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Abstract

In shallow-water waveguides a propagating field can be decomposed over three kinds of modes:
the propagating modes, the radiating modes and the evanescent modes. In this paper we consider
the propagation of a wave in a randomly perturbed waveguide and we analyze the coupling
between these three kinds of modes using an asymptotic analysis based on a separation of scales
technique. Then, we derive the asymptotic form of the distribution of the mode amplitudes
and the coupled power equation for propagating modes. From this equation, we show that the
total energy carried by the propagating modes decreases exponentially with the size of the random
section and we give an expression of the decay rate. Moreover, we show that the mean propagating
mode powers converge to the solution of a diffusion equation in the high-frequency regime.

Key words. acoustic waveguides, random media, asymptotic analysis

AMS subject classification. 76B15, 35Q99, 60F05

Introduction.

Acoustic wave propagation in shallow-water waveguides has been studied for a long time because of
its numerous domains of applications. One of the most important applications is submarine detection
with active or passive sonars, but it can also be used in underwater communication, mines or ar-
chaeological artifacts detection, and to study the ocean’s structure or ocean biology. Shallow-waters
are complicated media because they have indices of refraction with spatial and time dependences.
However, the sound speed in water, which is about 1500 m/s, is sufficiently large with respect to the
motions of water masses that we can consider this medium as being time independent. Moreover,
the presence of spatial inhomogeneities in the water produces a mode coupling which can induce
significant effects over large propagation distances.

In shallow-water waveguides the transverse section can be represented as a semi-infinite interval
(see Figure [I) and then a wave field can be decomposed over three kinds of modes: the propagating
modes which propagate over long distances, the evanescent modes which decrease exponentially with
the propagation distance, and the radiating modes representing modes which penetrate under the
bottom of the water. The main purpose of this paper is to analyze how the propagating mode powers
are affected by the radiating and evanescent modes. This analysis is carried out using an asymptotic
analysis based on a separation of scale technique, where the wavelength and the correlation lengths
of the inhomogeneities, which are of the same order, are small compared to the propagation distance,
and the fluctuations of the medium are small compared to the wavelength. In the terminology of [7]
this is the so-called weakly heterogeneous regime.

Wave propagation in random waveguides with a bounded cross-section and Dirichlet boundary
conditions (see Figure [1)) has been studied in [7, Chapter 20] or [9] for instance. In this case we have
only two kinds of modes, the propagating and the evanescent modes. In such a model an asymptotic
analysis of the mode powers show total energy conservation and an equipartition of the energy carried
by the propagating modes. In [9] coupled power equations are derived under the assumption that
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Figure 1: Illustration of two kinds of waveguides. In (a) we represent a shallow-water waveguide
model with an unbounded cross-section. In (b) we represent a waveguide with a bounded cross-section.

evanescent modes are negligible. In [§] the role of evanescent modes is studied in the absence of
radiating modes. In this paper we take into account the influence of the radiating and the evanescent
modes on the coupled power equations. In this case we show a mode-dependent and frequency-
dependent attenuation on the propagating modes in Theorem [5.1] that is, the total energy carried by
the propagating modes decreases exponentially with the size of the random section and we give an
expression of the decay rate. Moreover, in the high-frequency regime, we show in Theorems [5.2] and
[6.4] that the propagating mode powers converge to the solution of a diffusion equation. All the results
of this paper are also valid for electromagnetic wave propagation in dielectric waveguides and optical
fibers [17, I8, 24] 25, 29).

The organization of this paper is as follows. In Section [T] we present the waveguide model, and
in Section [2] we present the mode decomposition associated to that model and studied in detail in
[28]. In Section [3| we study the mode coupling when the three kinds of modes are taken into account.
In the same spirit as in [7, Chapter 20], we derive the coupled mode equations, we study the energy
flux for the propagating and the radiating modes, and the influence of the evanescent modes on the
two other kinds of modes. In Section [4] under the forward scattering approximation, we study the
asymptotic form of the joint distribution of the propagating and radiating mode amplitudes. We apply
this result in Section [5| to derive the coupled power equations for the propagating modes, which was
already obtained in [I4] or [I8] for instance. In this section, we study the influence of the radiating
and evanescent modes on the mean propagating mode powers. We show that the total energy carried
by the propagating modes decreases exponentially with the size of the random section and we give
an expression of the decay rate. In other words, the radiating modes induce a mode-dependent
attenuation on the propagating modes, that is why these modes are sometimes called dissipative
modes. Moreover, under the assumption that nearest-neighbor coupling is the main power transfer
mechanism, we show, in the high-frequency regime or in the limit of large number of propagating
modes, that the mean propagating mode powers converge to the solution of a diffusion equation. We
can refer to [I4] 18] for further references and discussions about diffusion models. In that regime, we
can also observe the exponential decay behavior caused by the radiative loss.

1 Waveguide Model

We consider a two-dimensional linear acoustic wave model. The conservation equations of mass and
linear momentum are given by

o
plx, z)—u +Vp=F,
ot
1 Op (1)
K(x,z) 0t +Vu=0,

where p is the acoustic pressure, u is the acoustic velocity, p is the density of the medium, K is
the bulk modulus, and the source is modeled by the forcing term F(¢,x, z). The third coordinate z
represents the propagation axis along the waveguide. The transverse section of the waveguide is the
semi-infinite interval [0, +00), and = € [0,400) represents the transverse coordinate. Let d > 0, we
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Figure 2: Illustration of the shallow-water waveguide model.

assume that the medium parameters are given by

+ (n(z) +VeV(x,2)) if ze(0,d], zel0,L/e
1 x € 1[0,40), z € (—00,0) U (L/e, +00)
K(z,z) +n?(x) if or
x € (d,+00), z € (—00, +00).

ple,z)=p if xe€]0,4+00), z€R.

In this paper we consider the Pekeris waveguide model. This kind of model has been studied for half
a century [23] and in this model the index of refraction n(x) is given by

() = ny>1 if z€]0,d)
M= if ze€ld,+o00).

This profile can model an ocean with a constant sound speed. Such conditions can be found
during the winter in Earth’s mid latitudes and in water shallower than about 30 meters. The Pekeris
profile leads us to simplified algebra but it underestimates the complexity of the medium. However,
the analysis that we present in this paper can be extended to more general profiles n(x) with general
boundary conditions. In the Pekeris model that we consider n; represents the index of refraction of
the ocean section [0, d], where d is the depth of the ocean, and we consider that the index of refraction
of the bottom of the ocean is equal to 1. This model can also be used to study the propagation
of electromagnetic waves in a dielectric slab and an optical fiber with randomly perturbed index of
refraction [17, 18| 25| [29].

We consider a source that emits a signal in the z-direction, which is localized in the plane z = Lg.

F(t,xz,z) = U(t,x)d(z — Lg)e,. (2)

U (t, x) represents the profile of the source and e, is the unit vector pointing in the z-direction. Lg < 0
is the location of the source on the propagating axis.

