2 + (
√
γ′1 − βj)2

dγ′1dγ
′
2

λjλj′
+
k4

4

N∑
j=1

∫ k2

ξ

 N∑
l,l′=1

Cjlγ2l′√
βjβl
√
γ2βl′

ei(βl−βj−βl′+
√
γ2)sTlTl′

a+ i(βl − βj)
a2 + (βl − βj)2

+
N∑
l=1

∫ k2

ξ

Cjlγ2γ′2√
βjβl

√
γ2γ′2

ei(βl−βj−
√
γ′2+
√
γ2)sTlTγ′2

a+ i(βl − βj)
a2 + (βl − βj)2

dγ′2

+
∫ k2

ξ

N∑
l′=1

Cjγ′1γ2l′√
βj
√
γ′1γ2βl′

ei(
√
γ′1−βj−βl′+

√
γ2)sTγ′1Tl′

a+ i(
√
γ′1 − βj)

a2 + (
√
γ′1 − βj)2

dγ′1

+
∫ k2

ξ

∫ k2

ξ

Cjγ′1γ2γ′2√
βj
√
γ′1γ2γ′2

ei(
√
γ′1−βj−

√
γ′2+
√
γ2)sTγ′1Tγ′2

a+ i(
√
γ′1 − βj)

a2 + (
√
γ′1 − βj)2

dγ′1dγ
′
2

λjλγ2dγ2

+
k4

4

∫ k2

ξ

N∑
j′=1

 N∑
l,l′=1

Cγ1lj′l′√√
γ1βlβj′βl′

ei(βl−
√
γ1−βl′+βj′ )sTlTl′

a+ i(βl −
√
γ1)

a2 + (βl −
√
γ1)2

+
N∑
l=1

∫ k2

ξ

Cγ1lj′γ′2√√
γ1βlβj′

√
γ′2

ei(βl−
√
γ1−
√
γ′2+βj′ )sTlTγ′2

a+ i(βl −
√
γ1)

a2 + (βl −
√
γ1)2

dγ′2

+
∫ k2

ξ

N∑
l′=1

Cγ1γ′1j′l′√√
γ1γ′1βj′βl′

ei(
√
γ′1−
√
γ1−βl′+βj′ )sTγ′1Tl′

a+ i(
√
γ′1 −

√
γ1)

a2 + (
√
γ′1 −

√
γ1)2

dγ′1

+
∫ k2

ξ

∫ k2

ξ

Cγ1γ′1j′γ′2√√
γ1γ′1βj′

√
γ′2

ei(
√
γ′1−
√
γ1−
√
γ′2+βj′ )sTγ′1Tγ′2

a+ i(
√
γ′1 −

√
γ1)

a2 + (
√
γ′1 −

√
γ1)2

dγ′1dγ
′
2

λγ1λj′

+
k4

4

∫ k2

ξ

∫ k2

ξ

 N∑
l,l′=1

Cγ1lγ2l′√√
γ1βl
√
γ2βl′

ei(βl−
√
γ1−βl′+

√
γ2)sTlTl′

a+ i(βl −
√
γ1)

a2 + (βl −
√
γ1)2

+
N∑
l=1

∫ k2

ξ

Cγ1lγ2γ′2√√
γ1βl

√
γ2γ′2

ei(βl−
√
γ1−
√
γ′2+
√
γ2)sTlTγ′2

a+ i(βl −
√
γ1)

a2 + (βl −
√
γ1)2

dγ′2

+
∫ k2

ξ

N∑
l′=1

Cγ1γ′1γ2l′√√
γ1γ′1γ2βl′

ei(
√
γ′1−
√
γ1−βl′+

√
γ2)sTγ′1Tl′

a+ i(
√
γ′1 −

√
γ1)

a2 + (
√
γ′1 −

√
γ1)2

dγ′1

+
∫ k2

ξ

∫ k2

ξ

Cγ1γ′1γ2γ′2
(γ1γ′1γ2γ′2)1/4

ei(
√
γ′1−
√
γ1−
√
γ′2+
√
γ2)sTγ′1Tγ′2

a+ i(
√
γ′1 −

√
γ1)

a2 + (
√
γ′1 −

√
γ1)2

dγ′1dγ
′
2

]
λγ1λγ2dγ1dγ2.

This expression combined with (54) gives us, supε,t E
[
|Aε (f ε0 + f ε1) (t)|2

]
< +∞. �
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Lemma 6.4
lim

M→+∞
lim
ε→0

P
(

sup
0≤t≤T

|T̃ξ,ελ (t)(y)| ≥M
)

= 0.

Proof (of Lemma 6.4) We recall that ‖T̃ξ,ε(t)(y)‖Hξ = ‖y‖Hξ and then

|T̃ξ,ελ (t)(y)| ≤ ‖T̃ξ,ε(t)(y)‖Hξ‖λ‖Hξ = ‖y‖Hξ‖λ‖Hξ .

�
This last lemma completes the proof of Proposition 6.4. �

6.2.3 Martingale problem

In this section, we shall characterize all subsequence limits by showing they are solution of a well-
posed martingale problem. To do that, we consider a converging subsequence of (T̃

ξ,ε
(.)(y))ε∈(0,1)

which converges to a limit Tξ(.)(y). For the sake of simplicity we denote by (T̃
ξ,ε

(.)(y))ε∈(0,1) the
subsequence.

Convergence Result

Proposition 6.5 ∀λ ∈ Hξ and ∀f smooth test function,

f
(
Tξλ(t)(y)

)
−
∫ t

0

∂vf
(
Tξλ(s)(y)

) 〈
Jξ(Tξ(s)(y)), λ

〉
Hξ

+ ∂vf
(
Tξλ(s)(y)

)〈
Jξ(Tξ(s)(y)), λ

〉
Hξ

+∂2
vf
(
Tξλ(s)(y)

) 〈
K
(
Tξ(s)(y)

)
(λ), λ

〉
Hξ

+ ∂2
vf
(
Tξλ(s)(y)

)〈
K
(
Tξ(s)(y)

)
(λ), λ

〉
Hξ

+∂v∂vf
(
Tξλ(s)(y)

) 〈
L
(
Tξ(s)(y)

)
(λ), λ

〉
Hξ

+ ∂v∂vf
(
Tξλ(s)(y)

)〈
L
(
Tξ(s)(y)

)
(λ), λ

〉
Hξ
ds

is a martingale, where

Jξ(T)j =

[
Γcjj − Γ1

jj − Λc,ξj
2

+ i

(
Γsjj − Λs,ξj

2
+ κξj

)]
Tj ,

K(T)(λ)j = −1
2

N∑
l=1

Γ1
jlTjTlλl −

1
2

N∑
l=1
l 6=j

(
Γcjl + iΓsjl

)
TjTlλl,

L(T)(λ)j =
1
2

N∑
l=1

Γ1
jlTjTlλl +

1
2

N∑
l=1
l 6=j

ΓcjlTlTlλj ,

and
Jξ(T)γ = K(T)(λ)γ = L(T)(λ)γ = 0

for almost every γ ∈ (ξ, k2), and for (T, λ) ∈ H2
ξ .

Proof (of Proposition 6.5) Let

f ε2(t) =
∫ +∞

t

Eεt
[
F̃λ

(
T̃
ξ,ε

(t)(y), C
(u
ε

)
⊗ C

(u
ε

)
,
u

ε

)]
− F̃λ

(
T̃
ξ,ε

(t)(y),E[C(0)⊗ C(0)],
u

ε

)
du.

Lemma 6.5
sup
t≥0

E [|f ε2(t)|] = O (ε)
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and
Aε (f ε0 + f ε1 + f ε2) (t) = F̃λ

(
T̃
ξ,ε

(t)(y),E[C(0)⊗ C(0)],
t

ε

)
+A(ε, t),

where supt≥0 E [|A(ε, t)|] = O(
√
ε).

Proof (of Lemma 6.5) Using a change of variable we get f ε2(t) = εB(ε, t) with

B(ε, t) =
∫ +∞

0

Eεt
[
F̃λ

(
T̃
ξ,ε

(t)(y), C
(
u+

t

ε

)
⊗ C

(
u+

t

ε

)
, u+

t

ε

)]
− F̃λ

(
T̃
ξ,ε

(t)(y),E[C(0)⊗ C(0)], u+
t

ε

)
du.

By a computation, we get that supε,t≥0 E [|B(ε, t)|] < +∞, and after a long but straightforward
computation we get the second part of the lemma. �

Next, let G̃λ
(
T̃
ξ,ε

(t)(y), tε
)

= F̃λ
(
T̃
ξ,ε

(t)(y),E[C(0)⊗ C(0)], tε
)
and

f ε3(t) = −
∫ t

0

[
G̃λ
(
T̃
ξ,ε

(t)(y),
u

ε

)
− lim
T→+∞

1
T

∫ T

0

G̃λ
(
T̃
ξ,ε

(t)(y), s
)
ds
]
du.

Lemma 6.6 ∀T ′ > 0, we have
lim
ε→0

sup
0≤t≤T ′

E [|f ε3(t)|] = 0.

Proof (of Lemma 6.6) Using a change of variable, we get

f ε3(t) = −ε
∫ t

ε

0

[
G̃λ

(
T̃
ξ,ε

(t)(y), u
)
− lim
T→+∞

1
T

∫ T

0

G̃λ

(
T̃
ξ,ε

(t)(y), s
)
ds

]
du.

Let µ > 0, we have∣∣∣ ∫ t
ε

0

[
G̃λ

(
Tξ,ε(t)(y), u

)
− lim
T→+∞

1
T

∫ T

0

G̃λ

(
Tξ,ε(t), s

)
ds

]
du
∣∣∣

≤ K(µ, T ′, ξ, y) +
K(T ′, ξ, y)

ε

4∑
j=1

∫
Ij<µ

dγ1 . . . dγj ,

where for j ∈ {1, 2, 3, 4},

Ij<µ =
{

(γl)l∈{1,...,j} ∈ (ξ, k2)j ,∃(ql)l∈{1,...,4−j} ∈ {β1, . . . , βN}4−j

and (µl)l∈{1,...,4} ∈ {−1, 1}4, with
∣∣∣ j∑
l=1

µl
√
γl +

4−j∑
l=1

µl+jql

∣∣∣ < µ
}
.