The random process (V(z,z),x € [0,d],z > 0) that we consider, and which represents the spatial
inhomogeneities is presented in Section[6.1] However, one can remark that the process V' is unbounded.
This fact implies that the bulk modulus can take negative values. In order to avoid this situation, we
can work on the event

(V(:c, 2) € [0,d] x [0, L/e], 1 + VeV (z, 2) > o).
In fact, the property implies
lin(l)IP(H(a:, 2) € [0,d] % [0,L/€] : n1 + VeV, 2) < o)

< limP(ﬁ sup  sup ’V (m, E)’ > m) =0.
e—0 z€[0,L] z€[0,d] €
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2 Wave Propagation in a Homogeneous Waveguide

In this section, we assume that the medium parameters are given by
K

p(z,z) = p and K(z,z) = ’/7/2(.%‘)’

Y(z, z) € [0,400) x R.

From the conservation equations , we can derive the wave equation for the pressure field,

1 0%
Ap @ o V.F, (3)
where ¢(x) = ¢/n(x) with ¢ = \/g, and A = 92 + 92.

In underwater acoustics the density of air is very small compared to the density of water, then it
is natural to use a pressure-release condition. The pressure is very weak outside the waveguide, and
by continuity, the pressure is zero at the free surface x = 0. This consideration leads us to consider
the Dirichlet boundary conditions

p(t,0,2) =0 V(t,2) € [0,+00) x R.

Throughout this manuscript, we consider linear models of propagation. Therefore, the pressure
p(t,x, z) can be expressed as the superposition of monochromatic waves by taking its Fourier trans-
form. Here, the Fourier transform and the inverse Fourier transform, with respect to time, are defined
by

. . 1 . _
fo) = [ roetas 16 = 5- [ Flwpea.
T
In the half-space z > Lg (resp., z < Lg), taking the Fourier transform in , we get that p(w, z, 2)
satisfies the time-harmonic wave equation without source term
2p(w, x, 2) + oplw, x, 2) + K (w)n® (2)p(w, , 2) = 0, (4)

where k(w) = ¢ is the wavenumber, and with Dirichlet boundary conditions p(w,0,z) = 0 Vz. The
source term implies the following jump conditions for the pressure field across the plane z = Lg

ﬁ(wv‘raLJSr) _ﬁ(wvl'ng)
0.p(w, x, Lgr) —0.p(w,z,Lg) =

(w, ), (5)

|
L))

2.1 Spectral Decomposition in Unperturbed Waveguides

This section is devoted to the presentation of the spectral decomposition of the Pekeris operator
92 + k?(w)n?(z). The spectral analysis of this operator is carried out in [28]. Throughout this paper
we are interested in solutions of such that

P, 5 V(s o) (2) € C°((Lis, +00), HY (0, +00) N H2(0, +00) ) (€2 ((Ls, +00), H)
P, )11 (2) € C°((=00, L), HY (0, +00) N H(0, +00) ) 1€ (=00, Ls), H),

where H = L?(0,+00). H is equipped with the inner product defined by

+oo
V(h1, hg) € HxH, <h1, h2>H = / hl(l')hg(l‘)dl'
0

Consequently, in the half-space z > Lg (resp., 2z < Lg), we can consider (4) as the operational

differential equation
2

@ﬁ(w, . 2)+ Rw)(p(w,.,2)) =0 (6)

in H, where R(w) is an unbounded operator on H with domain

D(R(w)) = H3(0,+00) N H%(0, +00),
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and defined by
2

R@)(0) = gy + K@)y vy € DIR().

According to [28], R(w) is a self-adjoint operator on the Hilbert space H, and its spectrum is given

by
Sp(R(w)) = (=00, K*(w)] U {8y (@), -, BT (w) }. (7)
More precisely, Vj € {1, o, N (w)}, the modal wavenumber (3, (w)is positive and

k(W) < Bl @) < -+ < BHw) < nik*(w).
Moreover, there exists a resolution of the identity II,, of R(w) such that Vy € H, Vr € R,

N(w)
Hw(rv +OO)(y)(*T’) = Z <y7¢j(w7 ')>H¢j(w71‘)1(r7+oo) (ﬂj(w)2)

k2 (w)
+/ (Y5 Dy (W, ) by (w, 2)dY L (oo 2 () (1),

and Yy € D(R(w)), Vr € R,

N(w)

Hw(rv +OO)( Z ﬁ] y ¢J )>H¢j(wv$)1(ﬁ+00) (6]'(0‘])2)

k2 (w)
+ / 7<y,(bn,(w,x)>H¢7(w,x)dvl(,o@kz(w))(r).

Let us describe these decompositions.

Discrete part of the decomposition Vj e {1, cee N(w)}, the jth eigenvector is given by [2§]

B Aj(w)sin(oj(w )x/d) if 0<z<d
¢j(w’$)_{ Aj(w)sin(o;(w))e S @ =i d<a,
where
) = dy/ndk(w) - Bw), Gw) = dy/By(w)? - K w),
and

2/d
4@ = | —m e 0
in?(o;(w)) sin(20; (w))
750~ 2
According to [28], o1(w), ..., 0N () (w) are the solutions on (0,7n1k(w)df) of the equation
Y
tan(y) = ——F——, 9
() I (9)

such that 0 < 01(w) < -+ < on(w)(w) < n1k(w)dd, and with § = /1 —1/n?. This last equation ad-
mits exactly one solution over each interval of the form (7/2+(j—1)m, w/2+jn) for j € {1,..., N(w)},

where o {nlk(w)%} |

and [-] stands for the integer part. From @D, we get the following results about the localization of the
solutions which is used to show the main result of Section 5.2

Lemma 2.1 Let a > 1/3, we have as N(w) — +00

sup |O'j+1((.d) — Oj(w) — 7'('| =0 (N(w)%*%a) )
JE{Le (@)= [N(w)?] -1}

sup |0j2(w) = 20511 (w) + 0j(w))| = O (N(w)'3).
j€{1,...,N(w)—[N(w)>]—2}
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Continuous part of the decomposition For vy € (—o00, k?(w)), we have [28]

Py (w,z) =
A (w)sin(n(w)z/d) if 0<z<d
{ A, (w) (sin(n(w)) cos ((w)*54) + ggwg cos(n(w)) sin (5(@0)%)) if d<u,
where
n(w) =dy/nik?(w) =7, () =dVE*(w) -7,
and

) i)
Ayle) = \/ (€@ (@) s (1)) + 72(@) co2(n(@)))

It is easy to check that the function v +— A, (w) is continuous on ( — oo, k*(w)) and

(10)

) 1
1o VAP

We can remark that ¢, (w,.) does not belong to H. Then, <y, & (w, )>H is not defined in the classical
way. In fact,

Ay (w (11)

M

(y, o (w, )>H = Mllrgoo ; y(x)dy(w,z)dx  on L2( — 00, k2(w)).

Moreover, we have Vy € H

N(w) k2

(@)
Il = 3 1ot [ st}

Then,
0,:H — HY

y — ((<y’¢j(w")>H)j:1,.. N )’(<y’¢'y(w")>H)'ye(foo,k2(w))>

is an isometry, from H onto H¥ = CN®) x L2( — oo, k2(w)).