Finally,

lim
ε→0

sup
0≤t≤T ′

E

[
ε

∣∣∣∣∣
∫ t

ε

0

[
G̃λ

(
Tξ,ε(t)(y), u

)
− lim
T→+∞

1
T

∫ T

0

G̃λ

(
Tξ,ε(t)(y), s

)
ds

]
du

∣∣∣∣∣
]

≤ K(T ′, ξ, y)
4∑
j=1

∫
Ij<µ

dγ1 . . . dγj ,

and then by letting µ→ 0 we get the announced result. �

Let f ε(t) = f ε0(t) + f ε1(t) + f ε2(t) + f ε3(t). A computation gives

Aεf ε(t) = lim
T→+∞

1
T

∫ T

0

G̃λ

(
T̃
ξ,ε

(t)(y), s
)
ds+ C(ε, t)

= G̃∞λ

(
T̃
ξ,ε

(t)(y)
)

+ C(ε, t),
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where, ∀µ > 0,

lim
ε→0

sup
0≤t≤T ′

E [|C(ε, t)|] ≤ K(T ′, ξ, y)
4∑
j=1

∫
Ij<µ

dγ1 . . . dγj ,

using the boundness condition (54). Moreover, for (T, λ) ∈ H2
ξ , G̃

∞ is defined as follow

G̃∞λ (T) =∂vf (T)
〈
Jξ(T), λ

〉
Hξ

+ ∂vf (T) 〈Jξ(T), λ〉Hξ

+ ∂2
vf (T)

〈
K̃ (T) (λ), λ

〉
Hξ

+ ∂2
vf (T)

〈
K̃ (T) (λ), λ

〉
Hξ

+ ∂v∂vf (T)
〈
L̃ (T) (λ), λ

〉
Hξ

+ ∂v∂vf (T)
〈
L̃ (T) (λ), λ

〉
Hξ
,

where

K̃(T)(λ)j = −k
4

4

∑
βj+βj′=βl+βl′

Cjlj′l′√
βjβlβj′βl′

TlTl′
a+ i(βl − βj)
a2 + (βl − βj)2

λj′

L̃(T)(λ)j =
k4

4

∑
βj−βj′=βl−βl′

Cjlj′l′√
βjβlβj′βl′

TlTl′
a+ i(βl − βj)
a2 + (βl − βj)2

λj′

for j ∈ {1, . . . , N}, with
C = E

[
C(0)⊗ C(0)

]
,

and
K̃(T)(λ)γ = L̃(T)(λ)γ = 0

for almost every γ ∈ (ξ, k2).
We assume that the following nondegeneracy condition holds. The wavenumbers βj are distinct

along with their sums and differences. This assumption is also considered in [7], [9] and [14]. As a
result we get

G̃∞λ

(
T̃
ξ,ε

(t)(y)
)

= ∂vf
(
T̃
ξ,ε

λ (t)(y)
)〈

Jξ(T̃
ξ,ε

(t)(y)), λ
〉
Hξ

+ ∂vf
(
T̃
ξ,ε

λ (t)(y)
)〈

Jξ(T̃
ξ,ε

(t)(y)), λ
〉
Hξ

+ ∂2
vf
(
T̃
ξ,ε

λ (t)(y)
)〈

K
(
T̃
ξ,ε

(t)(y)
)

(λ), λ
〉
Hξ

+ ∂2
vf
(
T̃
ξ,ε

λ (t)(y)
)〈

K
(
T̃
ξ,ε

(t)(y)
)

(λ), λ
〉
Hξ

+ ∂v∂vf
(
T̃
ξ,ε

λ (t)(y)
)〈

L
(
T̃
ξ,ε

(t)(y)
)

(λ), λ
〉
Hξ

+ ∂v∂vf
(
T̃
ξ,ε

λ (t)(y)
)〈

L
(
T̃
ξ,ε

(t)(y)
)

(λ), λ
〉
Hξ
.

(58)

By Theorem 6.4,
(
M ε
fε(t)

)
t≥0

is an (Fεt )-martingale. Then, for every bounded continuous function h,
every sequence 0 < s1 < · · · < sn ≤ s < t, and every family (λj)j∈{1,...,n} with values in Hnξ we have

E
[
h
(
T̃
ξ,ε

λj (sj)(y), 1 ≤ j ≤ n
)(

f ε(t)− f ε(s)−
∫ t

s

Aεf ε(u)du
)]

= 0.

Finally, using (58) and Lemmas 6.2, 6.5, and 6.6, we can conclude the proof of Proposition 6.5. �

Uniqueness In order to prove uniqueness, we decompose Tξ(.)(y) into real and imaginary parts.
Then, let us consider the new process

Yξ(t) =
[
Y1,ξ(t)
Y2,ξ(t)

]
, where Y1,ξ(t) = Re

(
Tξ(t)(y)

)
and Y2,ξ(t) = Im

(
Tξ(t)(y)

)
.
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This new process takes its values in Gξ × Gξ, where Gξ = RN × L2((ξ, k2),R). Gξ × Gξ is equipped
with the inner product defined by

〈T,S〉Gξ×Gξ =
N∑
j=1

T1
jS

1
j + T2

jS
2
j +

∫ k2

ξ

T1
γS

1
γ + T2

γS
2
γdγ

∀(T,S) ∈ Gξ×Gξ. We also use the notation Yξ
λ(t) =

〈
Yξ(t), λ

〉
Gξ×Gξ

with λ ∈ Gξ×Gξ. We introduce

the operator Υ on Gξ × Gξ given by

Υ :Gξ × Gξ −→ Gξ × Gξ,[
T1

T2

]
7−→

[
T2

−T1

]
.

By Proposition 6.5, we get the following result.

Proposition 6.6 ∀λ ∈ Gξ × Gξ, ∀f ∈ C∞b (R)

f
(
Yξ
λ(t)

)
−
∫ t

0

〈
Bξ(Yξ(s)), λ

〉
Gξ×Gξ

f ′
(
Yξ
λ(s)

)
+

1
2
〈
A
(
Yξ(s)

)
(λ), λ

〉
Gξ×Gξ

f
′′(
Yξ
λ(s)

)
ds

is a martingale, where

A(Y)(λ) = A1(Y)(λ) +A2(Y)(λ) +A3(Y)(λ),

with, for j ∈ {1, . . . , N},

Bξ(Y)j =

[
Γcjj − Λc,ξj

2

]
Yj −

[
Γsjj − Λs,ξj

2
+ κξj

]
Υj(Y)

A1(Y)(λ)j = Υj(Y)
N∑
l=1

Γ1
jl

[
Υ1
l (Y)λ1

l + Υ2
l (Y)λ2

l

]
A2(Y)(λ)j = −Yj

N∑
l=1
l 6=j

Γcjl
[
Y1
l λ

1
l + Y2

l λ
2
l

]
+ Υj(Y)

N∑
l=1
l 6=j

Γcjl
[
Υ1
l (Y)λ1

l + Υ2
l (Y)λ2

l

]

A3(Y)(λ)j = λj

N∑
l=1
l 6=j

Γcjl
[
(Y1

l )
2 + (Y2

l )
2
]
,

and
Bξγ(Y) = Aγ(Y)(λ) = Aγ(Y)(λ) = Aγ(Y)(λ) = 0

for almost every γ ∈ (ξ, k2), and for (Y, λ) ∈
(
Gξ × Gξ

)2.
Proof (of Proposition 6.6) Using Proposition 6.5,

f
(
Yξ
λ(t)

)
−
∫ t

0

Re
(〈
Jξ(Tξ(s)(y)), λ

〉
Hξ

)
f ′
(
Yξ
λ(s)

)
+

1
2
Re
(〈

(L+K)
(
Tξ(s)(y)

)
(λ), λ

〉
Hξ

)
f
′′(
Yξ
λ(s)

)
ds

is a martingale. Let us remark that we also denote by λ the function λ1 + iλ2, and

Re
(〈
Tξ(t)(y), λ

〉
Hξ

)
=
〈
Yξ(t), λ

〉
Gξ×Gξ

and Im
(〈
Tξ(t)(y), λ

〉
Hξ

)
=
〈
Υ(Yξ(t)), λ

〉
Gξ×Gξ

.

Then, we have

Re
(〈
Jξ(Tξ(s)(y)), λ

〉
Hξ

)
=
〈
Bξ(Yξ(s)), λ

〉
Gξ×Gξ

Re
(〈

(L+K)(Tξ(s)(y))(λ), λ
〉
Hξ

)
=
〈
A(Yξ(s))(λ), λ

〉
Gξ×Gξ

.

�
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As a consequence of Proposition 6.6, ∀λ ∈ G × G, letting successively f ∈ C∞b (R) such that f(s) = s
and f(s) = s2 if |s| ≤ ry‖λ‖G×G , we get that

〈
Mξ(t), λ

〉
Gξ×Gξ

= Mξ
λ(t) =

〈
Yξ(t)−

∫ t

0

Bξ(Yξ(s))ds, λ
〉
Gξ×Gξ

is a continuous martingale with quadratic variation given by

< Mξ
λ > (t) =

∫ t

0

〈
A(Yξ(s))(λ), λ

〉
Gξ×Gξ

ds.

Proposition 6.7 ∀f ∈ C2
b (Gξ × Gξ),

Mξ
f (t) = f(Yξ(t))−

∫ t

0

Lξf(Yξ(s))ds (59)

is a continuous martingale, where ∀Y ∈ Gξ × Gξ

Lξf(Y) =
1
2
trace

(
A(Y)D2f(Y)

)
+
〈
Bξ(Y), Df(Y)

〉
Gξ×Gξ

.

Moreover, the martingale problem associated to the generator Lξ is well-posed.

Proof (of Proposition 6.7) We begin with the following lemma.

Lemma 6.7

A :Gξ × Gξ −→ L+
1 (Gξ × Gξ) ,

Bξ :Gξ × Gξ −→ Gξ × Gξ,

where L+
1 (Gξ × Gξ) is a set of nonnegative operators with finite trace.

Proof ∀(Y, λ) ∈ (Gξ × Gξ)2, we have

〈A(Y)(λ), λ〉Gξ×Gξ = Re
(〈

(L+K)(T)(λ), λ
〉
Hξ

)
= Re

( N∑
j,l=1

Γ1
jl

[
Tjλj −Tjλj

][
Tlλl −Tlλl

])

+
N∑

j,l=1
j 6=l

Γcjl
∣∣∣Tjλl −Tlλj

∣∣∣2.
with T = Y1 + iY2 and λ = λ1 + iλ2. First, ∀(j, l) ∈ {1, . . . , N}2 such that j 6= l, Γcjl is nonnegative
because it is proportional to the power spectral density of Cjl at βl−βj frequency. Second, the matrix
Γ1 is nonnegative since ∀X ∈ CN , we have

tXΓ1X =
k4

2

N∑
j,l=1

∫ +∞

0

E[Cjj(0)Cll(z)]dzX̃jX̃l =
k4

2

∫ +∞

0

E[CX̃(0)CX̃(z)]dz ≥ 0

because it is proportional to the power spectral density of CX̃(z) =
∑
j Cjj(z)X̃j at 0 frequency, and

with X̃j = Xj/βj , ∀j ∈ {1, . . . , N}. Moreover,

trace(A(Y)) =
N∑
j=1

Γ1
jj

[
(Y1

j )
2 + (Y2

j )
2
]
≤ sup
j∈{1,...,N}

Γ1
jj ‖Y‖2Gξ×Gξ .

�
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Consequently, following the proof of Theorem 4.1.4 in [30], (59) is a martingale. However, Bξ and A
are not bounded functions but this problem can be compensated by the fact that the process Yξ(.)
takes its values in Bry,Gξ×Gξ .

Moreover, from this lemma there exists a linear operator σ from Gξ × Gξ to L2(Gξ × Gξ), which is
the set of Hilbert-Schmidt operators from Gξ×Gξ to itself, such that A(Y) = σ(Y)◦σ∗(Y). According
to Theorem 3.2.2 and 4.4.1 in [30], the martingale problem associated to Lξ is well-posed because
∀Y ∈ Gξ × Gξ

‖σ(Y)‖ ≤ K(N)‖Y‖Gξ×Gξ .
�

Let us recall that the process Yξ(.) is an element of C([0,+∞), (Bry,Gξ×Gξ , dBry,Gξ×Gξ )), and we
cannot assert that Yξ(.) is uniquely determined. In fact, we need to know if its law is supported by
C([0,+∞), (Gξ × Gξ, ‖.‖Gξ×Gξ)). Letting

f(Y) = ‖Π(ξ, k2)⊗Π(ξ, k2)(Y− y)‖2Gξ×Gξ ,

where

Π(ξ, k2)⊗Π(ξ, k2) :Gξ × Gξ −→ Gξ × Gξ,[
Y1

Y2

]
7−→

[
Π(ξ, k2)(Y1)
Π(ξ, k2)(Y2)

]
.