2.2 Modal Decomposition

In this section we apply the spectral decomposition introduced in Section on a solution p(w, z, 2)
of the equation @ Consequently, we get the modal decomposition for p(w,z,z) in the half-space
z> Lg,

N(w) k*(w)

Ploin,2) = 3 Bl 2)bywa) + [ 5w o)

— 00

where p(w, z) = 0,(p(w, ., 2)). For j € {1, ... ,N(w)}, ©,,011,({j}) represents the projection onto the
jth propagating mode, and p;(w, z) is the amplitude of the jth propagating mode. ©,, o IL, (0, ¥*(w))
represents the projection onto the radiating modes, and p,, (w, z) is the amplitude of the yth radiating
mode for almost every v € (0,k%(w)). Finally, ©,, o IT,(—oc,0) represents the projection onto the
evanescent modes and py(w, z) is the amplitude of the yth evanescent mode for almost every v €
(—00,0).
Consequently, p(w, z) satisfies
§ 2
2

@ﬁ'y(wvz) + ﬁ’y(wvz) =0
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in H* and the pressure field can be written as an expansion over the complete set of modes

=~ W aﬂo Z,B'(w)z H) g Qy, 0( ) 'Lﬂz
pw,x,z) = Z i2g i (w, x) + ; T ¢y (w, z)dy

\/@7
0
+[ C|W77(|)1(Z) eﬁz%(w,x)dv] L(Ls,400)(2)

N(w) =

Ao
+/ dyo(w) VPEg (w, :v)dvl L(—oo,15) (%),

Wll /4

(12)

| FOb ()
gy o)+ [ B, )iy
0

under the assumption that the coefficients (E,Y,o(w)ef\/mLS/hP/‘l) and ( o(w)e \WLS/|7|1/4)
belong to L?(—00,0).

In the previous decomposition, @; o(w) (resp., Bjyo(w)) is the amplitude of the jth right-going (resp.,
left-going) mode propagating in the right half-space z > Lg (resp., left half-space z < Lg), G,0(w)
(resp., gmo(w)) is the amplitude of the vth right-going (resp., left-going) mode radiating in the right
half-space z > Lg (resp., left half-space z < Lg), and ¢, o(w) (resp., J%O(w)) is the amplitude of the
~th right-going (resp., left-going) evanescent mode in the right half-space z > Lg (resp., left half-space
z < Ls).

We assume that the profile U(¢, z) of the source term is given, in the frequency domain, by

N N N(w)
B(w,0) = F) | Y 05, m0)05,0) + / by (@, 70) b (w.r)dy | (13)

(=8,=HU(&:k*(w))

where g € (0,d). The bound S in the spectral decomposition of the source profile was introduced to
have (I\/(w, .) € H, and £ was introduced for technical reasons. Note that S can be arbitrarily large
and & can be arbitrarily small. Therefore, the spatial profile in is an approximation of a Dirac
distribution at xg, which models a point source at xg.

Applying O, on (f) and using (12)), we get

@j0(w) = —bjo(w) = %‘(“’)f(w)qu(w,xo)e*iﬁjws vie{l,...,Nw)},
= RaRAy N 52
~ _ _ f(w)d~ (w, z0)e”VTLs  for almost every ’y € (& k*(w))
@yo(w) = ~byolw) = { ’ ! 0 ’ for almost every € (0,¢),
1/4 ~ /4
E0@) = =L F @)y (@, z0)eVIIE, & o(w) = T Flw)gs (w, ao)e VIS

for almost every v € (=5, —¢), and

o~

Cy.0(w) = dyo(w) =0
for almost every v € (—oo, —S) U (—¢,0).

3 Mode Coupling in Random Waveguides

In this section we study the expansion of p(w, x, z) when a random section [0, L/¢] is inserted between
two homogeneous waveguides (see Figure . In this section the medium parameters are given by

+ (n(z) +VeV(x,2)) if ze(0,d], zel0,L/e
1 x € 10,4+0), z € (—00,0) U (L/e, +00)
K(z,z) +n?(x) if or
€ (d7 +OO)7 FAS (700, +OO)
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In the perturbed section, the pressure field can be decomposed using the resolution of the identity
II,, of the unperturbed waveguide:

N(w) K (w)

Pz, = Y il s o)+ [ w2 )i,

i=1 —oo
where p(w, z) = 0, (p(w, ., z)). In what follows, we shall consider solutions of the form

N(w)

Plo,2) = Y Bl s + [ By (w0, 2)6 (w, 2)dy.
= (—00,~E)U(ER ()

This assumption leads us to simplified algebra in the proof of Theorem In such a decomposition,
the radiating and the evanescent part are separated by the small band (—¢,¢) with £ < 1. The goal
is to isolate the transition mode 0 between the radiating and the evanescent part of the spectrum
Sp(R(w)) given by . Moreover, we assume that € < & and therefore we have two distinct scales.
Let us remark that in this paper, we consider in a first time the asymptotic € goes to 0 and in a second
time the asymptotic £ goes to 0.

3.1 Coupled Mode Equations

In this section we give the coupled mode equations, which describe the coupling mechanism between
the amplitudes of the three kinds of modes.

In the random section [0, L/¢] the pressure field p(w, z) satisfies the following coupled equations
in HY:

dz
O Pi(0,2) + B@)Fy(, 2) + VR Z 2)pi(w, 2)
+ \/Ek2(w)/ C%(2)Dy (w, 2)dy =0,
(—00,—&)U(&,k2(w))
(14)
22 N(w)
TPy (,2) 7 Dy (w,2) + Vek? (w Z 2)pi(w, 2)
VAR (W) / O () (@, 2)dy' =0,
(—00,—&)U(&,k%(w))
where
< (2) = (5w, ), du(w, IV / 65w, 2)b1(w, )V (&, 2)d,

C7(2) = Cy(2) = <c/)j(w, D), Oy (w, .)V(.,z)>H = /0 ¢j(w, )y (w, )V (2, z)dx, (15)
d
Cf;’w, (z) = <¢7(w, ), oy (w, )V(,z)>H = /0 Oy (W, )Py (w, )V (2, 2)d.
We recall that p(w, .,.) € C°((0, +00), Hj (0, +00) N H2(0,+00)) NC*((0,+00), H), then
—£
| Py < 4o (16)

In the previous coupled equation the coefficients C*(z) represent the coupling between the three kinds
of modes, which are the propagating, radiating and evanescent modes.
Next, we introduce the amplitudes of the generalized right- and left-going modes a(w,z) and
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E(w, z), which are given by

1 < ~ ,
5. — . B (w)z . —if; (w)z
w,z) = a;(w, z)er’ +bi(w,z)e” P9 ,
PJ( ) ﬁj(w)( J( ) ]( ) )
jp](w 2) = ﬁj(w)(aj(w,z) B (w)z _ b (w,2)e —iﬂj(w)2>’
~ 1 ~ vz 1 —i/Nz
Py(w,z) = W(aw( w, 2)e™V 7% 4 by (w, 2)e VT )7

d . N A
d Py(w,2) = iy (av(wa 2)eVIE b (w, Z)e*’ﬁz)
2

Vj € {1,...,N(w)} and almost every v € (£, k?(w)). Let

He = CV@) x L2, k% (w)).

From , we obtain the coupled mode equation in Hg x Hg x L?(—o00,—¢&) for the amplitudes

(a(w, z),g(w, z), p(w, z))

d - 2 N(w) Cw ( ) R ( :
—aj(w, 2) ,2)elP=P2 Ly (w, z)e "1 A+A)2
dz "’ Z 4/5151 ( )
2(w R .
+ \[Zk? / \/7 ( (\ﬁ Bj)z + by (w,z)eﬂ(‘/?jLﬁj)z) dy'

) [ G )

+ Ve \Fprywzdfyel@
d ’LkQ W) Cw (B ~ .
a i lfﬂ)z *l(ﬁz+ﬂ)z
dzay(w z Z m( ,z)e + by(w, 2)e )
Zk; w k (w) Ow /(Z) ~ i 7_ z -~ —q 7 z
Ve 2( )/g ey (a0 (@, 2)e VTV 4B (0, 2)e VTV
ik w) [0 (2) inz
et [ S e,
d- ZkQ(w) W Cﬁ(z) (Bi+B5)z i(B1—Bj)z
Tb(w,2) =~V g = (@, 2) + Bulw, 2) )
7.2 k2 (w) cv,
- EZk 2(0(1)/ I (z) (aﬂ//(w z) (\/7+ﬁ1) +b ( ) 71(\/7 51) >d"}/
¢ Bivy
2 £ ow,
N EZk (w) / J (Z) A,Y/(w,z)d'y'e iBjz
o /Bj
- sz i(Bi+vA)z |7 —i(Bi—v7)2
—by(w,2) = Z m (al (w,2)e + by (w, 2)e )

.19 k% (w) Cw , . . ~ : 7
V) [T O e T B e Ty
3

2 71/47/1/4

i1.2 £ 0w (2 )
VD [ e,

2 71/4
d2

@ﬁ’y(wa Z) + Z/)\’y(wa Z) + \/Eg’y(wv Z) = 07

(18)

(20)

(21)
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where

(61 (w, z)ewlz +gl(w, z)e*iﬁl‘z>

k2 (w) Cw . N o
+ k() / f/&) (ay (w, 2)e™V 7" + b (w7z)e—zﬁz> &y (22)

+ k*(w / (w,2)dy'.

Let us note that in absence of random perturbations, the amplitudes a(w, z) and E(u), z) are constant.
We assume that a pulse is emitted at the source plane Lg < 0 and propagates toward the randomly
perturbed slab [0, L/e]. Using the previous section, the form of this incident field at z = 0 is given by

N(w)

k2 (w) ~ ¢
Plw.2.0) ZW o+ [ e wan+ [ 8o wan. @

Consequently, by the continuity of the pressure field across the interfaces z = 0 and z = L/¢, the
coupled mode system is complemented with the boundary conditions

a(w,0) =dp(w) and b (w, L) =0
€

in H¢. For j € {1, cee N(w)}, @ o(w) represents the initial amplitude of the jth propagating mode,
and for v € (£, k*(w)), @,,0(w) represents the initial amplitude of the yth radiating mode at z = 0.
Moreover, for v € (=85, —¢&), ¢,,0(w) represents the initial amplitude of the yth evanescent mode at
z = 0. The second condition implies that no wave comes from the right homogeneous waveguide.

3.2 Energy Flux for the Propagating and Radiating Modes

In this section we study the energy flux for the propagating and radiating modes, and the influence
of the evanescent modes on this flux.
We begin this section by introducing the radiation condition for the evanescent modes

lim HH oo,fﬁ)(ﬁ(w,.,z))uil =0.

z— 400

This condition means, in the homogeneous right half-space, that the energy carried by the evanescent
modes decay as the propagation distance becomes large. From the radiation condition and , we
get for almost every v € (—o0, —¢)

R \/E /z/\L/e \/T ) L/e \/ﬁ( —u)
P (w,2) = gy (w0, u)eV P10y +—/ M= gy
K 27/ ! o/ Janrse’ (24)

+ &y (w, mo)e_m(z_LS)l(fs,fg)(V)

Vz € [0, 4+00). According to , the relation can be viewed as a perturbation of the form of the
evanescent mode without a random perturbation. Using the same arguments as in [7, Chapter 20],
we get Vz € [0, L/,

d —£

(1@, 2) B = B, D)) = —Velm ( /

9y (W, 2)py (w, Z)Ch) ;
and

e [¢ G’Y(w’z)d*y

oL .
75 z
—ﬁ/ qﬁv(w,aso)e\mLs/ Im(gﬁ,(w,u))ef\m“dud’y,

-

0

3w, 2) s — 15, 2)Bs = G0 @)liZs — IBo()lBee —
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where L
(W, 2) = / / Im(gW(w,u)gfy(w,v))em(“*”)dvdu.
0 z

Consequently, for z = L/e, we get
[, L/€) s + 1B 0) s = o) [

¢ L/e
Ve [ o waneVPiEe [T g e VP auar.

0

The second term on the right side of the previous relation has the factor ¢ (w, xo)e\mLS which is the
form of the evanescent mode at z = 0 without a random perturbation. Therefore, if Lg is far away
from 0 and whatever the source (evanescent modes decay exponentially from Lg to 0) or if there is
no excitation of modes vy € (—oo0, —¢) by the source (that is when S = £), we can get the conservation
of the global energy flux for the propagating and radiating modes:

[aw, L/e)l3e + [[b(w, 0) e = [Iao(w)ll3e -

However, from and even if there is no evanescent modes in , the local energy flux is not
conserved. The energy related to the evanescent modes is given by the last two terms on the right
side in . Let us estimate these two quantities. First,

¥ 2

sup Md < K(&,d) sup sup )V (ac 7)’

z€[0,L/e |/ =00 /7] 2€[0,L] z€[0,d]
X sup ||a(w’z)||’)-{z’+||b(w’z)||$-{‘g+||ﬁ(waz)”%1(foo,7§)'
z€[0,L /€]
Second,

sup / ¢ (w, z0)e \/‘TLS/ Im(g(w,u))e” |7‘“dud’y’

z€[0,L /€] 0

Ked mo, o, V()

xsup [[a(w, )|l + 10w, 2)llrg + P, 2)[21 (—o0,—6)-
z€[0,L/¢€]

In the two previous inequalities K (€, d) represents a constant which can change between the different
relations. However, it is difficult to get good a priori estimates about

sup [a@(w, 2) 1 + [1b(w, 2) 3 + 15w, )71 (—o0,—¢)- (26)
z€|0, €

For this reason, let us introduce the stopping "time"

~ 1
L¢=inf | L >0, sup ||a(w, 2) |3 + [[b(w, 2) |30 + |P(w, )31 oo ey > —= | -
( ze[O,L/e]H Mg + 1l Mg + 1l MLt (—o0,—6) NG

The role of this stopping "time" is to limit the size of the random section to ensure that the quantity
is not too large. Consequently, the energy carried by the evanescent modes over the section
[0, L/€] for L < L€, is at most of order O (e/* SUDP..¢(0,1/¢] SUWPzefo,q)|V (T z)|2), and according to (55])
the local energy flux for the propagating and the radiating modes is conserved in the asymptotic
€ — 0. More precisely, we can show that Vn > 0,

lim P sup
€e—0 z€[0,L/¢€]

>n, L< Lf) =0. (27)

a(w, 2) s — 5w, i3 — N0 (@)l + [Bo(w) I3

In Section [4] we shall see, under the forward scattering approximation, that the condition L < L€ is
readily fulfilled in the limit € — 0, that is we have lim,_,o P(L < L) = 0.
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3.3 Influence of the Evanescent Modes on the Propagating and Radiating
Modes

We analyze, in this section, the influence of the evanescent modes on the coupling mechanism between
the propagating and the radiating modes.