As Yξ(.) is a solution on C([0,+∞), (Bry,Gξ×Gξ , dBry,Gξ×Gξ )) of the martingale associated to Lξ, we
get

E[f(Yξ(t))] = 0 ∀t ≥ 0,

and therefore Π(ξ, k2)⊗Π(ξ, k2)(Yξ(.)) = Π(ξ, k2)⊗Π(ξ, k2)(Re(y), Im(y)). Consequently, the process
Yξ(.) is strongly continuous since the weak and the strong topologies are the same on RN . Finally,
Yξ(.) is uniquely characterized as being the unique solution of the martingale problem associated to
Lξ and starting from (Re(y), Im(y)), and that concludes the proof of Theorem 4.1.

6.3 Proof of Theorem 4.2
Let H0 = CN ×L2(0, k2) and y ∈ H0. We begin by showing the tightness of the process (Tξ(.)(yξ))ξ,
which is the unique solution of the martingale problem associated to Lξ and starting from yξ =
Π(ξ,+∞)(y). As the radiating part Π(0, k2)(Tξ(.)(yξ)) of the process Tξ(.)(yξ) is constant equal
to Π(ξ, k2)(yξ), to prove the tightness of (Tξ(.)(yξ))ξ is suffices to show the tightness of the finite-
dimensional process (Π(k2,+∞)(Tξ(.)(yξ)))ξ. Let Eξt be the conditional expectation given the σ-
algebra σ(Tξ(u)(yξ), 0 ≤ u ≤ t). Then, ∀t ≥ 0, ∀h ∈ (0, 1) and ∀s ∈ [0, h], we have

Eξt
[
‖Tξ(t+ s)(yξ)−Tξ(t)(yξ)‖2CN

]
≤ Eξt

[
‖Y1,ξ(t+ s)−Y1,ξ(t)‖2RN

]
+ Eξt

[
‖Y2,ξ(t+ s)−Y2,ξ(t)‖2RN

]
≤

N∑
j=1
l=1,2

Eξt
[
(Yl,ξ

j (t+ s)−Yl,ξ
j (t))2

]

≤
N∑
j=1
l=1,2

Eξt
[( ∫ t+s

t

Lξf lj(Y
ξ(u))du

)2]
+ Eξt

[(
Mξ

f lj
(t+ s)−Mξ

f lj
(t)
)2]

,

with ∀Y ∈ G0 × G0, f lj(Y) = Yl
j . Therefore, using that the process Tξ(.)(yξ) takes its values in

Bry,Hξ , we first get

Eξt
[( ∫ t+s

t

Lξf lj(Y
ξ(u))du

)2]
≤ K h2,

and second,

Eξt
[(
Mξ

f lj
(t+ s)−Mξ

f lj
(t)
)2]

= Eξt
[
< Mξ

f lj
>t+s − < Mξ

f lj
>t

]
≤ K h
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with

< Mξ

f lj
>t=

∫ t

0

Lξ(f lj)
2(Yξ(u))− 2f lj(Y

ξ(u))Lξf lj(Y
ξ(u)) du.

Consequently, the process (Tξ(.)(yξ))ξ is tight on C([0,+∞), (H0, ‖.‖H0)). Now, to characterize all
limits of converging subsequences, let us denote by T0(.)(y) such a limit point. First, for every smooth
function f on H0, for every bounded continuous function h, and every sequence 0 < s1 < · · · < sn ≤
s < t, we have

E
[
h
(
Tξ(sj)(yξ), 1 ≤ j ≤ n

)(
f(Tξ(t)(yξ))− f(Tξ(s)(yξ))−

∫ t

s

Lξf(Tξ(u)(yξ))du
)]

= 0.

Second,

sup
T∈Bry,H0

∣∣∣Lf(T)− Lξf(T)
∣∣∣ ≤ K sup

j∈{1,...,N}

∣∣Λc,ξj − Λcj
∣∣+
∣∣Λs,ξj − Λsj

∣∣+
∣∣κξj − κj∣∣.

Consequently, T0(.)(y) is a solution of the martingale problem associated to L and starting from y.
However, following the proof of the uniqueness in Theorem 4.1, this martingale problem is well-posed
and therefore Tξ(.)(yξ) converges in distribution to the unique solution of the martingale problem
associated to L and starting from y.

6.4 Proof of Theorem 5.2
The proof of this theorem follows ideas developed in [27, Chapter 11]. In order to prove this theorem
we use a probabilistic representation of T lj (ω, z) by using the Feynman-Kac formula. To this end, we
introduce the jump Markov process

(
XN
t

)
t≥0

with state space
{
− (N − 1)/N, . . . , 0, . . . , (N − 1)/N

}
and generator given by

LNφ
(
l

N

)
= Γcl l+1

(
φ

(
l − 1
N

)
− φ

(
l

N

))
+ Γcl+2 l+1

(
φ

(
l + 1
N

)
− φ

(
l

N

))
for l ∈ {1, . . . , N − 2},

LNφ
(
l

N

)
= Γc|l|+2 |l|+1

(
φ

(
l − 1
N

)
− φ

(
l

N

))
+ Γc|l| |l|+1

(
φ

(
l + 1
N

)
− φ

(
l

N

))
for l ∈ {−(N − 2), . . . ,−1},

LNφ(0) =
Γc2 1

2

(
φ

(
1
N

)
− φ(0)

)
+

Γc2 1

2

(
φ

(
−1
N

)
− φ(0)

)
,

and
LNφ

(
±(N − 1)

N

)
= ΓcN−1N

(
φ

(
±(N − 2)

N

)
− φ

(
±(N − 1)

N

))
.

Using the Feynman-Kac formula, we get for (j, l) ∈ {1, . . . , N(ω)}2

T lj (ω,L) = E l−1
N

[
e
−ΛcN

R L
0 1(|XNv |=N−1

N )dv−ΛcN−1

R L
0 1(|XNv |=N−2

N )dv1(|XNL |+ 1
N = j

N )

]
.

Let f be a bounded continuous function on [0, 1], we consider T l(ω,L) as a family of bounded measures
on [0, 1] by setting

T lf (ω,L) = E l−1
N

[
e
−ΛcN

R L
0 1(|XNv |=N−1

N )dv−ΛcN−1

R L
0 1(|XNv |=N−2

N )dvf
(
|XN

L |+
1
N

)]
.

In the first part of the proof, we consider the case v ∈ [0, 1) and in a second part we shall treat
the case v = 1.
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Let u ∈ [0, 1) such that l(N)/N → u. We begin by introducing some notations. Throughout
the proof we denote by τ (l)

j/N the lth passage in j/N , for j ∈ {−(N − 1), . . . , N − 1}. To avoid the
unboundness in LN of the reflecting barriers LNφ(±(N − 1)/N), we introduce the stopping time

ταN = τ
(1)
(N−[Nα])/N ∧ τ

(1)
−(N−[Nα])/N

with α ∈ (0, 1). Let XN,τ
t = XN

t∧ταN
, ∀t ≥ 0, be the stopped process and d(N) = (l(N) − 1)/N . We

denote by PNd(N) the law of (XN
t )t≥0 starting from d(N) and by PN,τd(N) the law of (XN,τ

t )t≥0 starting
from d(N). Let

La∞ =
∂

∂v

(
a∞(·) ∂

∂v

)
,

where a∞(·) ∈ C1(R) is an extension over R of a∞(·), which is defined on [−1, 1], and such that the
martingale problem associated to La∞ and starting from u is well posed. We denote by Pu this unique
solution. Let ϕ ∈ C∞0 (R),

Mϕ(t) = ϕ(x(t))− ϕ(x(0))−
∫ t

0

La∞ϕ(x(s))ds,

and τr = inf(u ≥ 0, |x(t)| ≥ r) for r ∈ (0, 1).

Lemma 6.8 ∀ϕ ∈ C∞0 (R), ∀α ∈ (2/3, 1),

lim
N→+∞

sup
v∈[−N−[Nα]

N ,− 1
N ]∪[ 1

N ,
N−[Nα]

N ]
|LNϕ(v)− La∞ϕ(v)| = 0,

where LNϕ(v) is defined as follows. ∀j ∈ {1, . . . , N − 2},

LNϕ(v) = Γcj j+1

(
ϕ

(
j − 1
N

)
− ϕ

(
j

N

))
+ Γcj+1 j+2

(
ϕ

(
j + 1
N

)
− ϕ

(
j

N

))
,

for v ∈ [j/N, (j + 1)/N), and

LNϕ(v) = Γcj j+1

(
ϕ

(
−j + 1
N

)
− ϕ

(
−j
N

))
+ Γcj+1 j+2

(
ϕ

(
−j − 1
N

)
− ϕ

(
−j
N

))
,

if v ∈ (−(j + 1)/N,−j/N ].

Proof (of Lemma 6.8) We shall restrict the proof of this lemma to the proof of

lim
N→+∞

sup
v∈[ 1

N ,
N−[Nα]

N ]
|LNϕ(v)− La∞ϕ(v)| = 0,

since the other case is completely similar by symmetry. We start the proof of this technical lemma
by proving Lemma 2.1 page 5.

Proof (of Lemma 2.1) Let he(v) = v√
(n1kdθ)

2−v2
and g(v) = arctan(v). We recall that ∀j ∈{

1, . . . , N
}
, tan(σj) = −he(σj) First,∣∣σj+1 − σj − π

∣∣ ≤ ∣∣g( tan
(
σj+1 − (j + 1)π

))
− g
(

tan
(
σj − jπ

))∣∣
≤ K|tan (σj+1)− tan (σj)|
≤ K|he(σj+1)− he(σj)|
≤ K sup

v∈[σj ,σj+1]

h′e(v)
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where h′e(v) = (n1kdθ)
2

((n1kdθ)2−v2)
3
2
which is a positive and increasing function. Moreover,

σN−[Nα] ≤ (N − [Nα])π

and then
sup

j∈{1,...,N−[Nα]}

∣∣σj+1 − σj − π
∣∣ = O

(
N

1
2−

3
2α
)
.

Second, in the same way we have

σj+2−2σj+1 + σj

= g
(

tan
(
σj+2 − (j + 2)π

))
− 2g

(
tan

(
σj+1 − (j + 1)π

))
+ g
(

tan
(
σj − jπ

))
= −

(
g(he(σj+2))− 2g(he(σj+1)) + g(he(σj))

)
and

g(he(σj+2))− 2g(he(σj+1)) + g(he(σj)) =
[
g′(he(σj+1))− g′(he(σj))

]
.
[
he(σj+2)− he(σj+1)

]
+ g′(he(σj))

[
he(σj+2)− 2he(σj+1) + he(σj)

]
+
∫ he(σj+2)

he(σj+1)

(he(σj+2)− t) g′′(t) dt

−
∫ he(σj+1)

he(σj)

(he(σj+1)− t) g′′(t) dt.

Moreover, ∣∣g′(he(σj+1))− g′(he(σj))
∣∣.∣∣he(σj+2)− he(σj+1)

∣∣ ≤ KN1−3α.

he(σj+2)− 2he(σj+1) + he(σj) =
∫ σj+2

σj+1

h′e(t)− h′e(t− π) dt

+
∫ σj+2

σj+1

h′e(t− π) dt−
∫ σj+1

σj

h′e(t) dt,

with ∣∣∣∣∣
∫ σj+2

σj+1

h′e(t)− h′e(t− π) dt

∣∣∣∣∣ ≤ K h′′e (σN−[Nα]) = O(N
1
2−

5
2α),

because h′′e (v) = 3(n1kdθ)
2v

((n1kdθ)2−v2)5/2
, and

∣∣∣ ∫ σj+2

σj+1

h′e(t− π) dt−
∫ σj+1+π

σj+π

h′e(t− π) dt
∣∣∣

≤ h′e(σN−[Nα]) (|σj+2 − σj+1 − π|+ |σj+2 − σj+1 − π|)
≤ KN1−3α.

Finally,∣∣∣ ∫ he(σj+2)

he(σj+1)

(he(σj+2)− t) g′′(t) dt−
∫ he(σj+1)

he(σj)

(he(σj+1)− t) g′′(t) dt
∣∣∣

≤ K
(
(he(σj+2)− he(σj+1))2 + (he(σj+1)− he(σj))2

)
≤ KN1−3α,

and
sup

j∈{1,...,N−[Nα]−2}
|σj+2 − 2σj+1 + σj | = O(N1−3α).

This completes the proof of Lemma 2.1 since we can take α > 1/3 and we have N
1
2−

5
2α ≤ N1−3α. �
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From this lemma, we immediately get

sup
j∈{1,...,N−[Nα]−1}

∣∣S(σj+1 − σj , σj+1 − σj)− S(π, π)
∣∣

≤ K sup
j∈{1,...,N−[Nα]−1}

∣∣σj+1 − σj − π
∣∣ = O

(
N

1
2−

3
2α
)
.

Before showing that

sup
j∈{1,...,N−[Nα]}

∣∣∣A2
j −

2
d

∣∣∣ = O(Nα−1),

where Aj is defined by (8), we prove that

sup
j∈{1,...,[Nα]}

∣∣σj − jπ∣∣ = O
(

1
N1−α

)
.

In fact, ∀j ∈
{

1, . . . , Nα
}
∣∣σj − jπ∣∣ =

∣∣g( tan
(
σj − jπ

))
− arctan(tan(0))

∣∣∣
≤ K

∣∣ tan(σj)
∣∣

≤ K he(σ[Nα]).

Moreover, σ[Nα] ≤ Nαπ and then

h(σ[Nα]) = O
(

1
N1−α

)
.

Consequently,

sup
j∈{1,...,N−[Nα]}

∣∣∣A2
j −

2
d

∣∣∣ ≤ K sup
j∈{1,...,N−[Nα]}

∣∣∣∣ sin2(σj)
ζj

− sin(2σj)
2σj

∣∣∣∣ ≤ K

N1−α

because

sup
j∈{1,...,N−[Nα]}

∣∣∣ sin2(σj)
ζj

− sin(2σj)
2σj

∣∣∣ ≤ 1√
(n1kdθ)2 − σ2

N−[Nα]

+ sup
j∈{[Nα]+1,...,N−[Nα]}

∣∣∣∣ sin(2σj)
2σj

∣∣∣∣+ sup
j∈{1,...,[Nα]}

∣∣∣∣ sin(2σj)
2σj

∣∣∣∣
≤ K

N1/2+α/2
+

1
2σ[Nα]+1

+ sup
j∈{1,...,[Nα]}

∣∣∣∣ sin(2σj)− sin(2jπ)
2σj

∣∣∣∣
≤ K

(
1

N1/2+α/2
+

1
Nα

+
1
σ1

sup
j∈{1,...,[Nα]}

∣∣σj − jπ∣∣) .
Now, let us introduce

BNj =
a

2n2
1

√
1− σ2

j

n2
1k

2d2

√
1− σ2

j+1

n2
1k

2d2

1
4A

2
jA

2
j+1S(σj+1 − σj , σj+1 − σj)
a2 + (βj − βj+1)2 .

Then, for j ∈
{

1, . . . , N − 2
}
and v ∈

[
j
N ,

j+1
N

]
.

LNϕ(v) =
(
n1kdθ

Nπ

)2(
Nπ

n1dθ

)2[(
ϕ
( [Nv] + 1

N

)
− ϕ

( [Nv]
N

))
BNj+1

+
(
ϕ
( [Nv]− 1

N

)
− ϕ

( [Nv]
N

))
BNj

]
.
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Consequently, from the following decomposition

N2
[(
ϕ
( [Nv] + 1

N

)
− ϕ

( [Nv]
N

))
BNj+1 +

(
ϕ
( [Nv]− 1

N

)
− ϕ

( [Nv]
N

))
BNj

]
− n2

1d
2θ2

π2
La∞ϕ(v)

= N2
[
ϕ
( [Nv] + 1

N

)
− 2ϕ

( [Nv]
N

)
+ ϕ

( [Nv]− 1
N

)][
BNj −

n2
1d

2θ2

π2
a∞(v)

]
+N

[
ϕ
( [Nv] + 1

N

)
− ϕ

( [Nv]
N

)][
N(BNj+1 −BNj )− n2

1d
2θ2

π2

d

dv
a∞(v)

]
+
n2

1d
2θ2

π2
a∞(v)

[
N2
(
ϕ
( [Nv] + 1

N

)
− 2ϕ

( [Nv]
N

)
+ ϕ

( [Nv]− 1
N

))
− ϕ′′(v)

]
+
n2

1d
2θ2

π2

d

dv
a∞(v)

[
N
(
ϕ
( [Nv] + 1

N

)
− ϕ

( [Nv]
N

))
− ϕ′(v)

]
,

and because it is easy to show that

sup
v∈[ 1

N ,
N−[Nα]

N ]

∣∣∣N(ϕ( [Nv] + 1
N

)
− ϕ

( [Nv]
N

))
− ϕ′(v)

∣∣∣ = O
( 1
N

)
sup

v∈[ 1
N ,

N−[Nα]
N ]

∣∣∣N2
(
ϕ
( [Nv] + 1

N

)
− 2ϕ

( [Nv]
N

)
+ ϕ

( [Nv]− 1
N

))
− ϕ′′(v)

∣∣∣ = O
( 1
N

)
,

it suffices to show the two following points

•
lim
N

sup
j∈{1,...,N−[Nα]−1}

sup
v∈[ jN , j+1

N ]

∣∣∣BNj − n2
1d

2θ2

π2
a∞(v)

∣∣∣ = 0.

•
lim
N

sup
j∈{1,...,N−[Nα]−1}

sup
v∈[ jN , j+1

N ]

∣∣∣N(BNj −BNj+1

)
− n2

1d
2θ2

π2

d

dv
a∞(v)

∣∣∣ = 0.

We decompose the proof of these two points into two sublemmas.

Lemma 6.9

lim
N

sup
j∈{1,...,N−[Nα]−1}

sup
v∈[ jN , j+1

N ]

∣∣∣BNj − n2
1d

2θ2

π2
a∞(v)

∣∣∣ = 0

Proof (of Lemma 6.9) ∀j ∈
{

1, . . . , N − [Nα] − 1
}

and ∀v ∈
[
j
N ,

j+1
N

]
, we have the following

inequalities,
1

1− σ2
j

n2
1k

2d2

≤ 1√(
1− σ2

j

n2
1k

2d2

)(
1− σ2

j+1

n2
1k

2d2

) ≤ 1

1− σ2
j+1

n2
1k

2d2

.

Moreover, for l ∈ {j, j + 1}∣∣∣ 1
1− (θv)2

− 1

1− σ2
l

n2
1k

2d2

∣∣∣ ≤ ∣∣∣j + 1
N

θ − j − 1
n1kd

π
∣∣∣ 2θ
(1− θ2)2

≤ K

N
.

Consequently,

sup
j∈{1,...,N−[Nα]−1}

sup
v∈[ jN , j+1

N ]

∣∣∣ 1
1− (θv)2

− 1√(
1− σ2

j

n2
1k

2d2

)(
1− σ2

j+1

n2
1k

2d2

)∣∣∣ = O
(

1
N

)
.
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Next,∣∣∣n1k
(√

1−
σ2
j

n2
1k

2d2
−

√
1−

σ2
j+1

n2
1k

2d2

)
− π

d

σj
n1kd√

1− σ2
j

n2
1k

2d2

∣∣∣
≤ K

∣∣∣n1k
(√

1−
σ2
j

n2
1k

2d2
−

√
1−

σ2
j+1

n2
1k

2d2

)
− 1
d

(σj+1 − σj)
σj
n1kd√

1− σ2
j

n2
1k

2d2

∣∣∣
+K

∣∣∣(σj+1 − σj − π)
σj
n1kd√

1− σ2
j

n2
1k

2d2

∣∣∣
≤ K

N

1
(1− θ2)3/2

(σj+1 − σj)2 +K
∣∣σj+1 − σj − π

∣∣ θ√
1− θ2

≤ KN 1
2−

3
2α

and then
sup

j∈{1,...,N−[Nα]−1}

∣∣∣ 1
a2 + (βj − βj+1)2 −

1

a2 + π2

d2

σ2
j

n2
1k

2d2

1−
σ2
j

n2
1k

2d2

∣∣∣ = O
(
N

1
2−

3
2α
)
.

Moreover ∀j ∈
{

1, . . . , N − [Nα]− 1
}
and ∀v ∈

[
j
N ,

j+1
N

]
, we have∣∣∣ σj

n1kd√
1− σ2

j

n2
1k

2d2

− θv√
1− (θv)2

∣∣∣ ≤ K∣∣∣ σj
n1kd

− θv
∣∣∣ ≤ K

N
,

and finally

sup
j∈{1,...,N−[Nα]−1}

sup
v∈
[
j
N ,

j+1
N

] ∣∣∣ 1
a2 + (βj − βj+1)2

− 1

a2 + π2

d2
(θv)2

1−(θx)2

∣∣∣ = O
(
N

1
2−

3
2α
)
.

This concludes the proof of Lemma 6.9.�

Lemma 6.10

lim
N

sup
j∈{1,...,N−[Nα]−1}

sup
v∈[ jN , j+1

N ]

∣∣∣N(BNj −BNj+1

)
− n2

1d
2θ2

π2

d

dv
a∞(v)

∣∣∣ = 0.

Proof (of Lemma 6.10) We separate the proof of this lemma into two step. First, for each j ∈{
1, . . . , N − [Nα]− 2

}
let

CNj = N

 1√
1− σ2

j+1

n2
1k

2d2

√
1− σ2

j+2

n2
1k

2d2

− 1√
1− σ2

j

n2
1k

2d2

√
1− σ2

j+1

n2
1k

2d2

 .

We can write ∀v ∈
[
j
N ,

j+1
N

]
CNj −

2θ2v

(1− (θv)2)2
=

1√
1− σ2

j+1

n2
1k

2d2

N

∫ σj+2
n1kd

σj
n1kd

w

(1− w2)
3
2
dw − 2θ2v

(1− (θv)2)2

=
1√

1− σ2
j+1

n2
1k

2d2

(
N

∫ σj+2
n1kd

σj
n1kd

w

(1− w2)
3
2
dw −N

( σj+2

n1kd
− σj
n1kd

) θv

(1− (θv)2)
3
2

)

+N
( σj+2

n1kd
− σj
n1kd

) θv

(1− (θv)2)
3
2

( 1√
1− σ2

j+1

n2
1k

2d2

− 1√
1− (θv)2

)

+
(
N
( σj+2

n1kd
− σj
n1kd

)
− 2θ

) θv

(1− (θv)2)2
.
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We can check that the function v 7→ θv
(1−(θv)2)2 is bounded on [0, 1] and∣∣∣N( σj+2

n1kd
− σj
n1kd

)
− 2θ

∣∣∣ ≤ N

n1kd

∣∣∣σj+2 − σj − 2π
∣∣∣+ 2θ

∣∣∣ Nπ
n1dkθ

− 1
∣∣∣ ≤ KN

1
2−

3
2α.

Moreover, v 7→ θv
(1−(θv)2)2 is bounded on [0, 1] and∣∣∣ 1√

1− (θv)2
− 1√

1− σ2
j+1

n2
1k

2

∣∣∣ ≤ K

N

θ

(1− θ2)3/2
.

Finally, 0 ≤ 1s
1−

σ2
j+1

n2
1k

2d2

≤ 1√
1−θ2 and

∣∣∣N ∫ σj+2
n1kd

σj
n1kd

w

(1− w2)
3
2
dw −N

( σj+2

n1kd
− σj
n1kd

) θv

(1− (θv)2)
3
2

∣∣∣
≤ N

∫ σj+2
n1kd

σj
n1kd

|w − θv|dw 2θ2 + 1
(1− θ2)

5
2

≤ KN
[(
θv − σj

n1kd

)2

+
(
θv − σj+2

n1kd

)2]
≤ K

N
.