First of all, we recall that 6, o II,(—oc0, —£) (ﬁ(w, ,z)) represents the evanescent part of the
pressure field p(w,.,z), where ©, and II, are defined in Section In this section we consider
F = L'(—o00, —¢£) equipped with the norm

—£
lolle = [ lonlan.
—0o0
which is a Banach space. Substituting into , we get
(Id — /e®) (@w o T,y (—00, —&) (A(w, -, .))) = Vep(w,.) + po(w, ). (28)
This equation holds in the Banach space (C([0,400), F),||.||so,r), where

[Ylloo, 7 = sup ly(2)lr Yy € C([0,400), F).

In (28), ®* is a linear bounded operator, from (C([0,400), F), ||| c0,r) to itself, defined by

zAL/e
4 (y)(2 / / (u)dy/eV/IIe=2)
2W
L/e
/ (u)d' eVIIGE=w) gy,
zAL/e

Vz € [0,400), and for almost every vy € (—o0, —¢)

/Z/\L/e N(w) C“’( )

(Zil (w, u)eiﬁ"“ +El (w, u)eiiﬂ”‘)

p’y(W,Z 2\/|7 1 \/E
k2 (w) Cw
+/ /1/(4>(a,y (w u) lfu+b (w u) *l\/iu)]d,.y e\/ﬁ(u z)
3

Lie N Cwl(u)

Y

2\/‘7 z/\L/s \/E

k2 (w) C“ (u - ~ o
" / 771/(4 : (@ (w,w)e™YT™ + by (w, u)eﬂﬁu)} dr/ eV G0 gy,
§ 0l

Vz € [0,+00). Finally, for almost every v € (—o0, =€) and Vz € [0, +00),

(a(w, W) 4+ (w, u)e‘ml“)

Br0(@,2) = 6o (w, mo)e VPIELIL g o (7).

We remark that 6, o I, (—o0, =) (P(w, ., .)) € C([0,+00), F) thanks to (L6). Moreover, p(w,.) €
C([0,400), F) since [ ¢ AM dw < 400, where A, (w) is defined by and satisfies (II)). We can
check that the norm of the operator ®“ is bounded by

[®“]| < K(§,d) sup sup [V (z,2)].
z€[0,L /€] z€[0,d]

Consequently, using , lim._,o P(Id — /e  is invertible) = 1. Then, the condition (Id — /e * is
invertible) is satisfied in the asymptotic € — 0. On the event (Id — /e ®* is invertible), we have
,\ wy—1 . .
@w o Hw(—OO, _5) (p(LU, © )) = (Id - \/Eq) ) (\/Ep(w7 ) + pO(wa ))
:\/>ﬁ( )+Z~)0( ,)+\@<I)‘*’(130(w7))
+Z (Ve®“) (Vep(w,.) + Ve® (po(w, )))-

j=1

(29)
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Moreover,
10 0 Iy (=00, =€) (Blw, -, .)) = Vep(w,.) = Po(w,.) — Ve (Bo(w, .)) [0,
< 2|7 [IB(w, -)lloo,F + 2€l|2°1* [|Bo(w, )l o, F

< K(d)e sup sup |V (z,2)|° sup Ha(w,z)HHg—|—Hg(w,z)||7.¢g,
2€[0,L /€] z€[0,d] z€[0,L/¢€]

and therefore
O, oI, (—o0, &) (ﬁ(w, . )) = Vep(w,.) + po(w,.) + vVe®* (po(w, .))

—|—(’)<e sup  sup |V (z,2)]* sup [a(w, 2)|lne + ||3(w,z)||H2u>
z€[0,L /€] z€[0,d] z€[0,L /€]

in C([O, +00), F) Now, we consider

2 Z/\L/E N(‘*’)
]57,2(‘«072) _ k (w) / [ C’Yl(u)
2/ || Jo = VB

kQ(w) C ’ : 7 -~ ; 7
i / 20 @ (w2 A LT T2 A L) VT) |/ eV T
3 Y

(@(w,z A L/e)e™v +by(w, 2 A L/e)e o)

(]

N(w)
B 70 ) - = .
+ (G (w, 2 A LJe)eP £ by(w, 2 A Le)e” P

2 |"Y| zAL/e |: =1 \/ﬁl ( )

kz(w) C , . ~ . 7
+ / V:/l/(f) (67/ (w,z A L/e)e’ﬁu + by (w, 2 A L/e)e_“ﬁ")} dv’em(z_“)du
13 Y

Vz € [0,+00). Using (17), (18], (19), (20), and (29), we get

[p(w, ) = Po(w, Mloor < K(&,d)v/e sup  sup |V (x,2)”
2€[0,L/€) z€[0,d)

(s e, 2y + 52y + 50, 2) )
z€[0,L /€]

and then
@w o Hw(—OO, _5) (ﬁ(wv °9 )) = \/gﬁQ(wv ) + ﬁO(wv ) + \/E(I)w(ﬁo(w, ))
+0(c swp swp (V@ s [aw, )l + 15w, 2l + 15w, 2)r)

z€[0,L /€] z€[0,d] z€[0,L/¢€]

in C([O, +00), F) Consequently, we can rewrite , , , and in a closed form in Hg x Hg'.
Vz € [0, L/¢], we get

L i(w,2) = VEH" (0,2) (0w, 2)) + VEH™ (0, 2)(Bw, 2)) + VAR (0, 2)
+eG"(w, 2) (’d(w, z)) + € Gab(w, 2) @(w, z)) + e]::{a’LS (w, 2)

+ (’)(63/2 sup  sup |V (x,2)]® sup [a(w, 2) |7 + ||3(w,z)\|Hg + ||ﬁ(w,z)||p>7
2€[0,L /€] z€[0,d) z€[0,L/€]

d ~
Th(w,2) = VEH" (0,2) (@(w, 2)) + VEH (w,2) (b(w, 2)) + VeR" (w,2)
+ e G (w, 2) (@(w,2)) + € G"(w, 2) @(w, z)) + R (w, 2)
+ (9(63/2 sup  sup |V (z,2)]° sup [a(w, 2)llre + HZ(w,z)HH? + |\§(w,z)||p)
z€[0,L /€] z€[0,d) z€[0,L/¢€]
Let us recall that these equations hold on the event (I d — /e D¥ is invertible) which satisfies the
condition lim._o P(Id — \/e ®* is invertible) = 1. In these equations, H**(w, z), H*(w, z), H**(w, 2),



C. GOMEZ SHALLOW-WATER PROPAGATION 14

H”(w,2), G*(w, 2), G®(w, 2), G*(w, z) and G (w, z) are operators from H¢ to itself defined by:

ik (w) [ C4(z)