Consequently,

sup
j∈{1,...,N−[Nα]−1}

sup
v∈
[
j
N ,

j+1
N

] ∣∣∣CNj − 2θ2v

(1− (θv)2)2

∣∣∣ = O(N
1
2−

3
2α).

Second, for j ∈
{

1, . . . , N − [Nα]− 1
}
and v ∈

[
j
N ,

j+1
N

]
, we have

∣∣∣N( 1
a2 + (βj+1 − βj+2)2

− 1
a2 + (βj − βj+1)2

)
+

π2

d2
2θ2v

(1−(θv)2)2(
a2 + π2

d2
(θv)2

1−(θv)2

)2

∣∣∣
≤
∣∣∣N( 1

a2 + (βj+1 − βj+2)2
− 1
a2 + (βj − βj+1)2

)
−N

(
(βj+1 − βj+2)− (βj − βj+1)

) −2(βj − βj+1)(
a2 + (βj − βj+1)2

)2 ∣∣∣
+
∣∣∣N((βj+1 − βj+2)− (βj − βj+1)

) −2(βj − βj+1)(
a2 + (βj − βj+1)2

)2 +
π2

d2
2θ2v

(1−(θv)2)2(
a2 + π2

d2
(θv)2

1−(θv)2

)2

∣∣∣.
For the first term on the right of the previous inequality, we have∣∣∣N( 1

a2 + (βj+1 − βj+2)2
− 1
a2 + (βj − βj+1)2

)
−N

(
(βj+1 − βj+2)− (βj − βj+1)

) −2(βj − βj+1)(
a2 + (βj − βj+1)2

)2 ∣∣∣
≤ KN

(
(βj+1 − βj+2)− (βj − βj+1)

)2
,

and we shall see just below that

sup
j∈{1,...,N−[Nα]−2}

|βj+2 − 2βj+1 − βj | = O
( 1
N

)
.

Now, for the second term we have previously get

sup
j∈{1,...,N−[Nα]−1}

sup
v∈
[
j
N ,

j+1
N

] ∣∣∣βj − βj+1 −
π

d

θv√
1− (θv)2

∣∣∣ = O(N
1
2−

3
2α).
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Then, to finish the proof of this lemma it suffices to show that

sup
j∈{1,...,N−[Nα]−2}

sup
v∈
[
j
N ,

j+1
N

] ∣∣∣N(βj − 2βj+1 + βj+2

)
+

π
d θ

(1− (θv)2)
3
2

∣∣∣ = O(N2−3α).

To show this relation we shall use the following decompositions. For l ∈ {j, j + 1}√
1−

σ2
l

n2
1k

2d2
−

√
1−

σ2
l+1

n2
1k

2d2
− 1
n1kd

(σl+1 − σl)
σl
n1kd√

1− σ2
l

n2
1k

2d2

=
∫ σl+1

n1kd

σl
n1kd

(
σl+1

n1kd
− w

)
1

(1− w2)
3
2
dw,

and

Nn1k
(√

1−
σ2
j

n2
1k

2d2
− 2

√
1−

σ2
j+1

n2
1k

2d2
+

√
1−

σ2
j+2

n2
1k

2d2

)
+

π
d θ(

1− (θv)2
) 3

2

=
N

d

(
(σj+1 − σj)

σj
n1kd√

1− σ2
j

n2
1k

2d2

− (σj+2 − σj+1)
σj+1
n1kd√

1− σ2
j+1

n2
1k

2d2

)
+

π
d θ

(1− (θv)2)
3
2

+Nn1k
(∫ σj+1

n1kd

σj
n1kd

( σj+1

n1kd
− w

) 1
(1− w2)

3
2
dw −

∫ σj+2
n1kd

σj+1
n1kd

( σj+2

n1kd
− w

) 1
(1− w2)

3
2
dw
)
.

First, using Lemma 2.1 we have∫ σj+1
n1kd

σj
n1kd

( σj+1

n1kd
− w

) 1
(1− w2)

3
2
dw −

∫ σj+2
n1kd

σj+1
n1kd

( σj+2

n1kd
− w

) 1
(1− w2)

3
2
dw = O(N

1
2−

3
2α−2).

Second, we have

N

d

(
(σj+1 − σj)

σj
n1k√

1− σ2
j

n2
1k

2

−(σj+2 − σj+1)
σj+1
n1k√

1− σ2
j+1

n2
1k

2

)
+

π
d θ

(1− (θv)2)
3
2

=
N

d

(
σj+1 − σj − π

)[ σj
n1kd√

1− σ2
j

n2
1k

2d2

−
σj+1
n1kd√

1− σ2
j+1

n2
1k

2d2

]

− N

d
(σj+2 − 2σj+1 + σj)

σj+1
n1kd√

1− σ2
j+1

n2
1k

2d2

+
π

d

(
N
[ σj

n1kd√
1− σ2

j

n2
1k

2d2

−
σj+1
n1kd√

1− σ2
j+1

n2
1k

2d2

]
+

θ

(1− (θv)2)
3
2

)
,

where, according to Lemma 2.1, the first and the third term are O(N
1
2−

3
2α), and the second term is

O(N2−3α). That concludes the proof of Lemma 6.10 for α ∈ (2/3, 1).�

Consequently, thanks to Lemma 6.9 and Lemma 6.10, we get

sup
v∈[ 1

N ,
N−[Nα]

N ]
|LNϕ(v)− La∞ϕ(v)| = O

(
N (2−3α)∨(α−1)

)
,

this concludes the proof of Lemma 6.8.�

Lemma 6.11 PN,τd(N) is tight on D([0,+∞),R).
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Proof (of Lemma 6.11) Let Mt = σ(x(u), 0 ≤ u ≤ t). According to Theorem 3 in [16, Chapter
3], we have to show the two following points. First,

lim
K→+∞

lim
N

PN,τd(N)

(
sup
t≥0
|x(t)| ≥ K

)
= 0.

The first point is satisfied since we have ∀N , PN,τd(N)

(
supt≥0|x(t)| ≤ 1

)
= 1. Second, for each N ,

h ∈ (0, 1), s ∈ [0, h] and t ≥ 0,

EPN,τ
d(N)

(
(x(t+ s)− x(t))2|Mt

)
≤ K h.

Concerning the second point, letting ϕ ∈ C∞b (R) such that ϕ(s) = s if |s| ≤ 1, we have

EPN,τ
d(N)

(
(x(t+ s)− x(t))2|Mt

)
≤ 2 EPN,τ

d(N)
(
(MN

ϕ (t+ s)−MN
ϕ (t))2|Mt

)
+ 2 EPN,τ

d(N)

((∫ t+s

t

LNϕ(x(w))dw
)2 ∣∣∣Mt

)
,

with

MN
ϕ (t) = ϕ(x(t))− ϕ(x(0))−

∫ t

0

LNϕ(x(s))ds,

which is a (Mt)t≥0-martingale under PNd(N) and we know that

PN,τd(N)

(
sup
t≥0
|x(t)| ≤ N − [Nα]

N

)
= 1.

Moreover, by Lemma 6.8

sup
N

sup
v∈[−N−[Nα]

N ,− 1
N ]∪[ 1

N ,
N−[Nα]

N ]
|LNϕ(v)|< +∞

and the fact that LNϕ(0) = 0, we get

EPN,τ
d(N)

((∫ t+s

t

LNϕ(x(w))dw
)2 ∣∣∣Mt

)
≤ Ch2.

We recall that

< MN
ϕ >t=

∫ t

0

(
LNϕ2 − 2ϕLNϕ

)
(x(s))ds.

Then, using the martingale property of (MN
ϕ (t))t≥0, we have

EPN,τ
d(N)

(
(MN

ϕ (t+ s)−MN
ϕ (t))2|Mt

)
= EPNd(N)

(
(MN

ϕ ((t+ s) ∧ ταN )−MN
ϕ (t ∧ ταN ))2|Mt

)
= EPNd(N)

(
MN
ϕ ((t+ s) ∧ ταN )2 −MN

ϕ (t ∧ ταN )2|Mt

)
= EPNd(N)

(
< MN

ϕ >(t+s)∧ταN − < MN
ϕ >t∧ταN |Mt

)
= EPNd(N)

(∫ (t+s)∧ταN

t∧ταN

(
LNϕ2 − 2ϕLNϕ

)
(x(w))dw

∣∣∣Mt

)
≤ C h.

In fact, by Lemma 6.8 we have

sup
N

sup
v∈[−N−[Nα]

N ,− 1
N ]∪[ 1

N ,
N−[Nα]

N ]
|LNϕ(v)| < +∞,

sup
N

sup
v∈[−N−[Nα]

N ,− 1
N ]∪[ 1

N ,
N−[Nα]

N ]
|LNϕ2(v)| < +∞,

in addition to LNϕ(0) = 0 and supN LNϕ2(0) = Γc1 2
N2 < +∞. �
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Lemma 6.12 Let Qu be a limit point of the relatively compact sequence
(
PN,τd(N)

)
N
. Then, ∀ϕ ∈

C∞0 (R) and ∀r ∈ (0, 1), (Mϕ(t ∧ τr))t≥0 is a (M)t-martingale under Qu.

Proof (of Lemma 6.12) Let
(
PN
′,τ

d(N ′)

)
N ′

be a converging subsequence. Throughout this proof we
will take N for N ′ to simplify the notations. Let 0 ≤ t1 < t2 and Φ be a bounded continuous
Mt1-measurable function. We have

EPN,τ
d(N)

(
MN
ϕ (t2 ∧ τr)Φ

)
= EPN,τ

d(N)
(
MN
ϕ (t1 ∧ τr)Φ

)
.

Furthermore, ∀t ≥ 0

EPN,τ
d(N)

(∫ t∧τr

0

LNϕ(x(s))dsΦ
)

= EPN,τ
d(N)

(∫ t∧τr

0

LNϕ(x(s))1(x(s)∈IαN)dsΦ
)

+ EPN,τ
d(N)

(∫ t∧τr

0

LNϕ(x(s))1(x(s)=0)dsΦ
)
,

with IαN = [−(N − [Nα])/N,−1/N ] ∪ [1/N, (N − [Nα])/N ]. Using Lemma 6.8

lim
N

∣∣∣∣EPN,τ
d(N)

(∫ t∧τr

0

(
LNϕ(x(s))− La∞ϕ(x(s))

)
1(x(s)∈IαN)dsΦ

)∣∣∣∣ = 0.

Consequently, we have to prove the two following points:

• limN EPN,τ
d(N) (Mϕ(t ∧ τr)Φ) = EQu (Mϕ(t ∧ τr)Φ).

• limN EPN,τ
d(N)

(∫ t∧τr
0

1(x(s)=0)ds
)

= 0.

We prove the first point as follows. The problem is to apply the mapping theorem to the functional
Mϕ(t∧τr) and to do this we must have Qu(DMϕ(t∧τr)) = 0, whereDMϕ(t∧τr) is the set of discontinuities
of Mϕ(t ∧ τr) for the Skorokhod topology. While Mϕ(t) is continuous for this topology, it is not
necessarily true for τr. However, we can follow the proof of Lemma 11.1.3 in [27] and then use a
family of stopping times for which we can apply the mapping theorem.

We know that the size of the jumps of (XN
t )t is constant equal to 1/N , therefore we have

Qu(C([0,+∞),R)) = 1 (see Theorem 13.4 in [3] for instance). Then

Qu

(
DMϕ(t∧τr)

)
= Qu

(
DMϕ(t∧τr) ∩ C([0,+∞),R)

)
.