2 [ < B @B

H;* (w,2)(y) = HY (0, 2)(y) = e

2 (30)
k% (w W
N / ( )Myw,ei(ﬁfﬁj(w))zdy}’
€ Bi(w)VAy
H (w, 2)(y) = H? (w, 2)(y) = ““2 [Z RCIOENE
Y ’ Y ! \/T ( )
31
H@) cw(2) T
+/€ 1/4 /1/4%/6 S dv/}’
N(w) w
a a Zk2 C ) w (w))z
H (w, 2)(y) = H2*(w, 2)(y [Z N (81 () +65(w))
VvV ~J
> (32)
k% (w cv
/ (w) m (2) e i(\/’7+ﬁj(w))zd,y/j|7
W
b bi zk2 N) )
H (w,2)(y) = HY(w, 2)(y) = [Z JT =B (@) 4z
(33)
*(w) Corrr(2) .
e 1 o P  QVTE SV D A
+A 71/47,1/4y'y€ d’Y},
G (w,2)(y) = G (w,2)(y) =
N(w — z w w
i (W) [ )/ 5[ CP ()05 () (i1 (@)u—y/IV](z—u)
s B (W) 1Bi(w)
L/e w w
_|_/ M iﬂz(w)u*\/W(u*Z)du}d,ylefiﬁj(w)zyl}
z Bi(w) Y |Bi(w) (34)
O /’“ * | I [ G e g,
e et v
L/e (w
+/ CJ’Y/(Z)C,Y/,Y//(U)GZ ~ —m(u Z)du:|d")/ efzﬁj(w)z ”d"}/:|
2 Bi (W) [vVA"
GY(w,2)(y) = GY(w, 2)(y) =
. N(W) — z W w
2k4(w)[z/ 5[/ (D) iywyumyie—u) g
4 L= b VVANTBW)
L/e (w
+/ M lﬁz w)u—\/\’T(u Z)du}d’ye iﬁzyl}
z VI 1Bi(w) (35)
)C’Y "/”(u) % 'y”ufm(zfu)du

o /W/ /\/ NN

L/e (1w
+ / Gy (B) G (1) e’ ””"‘\m(u—z)du} dv’e‘iﬁzywdwﬂ} 7
z VI VAT
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G“b(w 2)(y) = W(y) =

zk4 (w) [ R L A GO PN AR W oy SR
Mgy I\t B (w)u z=u) g
[Z/J/o EEON '
'l( u) _Zﬂl(w)u—m(u—z)d d~/ e~ Pi(w)z
/ w ) el (36)
zk4 / / [/ M —iv7Tu—/IV(z=u) gy,
0 /B IV
of TG OT ) e g ey ],
z Bi (W)Y VA"
G (w,2)(y) = GY(w, 2)(y) =
Zk'4 w N(W) )C 'l(u) 7iﬁ1(w)u7\/m(27u)
;/ / V) "
o GO L1 CO P DR oy —i
—i0 u=2) vl d !, —i\/YZ
/ w \m( ¢ el (37)

L/e (1w w
+ / O Oy ) i e Z>du]dve iﬁzywdvﬂ]'

ST

The operators H**(w, z) and H*(w, z) represent the coupling between the propagating and the ra-
diating modes with themselves, while the operators G*(w, z) and G*(w, z) represent the coupling

between the evanescent modes with the propagating and the radiating modes. Moreover, R*%S (w, z),
~ a,L ~ b, L .
R" S(w, z), R>Es (w,2), and R S(w, z) represent the influence of the evanescent modes produced

by the source term on the propagating and the radiating modes. These terms are defined by
ik (W) (75 CL.(2 )

2 T

. €0 ,(2)
a w ’
R&Fs (w,2) = Rz’LS (w,2) = /s |jy'|yl/4 by

(w,xg)e™V |7’\(Z*L5)d7’6*iﬁj (W)Z7 (38)

a,L _RbLs(, .\ —
Rj S(wvz) *Rj S(w7z) -

(w, mo)e” VIIE=Ls) gyl e=ivaz  (39)

208 (2)C5 0 (u % 7
(2)C5 5 ( )%”(w’xo)e—\/h l(u-Ls) g—v/ I T(—w) gy

o VBl (40)
L/e (1w w
" Cj’y'<z)C’Y”y” (U)(b n(w,xo)e_ /"Y”l(u_LS)e_ /W‘(“_Z)du d’y"d’y/ e—iﬁj(w)z7
7 vy
2 B (w) 1|
Ra Ls(w,2) = Rb’Ls(w,z) =
4
L / / / G W) o o)V L) o=y 0 g

0 Naled (41)

L/e (1w w
+ —OAW,(Z C’YW“ () Pyt (w7xo)e_\/W(U—Ls)e_\/m(u—z)du} Ay dry' e"IVIZ,

. VIl
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3.4 Forward Scattering Approximation

In this section we introduce the forward scattering approximation, which is widely used in the lit-
erature. In this approximation the coupling between forward- and backward-propagating modes is
assumed to be negligible compared to the coupling between the forward-propagating modes. We refer
to [9 [I1] for justifications on the validity of this approximation.

The justification of this approximation is as follows. The coupling between a right-going propa-
gating mode and a left-going propagating mode involves a coefficient of the form

+oo
/O E[C%(0)C%(2)] cos ((Bu(w) + B;(w))2) d,

and the coupling between two right-going propagating modes or two left-going propagating modes
involves a coeflicient of the form

+oo
| ECHOCE s () = B @)2)a:
V(0 e {1,..., N(w)}Q. Therefore, if we assume that

+oo
/0 E[ ;"1(0) J“l(z)] cos ((ﬁl(w) +ﬂj(w))z)dz =0 V() € {17 . ,N(w)}z,

then there is no coupling between right-going and left-going propagating modes, which justifies the
forward scattering approximation, but there is still coupling between right-going propagating modes
which will be described in Section

In our context the operator R(w), introduced in Section has a continuous spectrum and it
becomes technically complex to apply a limit theorem for the rescaled process (a(w, z/ e),/g(w, z/€)).
The reason is the following. This process is not bounded and the stopping times which are the first
exit times of closed balls are not lower semicontinuous for the topology of C([0, L], g,w)7 where H¢ ,,
stands for Hg equipped with the weak topology. In our context the continuous part (&, k%(w)) of
the spectrum imposes us to use the norm ||||H2u to control some quantities. Moreover, according to
Theorem in which the energy of the limit process is not conserved, it seems not possible to show
a limit theorem on C([0, L], (H¢., ||.[lx¢)) in view of 7). In [7] and [9] there is a finite number of
propagating modes, so that the weak topology and the strong topology are the same. In [II] the
number of propagating modes increases as € goes to 0. However, in this last case, the problem can
be corrected by considering the first exit times of a closed ball related to the weak topology and by
considering the process in an appropriate finite-dimensional dual space.

In our context if we forget these technical problems, according to [7, @] the forward scattering
approximation should be valid in the asymptotic € — 0 under the assumption that the power spectral
density of the process V, i.e. the Fourier transform of its z-autocorrelation function, possesses a
cut-off wavenumber. In other words, we can consider the case where

+oo
/0 E[ J“}(O)Cﬁ(z)] cos ((ﬁl(w) + ﬂj(w))z)dz =0 V(5] € {17 . ,N(w)}z.

Let us remark that the continuous part (0, k%(w)) of the spectrum, which corresponds to the radiating
modes, does not play any role in the previous assumption. The reason is that the radiating part of
the process plays no role in the coupling mechanism as we can see in Theorems and below and
therefore remains constant.