We recall that the Skorokhod topology on C([0,+∞),R) coincides with the usual topology defined on
this space. Therefore, DMϕ(t∧τr) ∩ C([0,+∞),R) is the set of discontinuities of Mϕ(t ∧ τr) under the
topology of C([0,+∞),R), and τr restrict to C([0,+∞),R) is lower semi-continuous. Consequently,
according to the proof of lemmas 11.1.2 in [27], there exists a sequence (rn)n such that rn ↗ r and

Qu

(
(τrn < +∞) ∩Dτrn

∩ C([0,+∞),R)
)

= Qu

(
(τrn < +∞) ∩Dτr

))
= 0.

Then, Qu(DMϕ(t∧τrn )) = 0 and we can apply the mapping theorem to Mϕ(t ∧ τrn), i.e

lim
N

EPN,τ
d(N) (Mϕ(t ∧ τrn)Φ) = EQu (Mϕ(t ∧ τrn)Φ) .

Finally, we obtain
EQu (Mϕ(t2 ∧ τrn)Φ) = EQu (Mϕ(t1 ∧ τrn)Φ) ,

and
lim
n

EQu (Mϕ(t ∧ τrn)Φ) = EQu (Mϕ(t ∧ τr)Φ)

because τrn ↗ τr. Consequently,

EQu (Mϕ(t2 ∧ τr)Φ) = EQu (Mϕ(t1 ∧ τr)Φ) .



C. GOMEZ SHALLOW-WATER PROPAGATION 59

For the second point, we have

EPN,τ
d(N)

(∫ t∧τr

0

1(x(s)=0)ds

)
= Ed(N)

[∫ t∧τr

0

1(XNs =0)ds

]
≤ E0

[∫ t

0

1(XNs =0)ds

]
,

since the stopped process spends less time in 0 than the original process and the last inequality is
given by the Markov property. We denote by N0

t the number of returns in 0 during the time interval
[0, t] and by (Yj)j≥0 the renewal process associated with the return times in 0, (σ(i)

0 )i≥1, of the process
(XN

t )t, with Y0 = σ
(0)
0 = 0. Moreover, for α′ ∈ (0, 1)

E0

[∫ t

0

1(XNs =0)ds

]
≤ tP0

(
N0
t ≥ [N1+α′ ]

)
+ E0

[N1+α′ ]∑
j=0

∫ σ
(j+1)
0

σ
(j)
0

1(XNs =0)ds


≤ t

[N1+α′ ]
E0[N0

t ] +
[N1+α′ ] + 1

Γc2 1

,

since
( ∫ σ(j+1)

0

σ
(j)
0

1(XNs =0)ds
)
j
is an i.i.d sequence with mean 1/Γc2 1. We recall that N0

t + 1 is a stopping

time for (Yj)j≥1. Then,

E0

[
σ

(N0
t +1)

0

]
= E0

N0
t +1∑
j=1

Yj

 =
(
E0

[
N0
t

]
+ 1
)

E0

[
σ

(1)
0

]
.

Furthermore,

E0

[
σ

(N0
t +1)

0

]
= E0

[
σ

(N0
t +1)

0

(
1(
XNt =0

) + 1(
XNt 6=0

))]
= E0

[
inf
(
s > TNt , X

N
t+s = 0

)
1(
XNt =0

)]+ E0

[
inf
(
s > 0, XN

t+s = 0
)
1(
XNt 6=0

)]
where TNt = inf

(
s > 0, XN

t+s 6= 0
)
. Then, using the Markov property we get

E0

[
inf
(
s > TNt , X

N
t+s = 0

)
1(
XNt =0

)] =
(
t+ E0

[
σ

(1)
0

] )
P0

(
XN
t = 0

)
≤ tP0

(
XN
t = 0

)
+

2N − 1
Γc1 2

and

E0

[
inf
(
s > 0, XN

t+s = 0
)
1(
XNt 6=0

)] =
N−1∑

j=−(N−1)
j 6=0

E0

[
inf
(
s > 0, XN

t+s = 0
)
1(
XNt =j

)]

=
N−1∑

j=−(N−1)
j 6=0

(
t+ Ej

[
τ

(1)
0

] )
P0

(
XN
t = j

)

=
N∑
j=1

j∑
l=1

N − l
Γcl l+1

P0

(
|XN

t | = j
)

+ tP0(XN
t 6= 0)

≤ KN − 1
N2

E0

[
|XN

t |1(XNt 6=0
)]+ tP0(XN

t 6= 0),

where K is a constant independent of N . Consequently,

E0[N0
t ] ≤ K̃ Γc1 2

2N − 1
− 2N − 1

Γc1 2

= O(N),

and

E0

[∫ t

0

1(XNs =0)ds

]
= O

(
1

Nα′∧(1−α′)

)
.

�
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From Lemma 6.12, we have ∀r ∈ (0, 1), Qu = Pu on Mτr . From this relation and the fact that
Qu(C([0,+∞),R)) = Pu(C([0,+∞),R)) = 1, Qu = Pu onMτ1 since τr ↗ τ1 as r ↗ 1.

Let f ∈ C∞([0, 1]) with compact support included in [0, 1) and let
(
PN
′,τ

d(N ′)

)
N ′

be a converging
subsequence as in the previous proof. We have

T l(N
′)

f (ω, t) = Ed(N ′)

[
f

(
|XN ′

t |+
1
N ′

)
1(t<ταN′)

]
+ r(N ′), (60)

with

r(N) = Ed(N)

[
e
−ΛcN

R t
0 1(|XNv |=N−1

N )dv−ΛcN−1

R t
0 1(|XNv |=N−2

N )dv

× f

(
|XN

t |+
1
N

)(
1(ταN≤t<τ0

N+λ) + 1(t≥τ0
N+λ)

)]
,

where τ0
N = τ

(1)
(N−1)/N ∧ τ

(1)
−(N−1)/N and λ ∈ (0, t). Using Lemma 6.11 and Lemma 6.12, we can study

the first term on the right in (60).

Ed(N ′)

[
f

(
|XN ′

t |+
1
N ′

)
1(t<ταN′)

]
= EPN

′
d(N′)

[
f

(
|x(t)|+ 1

N ′

)
1(t<ταN′)

]
= EPN

′,τ
d(N′)

[
f

(
|x(t)|+ 1

N ′

)
1(t<ταN′)

]
,

since (t < ταN ) ∈MταN
and PNd(N) = PN,τd(N) onMταN

. Moreover,

EPN
′,τ

d(N′)

[
f

(
|x(t)|+ 1

N ′

)
1(t<ταN′)

]
= EPN

′,τ
d(N′)

[
f

(
|x(t)|+ 1

N ′

)]
− f

(
N ′ − [N ′α] + 1

N ′

)
PN
′,τ

d(N ′) (t ≥ ταN ′)

= EPN
′,τ

d(N′) [f(|x(t)|)] + o(1).

Consequently,

lim
N ′

Ed(N ′)

[
f

(
|XN ′

t |+
1
N ′

)
1(t<ταN′)

]
= EQu [f(|x(t)|)].

However,
EQu

[
f(|x(t)|)1(τ1≤t)

]
= 0.

In fact, let τs = inf(t ≥ 0,∀v > t, x(v) = x(t)) be the first time for which the process becomes
constant. From the Portmanteau theorem

1 = lim
N ′

PN
′,τ

d(N ′)

(
(τs ≤ τ1)

)
≤ Qu

(
(τs ≤ τ1)

)
,

where A denote the closure under the Skorokhod topology of a subset A of D([0,+∞),R). Moreover,
we have

(τs ≤ τ1) ∩ (τ1 ≤ t) ∩ (x(0) = u) ∩ C([0,+∞),R)
= (τs ≤ τ1) ∩ (τ1 ≤ t) ∩ (x(0) = u) ∩ C([0,+∞),R).

Then,

Qu

(
|x(t)| ∈ supp(f), τ1 ≤ t

)
≤ Qu

(
|x(t)| ∈ supp(f), τs ≤ τ1 ≤ t

)
≤ Qu

(
|x(t)| ∈ supp(f), |x(t)| = 1

)
= 0,

and

lim
N ′

Ed(N ′)

[
f

(
|XN ′

t |+
1
N ′

)
1(t<ταN′)

]
= EQu

[
f(|x(t)|)1(t<τ1)

]
= EPu

[
f(|x(t)|)1(t<τ1)

]
.
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Finally, by the following lemma we get

lim
N ′
T l(N

′)
f (ω, t) = EPu

[
f(|x(t)|)1(t<τ1)

]
.

We can remark that this limit does not depend on the subsequence (N ′). The following lemma
represents the loss of energy from the propagating modes produced by the coupling between the
propagating and the radiating modes. Moreover, this lemma implies the absorbing condition at the
boundary 1 in Theorem 5.2, which implies the dissipation behavior in Theorem 5.3.

Lemma 6.13 limN ′ r(N ′) = 0.

Proof

|r(N ′)| ≤ ‖f‖∞
(

Ed(N ′)

[
e
−Λc

N′
R t
0 1(|XN′s |=N′−1

N′ )ds1(t≥τ0
N′+λ)

]
+ Pd(N ′)

(
|XN ′

t |+
1
N ′
∈ supp(f), ταN ′ ≤ t < τ0

N ′ + λ

))
.

First, let α′ ∈ (3/4, 1) and NN
t the number of passages in (N − 1)/N during the time interval [0, t].

Ed(N ′)

[
e
−Λc

N′
R t
0 1(|XN′s |=N′−1

N′ )ds1(t≥τ0
N′+λ)

]
≤ Ed(N ′)

[
e
−Λc

N′
R t
0 1(|XN′s |=N′−1

N′ )ds

×
(
1

(t≥τ(1)
(N′−1)/N′+λ)

+ 1
(t≥τ(1)

−(N′−1)/N′+λ)

)]
.

We shall work only with Ed(N ′)

[
e
−Λc

N′
R t
0 1(|XN′s |=N′−1

N′ )ds1
(t≥τ(1)

(N′−1)/N′+λ)

]
but the same proof works

for the other term.

Ed(N ′)

[
e
−Λc

N′
R t
0 1(|XN′s |=N′−1

N′ )ds1
(t≥τ(1)

(N′−1)/N′+λ)

]
≤ Ed(N ′)

[
e
−Λc

N′
R t
0 1(XN′s =N

′−1
N′ )ds1(NN

′
t ≥[Nα′ ]+1)

]
+ Pd(N ′)

(
NN ′

t ≤ [Nα′ ], t− τ (1)
(N ′−1)/N ′ ≥ λ

)
.

On (NN ′

t ≥ [N ′α
′
] + 1), we have

e
−Λc

N′
R t
0 1(|XN′s |=N′−1

N′ )ds ≤ e
−Λc

N′
PNN

′
t −1

j=1

R τ(j+1)
(N′−1)/N′

τ
(j)
(N′−1)/N′

1(XN′s =N
′−1
N′ )ds

≤
[N ′α

′
]∏

j=1

e
−Λc

N′
R τ(j+1)

(N′−1)/N′

τ
(j)
(N′−1)/N′

1(XN′s =N
′−1
N′ )ds

.

We denote by σ(1)
(N−1)/N the time of the first return in (N − 1)/N , then

Ed(N ′)

[
e
−Λc

N′
R t
0 1(XN′s =N

′−1
N′ )ds1(NN

′
t ≥[N ′α

′
]+1)

]

≤
[N ′α

′
]∏

j=1

Ed(N ′)

e−Λc
N′
R τ(j+1)

(N′−1)/N′

τ
(j)
(N′−1)/N′

1(XN′s =N
′−1
N′ )ds



≤

EN′−1
N′

e−Λc
N′
R σ(1)

(N′−1)/N′
0 1(XN′s =N

′−1
N′ )ds




[N ′α
′
]
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since
(∫ τ(j+1)

(N−1)/N

τ
(j)
(N−1)/N

1(XNs =N−1
N )ds

)
j

is an i.i.d sequence. Moreover, we can check that ΛcN ≥ CN3/2 and

then

EN′−1
N′

e−Λc
N′
R σ(1)

(N′−1)/N′
0 1(XN′s =N

′−1
N′ )ds

 ≤ EN′−1
N′

e−C N ′3/2 R σ
(1)
(N′−1)/N′

0 1(XN′s =N
′−1
N′ )ds

 .
In fact, a computation gives

ΛcN =
ak4A2

N

16πβN

∫ n1kd

n1kdθ

η
√
η2 − (n1kdθ)2√

(n1kd)2 − η2
(

1 + (βN − 1
d

√
(n1kd)2 − η2)2

)
× S(η − σN , η − σN )

(η2 − (n1kdθ)2) sin2(η) + η2 cos2(η)
dη.

However, we recall that the support of S lies in the square
[
− 3π

2 ,
3π
2

]
×
[
− 3π

2 ,
3π
2

]
, then we can restrict

the integration over
[
n1kdθ, n1kdθ + 3π

2

]
. Moreover,(

βN −
√

(n1k)2 − η2/d2
)2

= (η − σ)2 y2

1− y2
, for some y ∈

[
σN
n1kd

,
η

n1kd

]
≤
(

3π
2

)2
η2/(n1kd)2

1− η2/(n1kd)2
≤ K,

where K stands for a constant independent of N , because θ < 1 and k � 1. Therefore,

ΛcN ≥ K ′
∫ n1kdθ+

3π
2

n1kdθ

η
√
η2 − (n1kdθ)2dη ≥ K ′′N3/2,

where we assume that the function S has a positive minimum, and then K ′′ > 0.
Now, let us remark that ∀v ∈ [0, ln(N1/4)]

e−v ≤ 1− 1
N1/4

v

and

EN′−1
N′

[∫ σ
(1)
(N′−1)/N′

0

1“
XN′s =N′−1

N′

”ds
]

=
1

ΓcN ′−1N ′
.

Then, we get

EN′−1
N′

e−K′′N ′3/2 R σ
(1)
(N′−1)/N′

0 1(XN′s =N
′−1
N′ )ds

 ≤ 1− K ′′

N ′3/4

(
1− 1

ln(N ′1/4)

)

and

Ed(N ′)

[
e
−ΛN′

R t
0 1(XN′s =N

′−1
N′ )ds1(NN

′
t ≥[N ′α

′
]+1)

]
≤ e

[N ′α
′
] ln

»
1− K′′

N′3/4

„
1− 1

ln(N′1/4)

«–
.

Moreover,

Pd(N)

(
NN
t ≤ [Nα′ ], t− τ (1)

(N−1)/N ≥ λ
)
≤ Pd(N)

(
τ

([Nα
′
])

(N−1)/N − τ
(1)
(N−1)/N ≥ λ

)
≤ 1
λ

Ed(N)

(
τ

([Nα
′
])

(N−1)/N − τ
(1)
(N−1)/N

)
≤ Nα′

λ
E(N−1)/N

[
σ

(1)
(N−1)/N

]
≤ K

N1−α′ .
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Consequently,

lim
N ′

Ed(N ′)

[
e
−Λc

N′
R t
0 1(|XN′s |=N′−1

N′ )ds1(t≥τ0
N′+λ)

]
= 0.

Second, let cf ∈ (0, 1) such that supp(f) ⊂ [0, cf − 1/N ′] and x ∈ [0, cf ), then

Pd(N)

(
|XN

t |+
1
N
∈ supp(f), ταN ≤ t < τ0

N + λ

)
≤ Pd(N)

(
XN
t ∈ [−cf , cf ], ταN ≤ t < τ0

N + λ
)

≤ Pd(N)

(
XN
t ∈ [−cf , cf ], XN

ταN
=
N − [Nα]

N
, ταN ≤ t < τ0

N + λ

)
+ Pd(N)

(
XN
t ∈ [−cf , cf ], XN

ταN
= −N − [Nα]

N
, ταN ≤ t < τ0

N + λ

)
.

We shall treat only the case where XN
ταN

= (N − [Nα])/N , but the following proof works also in the
other case. Let c̃f ∈ (cf , 1), ρ ∈ (0, 1) such that [c̃f − ρ, c̃f + ρ] ⊂ (cf , 1) and λ′ ∈ (0, 1). Using the
strong Markov property we have

Pd(N)

(
XN
t ∈ [−cf , cf ], XN

ταN
=
N − [Nα]

N
, ταN ≤ t < τ0

N + λ

)
≤ PN−[Nα]

N

(
τ

(1)
(N−1)/N > λ′

)
+ PN[Nc̃f ]

N

(
τc̃f±ρ ≤ λ+ λ′

)
,

where τc̃f±ρ = inf(t ≥ 0, |x(t)− c̃f | ≥ ρ). First, a computation gives

PN−[Nα]
N

(
τ

(1)
(N−1)/N > λ′

)
≤ 1
λ′

EN−[Nα]
N

[
τ

(1)
(N−1)/N

]
=

1
λ′

N−2∑
l=N−[Nα]

N + 1 + l

Γcl+1 l+2

≤ K

N1−α .

Second, the sequence (r(N ′))N ′ is bounded. Let (r(N ′′))N ′′ be a converging subsequence. We recall
that PNc(N) = PN,τc(N) onMταN

, where c(N) = [Nc̃f ]/N , and by Lemma 6.11 the sequence
(
PN
′′,τ

c(N ′′)

)
N ′′

is tight. Let
(
PN
′′′,τ

c(N ′′′)

)
N ′′′

be a converging subsequence to Qc̃f . Moreover, τc̃f±ρ ≤ ταN and therefore(
τc̃f±ρ ≤ λ+ λ′

)
∈MταN

. Consequently, by the Portmanteau theorem

lim
N ′′′

PN
′′′

c(N ′′′)

(
τc̃f±ρ ≤ λ+ λ′

)
= lim
N ′′′

PN
′′′,τ

c(N ′′′)

(
τc̃f±ρ ≤ λ+ λ′

)
≤ lim
N ′′′

PN
′′′,τ

c(N ′′′)

((
τc̃f±ρ ≤ λ+ λ′

))
≤ Qc̃f

((
τc̃f±ρ ≤ λ+ λ′

))
.

We recall that Qc̃f (C([0,+∞),R)) = 1 and we can show that(
τc̃f±ρ ≤ λ+ λ′

)
∩ C([0,+∞),R) =

(
τc̃f±ρ ≤ λ+ λ′

)
∩ C([0,+∞),R).

Then,
lim
N ′′′

PN
′′′,τ

c(N ′′′)

(
τc̃f±ρ ≤ λ′

)
≤ Qc̃f

(
τc̃f±ρ ≤ λ+ λ′

)
,

and
lim
N ′′′

r(N ′′′) ≤ Qc̃f

(
τc̃f±ρ ≤ λ+ λ′

)
.

Finally, limN ′′′ r(N ′′′) = 0 and the limit of all subsequences (r(N ′′))N ′′ of (r(N ′))N ′ is 0. �

To finish,
(
T l(N)
f (ω, t)

)
N

is a bounded sequence. Let
(
T l(N

′)
f (ω, t)

)
N ′

be a converging subse-
quence. By the previous work, there exists an another subsequence such that

lim
N ′′
T l(N

′′)
f (ω, t) = EPu

[
f(|x(t)|)1(t<τ1)

]
,
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where the limit does not depend on the particular subsequence, then all subsequence limits of(
T l(N)
f (ω, t)

)
N

are equal to EPu
[
f(|x(t)|)1(t<τ1)

]
. Consequently,

lim
N
T l(N)
f (ω, t) = EPu

[
f(|x(t)|)1(t<τ1)

]
.

Now, we have to show that this equality holds even for a sequence (l(N))N such that l(N)/N →
u = 1, i.e limN T l(N)

f (ω, t) = 0. To do this, we write for λ ∈ (0, t),

T l(N)
f (ω, t) ≤ ‖f‖∞

(
Pd(N)

(
t < τ

(1)
(N−1)/N) + λ

)
+ Ed(N)

[
e
−ΛN

R t
0 1(XNu =N−1

N )du1“
t≥τ(1)

(N−1)/N+λ
”]).

We have already shown in Lemma 6.13 that the second term on the right in the previous inequality
goes to 0. The proof did not depend of the sequence (d(N))N . Moreover, we have

Pd(N)

(
t < τ

(1)
(N−1)/N) + λ

)
≤ 1
t− λ

Ed(N)

[
τ

(1)
(N−1)/N)

]
,

and

Ed(N)

[
τ

(1)
(N−1)/N)

]
=

N−2∑
j=l(N)−1

N + 1 + j

Γj+1,j+2
≤ K

(
1− l(N)

N

)
.

Consequently, we have ∀u ∈ [0, 1] and ∀(l(N))N such that l(N)/N → u,

lim
N
T l(N)
f (ω, t) = EPu

[
f(|x(t)|)1(t<τ1)

]
, (61)

where the limit satisfies the required conditions. Finally, from the decomposition used in the proof of
Theorem 5.3, we have ∀ϕ ∈ L2(0, 1) and ϕ̃ a smooth function with compact support

‖T Nϕ (L, .)− Tϕ(L, .)‖L2(0,1) ≤ 2‖ϕ− ϕ̃‖L2(0,1) + ‖T Nϕ̃ (L, .)− Tϕ̃(L, .)‖L2(0,1).

Using the density of the smooth functions with compact support in L2(0, 1) for ‖.‖L2(0,1) and the
dominated convergence theorem we get the first point of Theorem 5.2. The second point is a direct
consequence of the probabilistic representation (61) and the density for the sup norm over [0, 1] in
{ϕ ∈ C0([0, 1]), ϕ(1) = 0} of the smooth functions with compact support included in [0, 1).

6.5 Proof of Theorem 5.4
As in the proof of Theorem 5.2, we use a probabilistic representation of T 0,l

j (z) by using the Feynman-
Kac formula. However, we introduce the jump Markov process which is a symmetric version with
respect to reflecting barrier (N − 1)/N of that used in the proof of Theorem 5.2.

Let
(
XN
t

)
t≥0

be a jump Markov process with state space
{
−(N−1)/N, . . . , (N−1)/N, . . . , 3(N−

1)/N
}
and generator given by

LNφ
(
l

N

)
= Γc|l|+2 |l|+1

(
φ

(
l − 1
N

)
− φ

(
l

N

))
+ Γc|l| |l|+1

(
φ

(
l + 1
N

)
− φ

(
l

N

))
for l ∈ {−(N − 2), . . . ,−1},

LNφ
(
l

N

)
= Γcl l+1

(
φ

(
l − 1
N

)
− φ

(
l

N

))
+ Γcl+2 l+1

(
φ

(
l + 1
N

)
− φ

(
l

N

))
for l ∈ {1, . . . , N − 2},

LNφ
(
l

N

)
= Γc|l−2(N−1)|+2 |l−2(N−1)|+1

(
φ

(
l − 1
N

)
− φ

(
l

N

))
+ Γc|l−2(N−1)| |l−2(N−1)|+1

(
φ

(
l + 1
N

)
− φ

(
l

N

))
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for l ∈ {N, . . . , 2N − 3},

LNφ
(
l

N

)
= Γcl+2−2(N−1) l+1−2(N−1)

(
φ

(
l + 1
N

)
− φ

(
l

N

))
+ Γcl−2(N−1) l+1−2(N−1)

(
φ

(
l − 1
N

)
− φ

(
l

N

))
for l ∈ {2N − 1, . . . , 3N − 2},

LNφ
(
−N − 1

N

)
= ΓcN−1N

(
φ

(
−N − 2

N

)
− φ

(
−N − 1

N

))
,

LNφ
(

3N − 3
N

)
= ΓcN−1N

(
φ

(
3N − 4
N

)
− φ

(
3N − 3
N

))
,

LNφ(0) =
Γc2 1

2

(
φ

(
1
N

)
− φ(0)

)
+

Γc2 1

2

(
φ

(
−1
N

)
− φ(0)

)
,

LNφ
(
N − 1
N

)
=

ΓcN−1N

2

(
φ

(
N − 2
N

)
− φ

(
N − 1
N

))
+

ΓcN−1N

2

(
φ

(
N

N

)
− φ

(
N − 1
N

))
,

LNφ
(

2N − 2
N

)
=

Γc2 1

2

(
φ

(
2N − 3
N

)
− φ

(
2N − 2
N

))
+

Γc2 1

2

(
φ

(
2N − 1
N

)
− φ

(
2N − 2
N

))
.