Finally, we shall consider the simplified equation on [0, L /€],

L, ) = VEH™ (,2) (@, 2)) + VAR (w,2)

+eG™(w, 2) (@(w, 2)) + e R™ (w, 2)

+O(& s s Vi@ sup [, )bty + 5w 2l )
2€[0,L /€] z€[0,d] z€[0,L/€]

in Hg¢. We shall see in Section {4 under the forward scattering approximation, that
li]fréIP’(L6 <L)=0 VL>0,
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where

1
LE:inf(L>O, sup ||[a(w, 2)||3. + ||p(w, 2 22—).
ze[O)L/E]H (w; 2) 7 + IP(w; )7 NG

Consequently, we can show that Vn > 0

lim IP( sup ‘||a(w,z)||${g - ||ao(w)||$-cg > 77) =0.

€=0 N\ 2€[0,L/¢]

This result means that the local energy flux for the propagating and the radiating modes is conserved
in the asymptotic € — 0.

4 Coupled Mode Processes

In this section, we study the asymptotic behavior, as ¢ — 0 in first and £ — 0 in second, of the
statistical properties of the coupling mechanism in terms of a diffusion process.
Let us define the rescaled process

a‘(w,2)=a (w, %) Vz € [0, L].

This scaling corresponds to the size of the random section [0, L/€]. This process satisfies the rescaled
coupled mode equations on [0, L]

d%ae(w,z) - \%H (. 2) @20 + \%R“’LS (%)
+G (w, f) (@ (w,2) +R"" (w, z) (42)

—I-O(ﬁ sup  sup |V (z,2)]> sup Hae(w,z)HHg—I—Hﬁ(w,z/e)Hp)
2€[0,L /€] z€[0,d] z€[0,L]

in H¢, with the initial condition a°(w,0) = ap(w). We shall see that under the forward scattering
approximation the condition L¢ > L is readily fulfilled in the asymptotic € goes to 0.

Proposition 4.1 VL > 0,
limP (L < L)=0,

e—0
where 1
Lezinf<L>0, sup  ||a(w, 2) |3 + ||P(w, 2 22—),
iy [a(w, 2|7 + IP(w, 2) |17 7
and

lim lim P sup [[@%(w,2)||%. > M | =0.
M —+o00 e—0 (ZE[O,L] || ( )||H§ >

This result means that the amplitude a¢(w, z) is asymptotically uniformly bounded in the limit € — 0
on [0, L]. More precisely, according to Section we have Vn > 0

limP( sup | ‘Hae(u’»z)”%—(‘g - HaO(w)”?H? = 71) =9

e—0 <z€[0,L

that is the local energy flux for the propagating and the radiating modes is conserved in the asymptotic
e — 0.

Proof Using Gronwall’s inequality, VL > 0 we get

lim Tim P| sup |a“(w,2)||3. > M, L<L¢|=0.
Jim Ty (zemn (@ I )



C. GOMEZ SHALLOW-WATER PROPAGATION 18

This result means that the process a¢(w, .) is asymptotically uniformly bounded on [0, L] and then L¢
is large compared to L in the asymptotic € — 0. In fact, VL > 0 and VM > 0

P(L<L)<P|L°<L, sup [a“(w,2)|lfe <M
2€[0,LALF] ¢

+P sup  |[a%(w, 2)||3e > M | .
z€[0,LALF] ¢

Moreover,

PlL<L, sup [[a(w,2)|}e<M|=0
z€[0,LALF] ¢
for € small enough, since for L < L
e V2< sup @ (w, )3 + IPw, )1 E
z€[0,L€]
<M+ EK(Ede sup  sup |V (z,2)]> M +2||po(w, )% »
z€[0,L /€] z€[0,d]

according to (29). W

Let us introduce a$(w, .) the unique solution of the differential equation on [0, L]

Tit(2) = 2B (0.2) @il 2) + € (0.) @i (02) (43)

in ‘HY¢, with initial condition a$(w,0) = ag(w). Using Gronwall’s inequality and we can state that

lim lim P sup |a$(w,z2)||ne > M | =0.
i T2 (s 16 > )

The relation between the solution of the full system and the one of the simplified system is
given by the following proposition.

Proposition 4.2

V>0 andVu >0, limP| sup |a°(w,z)—aj(w,z)||ne >n] =0.
=0 \seluL) :

Proposition 4.2l means that the information about the evanescent part of the source profile is lost in the
asymptotic € goes to 0. In fact, the coupling mechanism described by the system implies that the
information about the evanescent part of the source profile is transmitted to the propagating modes

~ a,L
through the coefficients R*%S (w, z) and R""° (w, z) defined by ®8), (39, and ({I). In these
expressions we have the term ¢/ (w,z)e”V 1"I(z=Ls) which comes from the right-hand side of
and which is the form of evanescent modes without a random perturbation. This term is responsible

for the loss of information about the evanescent part of the source profile because of its exponentially
decreasing behavior.

Proof We begin by proving that VL > 0, ¥n > 0 and Yu > 0

HmP( sup [[a“(w,z) —a5(w,2)||3e >n, L<L| =0.
e—0 2€[w,L] 3

~ ’L
In fact, R“%S (w, 2) decreases exponentially fast with the propagation distance. Moreover, R"° (w, 2)

can be treated as G* in the proof of Theorem 4.1 because e~V I(#=Ls) cannot be compensated by
e~ 8i(@)z nor by e~*V7%. Moreover, using Proposition we get the result. B
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Finally, we introduce the transfer operator TS (w, z) from H‘g to itself, which is the unique operator
solution of the differential equation

d 1 z z
I3 — aa d IN3 aa d IN3
—dZT (w,2) —\EH (w, 6) T (w,2) + G (w, 6) T(w, 2) (44)

with T%(w,0) = Id. Then,
Vz e [0,L], a1(w,z)=T"(w,z2)(d(w)),
and we get the following result.

Proposition 4.3

Vi >0 and Yu > 0, liH(l)]P ( sup [[a“(w, z) — Tg’e(w,z)(ao(w))ﬂgig > 77> =0.
= 2€[w, L]

4.1 Limit Theorem

This section presents the basic theoretical results of this paper. In [9] and [I4], the authors used
the limit theorem stated in [22] since the number of propagating modes was fixed. However, in
our configuration, in addition to the N(w)-discrete propagating modes the wave field consists of a
continuum of radiating modes. The two following results are based on a diffusion-approximation
result for the solution of an ordinary differential equation with random coefficients. This result is an
extension of that stated in [22] to the case of processes with values in a Hilbert space.