We recall that T 0,l(z) can be viewed as a probability measure on [0, 1] by setting

T 0,l
f (z) =

N∑
j=1

f

(
j

N

)
T 0,l
j (z)

for all bounded continuous function f on [0, 1]. Let 0 < r � 1 and f be a smooth function with
support included in [0, 1− r). In order to make the link between T 0,l(z) and the process XN , let us
introduce an extension of f by setting

fN,s(v) =


f (−v + 1/N) if v ∈

[
− (N − 1)/N, 0

]
f (v + 1/N) if v ∈

[
0, (N − 1)/N

]
f (−v + (2N − 1)/N) if v ∈

[
(N − 1)/N, 2(N − 1)/N

]
f (v − (2N − 3)/N) if v ∈

[
2(N − 1)/N, (3N − 3)/N

]
.

With these two functions we get the following representation. ∀l ∈ {1, . . . , N},

T 0,l
f (z) = E l−1

N

[
fN,s(XN

z )
]
.

Moreover, we have

T 0,l
f (z) = E l−1

N

[
fs(XN

z )
]

+O
(

1
N

)
= E l−1

N

[
fs(gr(XN

z ))
]

+O
(

1
N

)
,

where
gr(v) =

{
v if v ∈ (−(1− r), 1− r) ∪ (1 + r, 3− r)
vs elsewhere,

with vs ∈ (1− r, 1− r/2), and where

fs(v) =


f(−v) if v ∈ [−1, 0]
f(v) if v ∈ [0, 1]

f(−v + 2) if v ∈ [1, 2]
f(v − 2) if v ∈ [2, 3].

Let u ∈ [0, 1) such that l(N)/N → u. One can assume u ∈ [0, 1 − r) by changing r if necessary. As
in the proof of Theorem 5.2, we have the following lemma.
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Lemma 6.14 ∀ϕ ∈ C∞0 (R).

lim
N→+∞

sup
v∈IN

∣∣∣LNϕ( [Nv]
N

)
− Lar,∞ϕ(v)

∣∣∣ = 0,

where

IN =
[
−N − 1− [Nr]

N
,− 1

N

]
∪
[

1
N
,
N − 1− [Nr]

N

]
∪
[
N − 1 + [Nr]

N
,

2N − 3
N

]
∪
[

2N − 1
N

,
3N − 3− [Nr]

N

]
,

and ar,∞ is a C1-extended version of a∞ such that

ar,∞(v) =


a∞(−v) if v ∈ (−(1− r), 0]
a∞(v) if v ∈ [0, 1− r)

a∞(−v + 2) if v ∈ (1 + r, 2]
a∞(v − 2) if v ∈ [2, 3− r),

and the martingale problem associated to Lar,∞ and starting from u is well-posed.

Lemma 6.15 The law of the process (gr(XN ))N starting from d(N) = (l(N) − 1)/N is tight on
D([0,+∞),R).

Proof (of Lemma 6.15) Let FNt = σ(XN
s , s ≤ t). According to Theorem 3 in [16, Chapter 3]. We

have to show only the two following points. First, we have

lim
K→+∞

lim
N

Pd(N)

(
sup
t≥0
|gr(XN

t )| ≥ K
)

= 0,

since ∀N , supt≥0|gr(XN
t )| ≤ 3. Second, we have for each N , h ∈ (0, 1), s ∈ [0, h] and t ≥ 0,

Ed(N)

(
(gr(XN

t+s)− gr(XN
t ))2|FNt

)
≤ K h.

In fact, we have

Ed(N)

(
(gr(XN

t+s)− gr(XN
t ))2|FNt

)
≤ 2 Ed(N)

(
(MN

gr (t+ s)−MN
gr (t))2|FNt

)
+ 2 Ed(N)

((∫ t+s

t

LNgr(XN
w )dw

)2 ∣∣∣FNt
)
,

with

MN
gr (t) = gr(XN

t )− gr(XN
0 )−

∫ t

0

LNgr(XN
s )ds,

which is a (FNt )t≥0-martingale. We also have

sup
N

sup
v∈[−N−1

N ,3N−1
N ]\

{
0,2N−1

N

}|LNgr(v)|< +∞

since by Lemma 6.14
sup
N

sup
v∈IN∪{vs}

∣∣LNgr(v)
∣∣ < +∞.

Moreover, LNgr(0) = LNgr(2(N − 1)/N) = 0. Then, we get

Ed(N)

((∫ t+s

t

LNgr(XN
w )dw

)2 ∣∣∣FNt
)
≤ Ch2.

We recall that

< MN
gr >t=

∫ t

0

(
LNgr2 − 2grLNgr

)
(XN

s )ds.
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Consequently, by the martingale property of (MN
gr (t))t≥0,

Ed(N)

(
(MN

gr (t+ s)−MN
gr (t))2|FNt

)
= Ed(N)

(
(MN

gr (t+ s)−MN
gr (t))2|FNt

)
= Ed(N)

(
MN
gr (t+ s)2 −MN

gr (t)2|FNt
)

= Ed(N)

(
< MN

gr >t+s − < MN
Id >t |FNt

)
= Ed(N)

(∫ t+s

t

(
LNg2

r − 2grLNgr
)

(XN
w )dw

∣∣∣FNt )
≤ C h.

In fact, in addition to the previous arguments, we also have

sup
N

sup
v∈IN∪{vs}

|LNg2
r(v)| < +∞,

supN LNg2
r(0) = Γc1 2

N2 < +∞, and supN LNg2
r(2(N − 1)/2) = 2Γc1 2

N2 < +∞. That concludes the proof
Lemma 6.15. �

Now, let us introduce some notations. ∀j ∈ N∗, let

τ (j)
r = inf

(
t > τ (j−1)

r,c , x(t) ∈ [−1,−(1− r)) ∪ (1− r, 1 + r) ∪ (3− r, 3]
)

τ (j)
r,c = inf

(
t > τ (j)

r , x(t) ∈ (−(1− r), 1− r) ∪ (1 + r, 3− r)
)
,

with τ (0)
r,c = 0. Using the previous lemma, there exists (N ′) such that

lim
N ′→+∞

Ed(N ′)

[
fs(gr(XN ′

z ))
]

= EQu
[
fs(x(z))

]
.

Moreover,

EQu
[
fs(x(z))

]
=
∑
j≥1

EQu
[
fs(x(z))1

(τ
(j−1)
r,c ≤z<τ(j)

r )

]
=
∑
j≥1

EQu
[
EQu

[
fs(x(z))1

(τ
(j−1)
r,c ≤z<τ(j)

r )

∣∣∣Mτ
(j−1)
r,c

]]
,

where Mt = σ(x(s), 0 ≤ s ≤ t). With the following lemma we can identify each excursion between
τ

(j−1)
r,c and τ (j)

r .

Lemma 6.16 ∀j ∈ N∗, the conditional law Qu

(
·
∣∣M

τ
(j−1)
r,c

)
coincide up to the stopping time τ (j)

r

with the conditional law Pru
(
·
∣∣M

τ
(j−1)
r,c

)
, where Pru is the unique solution of the martingale problem

associated to Lar,∞ and starting from u.

Proof (of Lemma 6.16) This proof is a conditional version of Lemma 6.12. Moreover, this lemma
follows from Lemma 6.14 and the fact that we are studying excursions between τ (j−1)

r,c and τ (j)
r . By

Lemma 6.14, in addition to gr(XN
z ) = XN

z for τ (j−1)
r,c ≤ z < τ

(j)
r ,

lim
N

Ed(N)

[∫ t∧τ(j)
r

τ
(j−1)
r,c

∣∣LNϕ(XN
s )− Lar,∞ϕ(XN

s )
∣∣ ds∣∣∣Mτ

(j−1)
r,c

]
= 0,

and we also have

E0

[∫ t

0

1(XNs =0)ds

]
= O

(
1

Nα′∧(1−α′)

)
,

E2(N−1)/N

[∫ t

0

1(XNs =2(N−1)/N)ds

]
= O

(
1

Nα′∧(1−α′)

)
by symmetry of the process XN . As in the proof of Lemma 6.12, we get that ∀ϕ ∈ C∞0 (R)

ϕ(x(t ∧ τ (j)
r ))− ϕ(x(τ (j−1)

r,c ))−
∫ t∧τ(j)

r

τ
(j−1)
r,c

Lar,∞ϕ(x(s))ds
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is a martingale under the conditional law Qu

(
·
∣∣M

τ
(j−1)
r,c

)
. Finally, from the uniqueness of the mar-

tingale problem associated to Lar,∞ , Qu

(
·
∣∣M

τ
(j−1)
r,c

)
coincide up to the stopping time τ (j)

r with

Pru
(
·
∣∣M

τ
(j−1)
r,c

)
(see Theorem 6.2.2 in [27]). That concludes the proof of Lemma 6.16.�

From the previous lemma, ∀j ∈ N∗, we have

EQu
[
fs(x(z))1

(τ
(j−1)
r,c ≤z<τ(j)

r )

]
= EPru

[
fs(x(z))1

(τ
(j−1)
r,c ≤z<τ(j)

r )

]
and then

lim
N ′→+∞

Ed(N ′)

[
fs(gr(XN ′

z ))
]

= EQu
[
fs(x(z))

]
= EPrv

[
fs(x(z))

]
,

where the limit does not depend to (N ′). Consequently,

lim
N→+∞

T 0,l(N)
f (z) = EPru

[
fs(x(z))

]
= Tf (z, u),

with
∂

∂z
Tf (z, u) = Lar,∞Tf (z, u) = La∞Tf (z, u).

For the boundary conditions, first let h ∈ (0, 1) such that 0 < h� 1, we have

1
h

(
Tf (z, h)− Tf (z,−h)

)
=

1
h

lim
N→+∞

(
E [Nh]

N

[
fs(XN

z )
]
− E− [Nh]

N

[
fs(XN

z )
])

= 0,

because of the symmetry of the process XN and fs, and therefore,

2
∂

∂u
Tf (z, 0) = 0.

Second, in the same way, let h ∈ (0, 1) such that h� 1. Moreover, one can assume r < h by changing
r if necessary. Then, we have

1
h

(
Tf (z, 1− h)− Tf (z, 1 + h)

)
=

1
h

lim
N→+∞

(
E [N(1−h)]

N

[
fs(XN

z )
]
− E [N(1+h)]

N

[
fs(XN

z )
])

= 0,

and therefore,

2
∂

∂u
Tf (z, 1) = 0.

As a result, using the density of the smooth functions with compact support in L2(0, 1) for ‖.‖L2(0,1)

and the dominated convergence theorem we get the first point of Theorem 5.4. The second point
is a consequence of the maximum principle and the density for the sup norm over [0, 1] in {ϕ ∈
C0([0, 1]), ϕ(1) = 0} of the smooth functions with compact support included in [0, 1). �
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