Theorem 4.1 VL >0 and Vy € H = CN@) X L2(&, k2 (w)), the family (Ts’e(w, ')<y))5€(0 )7 solution
of the differential equation , converges in distribution on C([0, L], ?w) as € — 0 to a limit denoted
by T* (w,)(y). Here HE,, stands for the Hilbert space H¢ equipped with the weak topology. This limit

, W

is the unique diffusion process on HY, starting from y, associated to the infinitesimal generator

$ =LY+ L5+ L

where
1 N (w) o o
Ly = 5 Z I5(w) (TjTjaTlaﬁ+ TiTy0r, 07 — 151101, 01, — TjTlaquaﬁ)
j,l=1
g
1 N (w) o o
+5 2 Thiw) (TjTlaTjaﬁ + TyTy00r, — Ty T, O, TjTlaT—jaﬁ)
Gil=1
1 N(w) ; N (w)
5 2 (05) ~Th(@) (Tor, + Tyor) + 5 3 13,) (Ldr, ~ Tyor;)
Jj=1 j=1
and
1 _
L5 =5 2 (A7) +iA7* @) Ty, + (55 (w) — A} ) Tior,
j=1
N(w) B
fe=1 Y k5w (Tor, - Tor).
j=1

Here, we have considered the classical complex derivative with the following notation: If v = vy +ivs,
then 9, = %(81,1 —i0,,) and Oy = %(8,,1 +i0,,). We have used the following notations. V(j,1) €
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{1,...,Nw)}* and j #1

4 w +o0
;l(w) = k()()/o E[ J“}(O)Cﬁ(z)} cos ((,Bl (w) — B; (w))z)dz
N(w)
Z re,

l#]

s ﬂ - e in i(w))z)dz
519) = o5 G )A E[C50)05(2)] sin (1) — ,())2)d

N(w)
Z I,

=

and V(j,1) € {1,...,N(w)}",

)= @) [ prow
) = 5o L ElC0c )
k4 (w

k% (w)
A% (W) =
°(0) /5 s

k% (w) 400
SE(L) = (w w @ ()] sin ((\/7 — B;(w))z)dzd'

—£ +<>o
kS (w) = w cos (B:(w)z) e~ VI 2 dzdy
0= [ e W/ 005 (2)] cos (55 (w)z)e VI Fdzdy

The coupling coefficients C*(z) are defined by . We get the following result in the asymptotic
£—0.

“+oo
)(w) | B 0003 ()] cos (VA7 = By(w))z)deay’
)
(

Theorem 4.2 VL > 0 and Yy € HY = CNV @) x L2(0,k?(w)), the family (Tf(w, .)(y))ge(o 1) converges

in distribution on C([0, L], (Hg, [|.[[=)) as & — 0 to a limit denoted by T%w,.)(y). This limit is the
unique diffusion process on Hg, starting from vy, associated to the infinitesimal generator

LY =LY+ L5+ L8,

where

N (w) o
Z (AS(w) +iA3(w)) Tjor, + (A;(w)—iA;(w))TjaT—j,
()
=i > k() (Tion, — T ).

=1

w o _
5 =

2 N | =
—

<.

Here, we have Vj € {1,...,N(w)}

A(w) = lim AT (@), Aj(w) = Bm AT (@), () = lim k(0.

Theorems [£.1] and [4:2] describe the asymptotic behavior, as € — 0 first and £ — 0 second, of
the statistical properties of the transfer operator Tf’e(w,L), in terms of a diffusion process. In the
appendix we give the proofs of Theorems and which are based on a martingale approach using
the perturbed-test-function method. In a first step we show the tightness of the processes, and in a
second step we characterize all subsequence limits by mean of a well-posed martingale problem in a
Hilbert space.

The infinitesimal generator £% is composed of three parts which represent different behaviors on
the diffusion process. We can remark that the infinitesimal generator depends only on the N(w)-
discrete coordinates. The first operator £ describes the coupling between the N(w)-propagating
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modes. This part is of the form of the infinitesimal generator obtained in [7, [9], and the total energy
is conserved. The second operator L4 describes the coupling between the propagating modes with
the radiating modes. This part implies a mode-dependent and frequency-dependent attenuation on
the N(w)-propagating modes that we study in Section and a mode-dependent and frequency-
dependent phase modulation. The third operator £4 describes the coupling between the propagating
and the evanescent modes, and implies a mode-dependent and frequency-dependent phase modulation.
The purely imaginary part of the operator £ does not remove energy from the propagating modes
but gives an effective dispersion.

Moreover, let us remark that the convergence in Theorem [4.1] holds also on C([0, L], (K¢, ||l ))

for the N(w)-discrete propagating mode amplitudes.

4.2 Mean Mode Amplitudes

In this section we study the asymptotic mean mode amplitudes. From Theorem we get the
following result about the mean mode amplitudes.

Proposition 4.4 Vy € H§, Vz € [0,L], Vj € {1,...,N(w)}

lim lim E [T?’e(w7 2) (y)} =E [T?(w, 2)@)}

£—0e—0
¢ (W) =T () — AS(w s (W) — A° (w (45)
:eXpKrﬂ( )~ T (w) — A%( >>Z+i<%<>%<>+kj<w)) ] 1)

2 2

First, let us remark that the mean amplitude of the radiating part remains constant on L?(0, k?(w)).
Second, Vj € {1,...,N(w)}, the coefficient (Tj;(w) + A§(w) — T%;(w))/2 is nonnegative. In fact,
for (j,1) € {1,...,N(w)}? such that j # I, I'S)(w) and I'};(w) are nonnegative because they are
proportional to the power spectral density of C) and C%; at §; (w)—p;(w) and 0 frequencies. Therefore,
—I'§;(w) is also nonnegative. Moreover, Aj(w) is also nonnegative because it is proportional to the
integral over (0, k*(w)) of the power spectral density of C%, at /7 — 3;(w) frequency.

The exponential decay rate for the mean jth-propagating mode is given by

[E[T0w, £)»)]| = lus] exp [_ (F}j(w) - F;?Jé(w) + A;@)) L] |

which depends on the effective coupling between the propagating modes, and the coupling between
the propagating and the radiating modes. This exponential decay corresponds to a loss of coherence
of the transmitted field.

5 Coupled Power Equations

This section is devoted to the analysis of the asymptotic mean mode powers of the propagating modes.
More precisely, we study the asymptotic effects of the coupling between the propagating modes with
the radiating modes. Let

N e 2 2
T (w.2) = lim I B[ 75w, L)) ] = E[ [T, 26)]°]. (46)
be the asymptotic mean mode power of the jth propagating modes. ’Z}l (w, L) is the expected power
of the jth propagating mode at the propagation distance z = L. Here ' € HE is defined by yé =0
and ¢!, = 0 for v € (0, k*(w)), and where §j; is the Kronecker symbol. The initial condition ' means

that an impulse equal to one charges only the /th propagating mode. From Theorem [£.2] we have the
coupled power equations:

N (w)
—T(w,2) = —Aj(W) T} (,2) + Y T5(w) (Tiw,2) = T (v, 2) (47)
n=1

n#j
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Figure 3: Illustration of the radiative loss in the shallow-water random waveguide model.

with initial conditions ’2}1 (w,0) = dj;. These equations describe the transfer of energy between the
propagating modes and I'°(w) is the energy transport matrix. In our context, we also have the
coefficients A‘;-(w) given by the coupling between the propagating modes with the radiating modes.
These coefficients, defined in Theorem are responsible for the radiative loss of energy in the ocean
bottom (see Figure [3]). This loss of energy is described more precisely in the following section.

5.1 Exponential Decay of the Propagating Modes Energy

In this section, we assume that at least one of the coefficients A¢(w) is positive. With this assumption,

we show that the total energy carried by the propagating modes decays exponentially with the size L

of the random section. In the opposite situation, that is when there is no radiative loss A¢(w) =0, it

has been shown in [7] and [9, Chapter 20] that the energy of the propagating modes is conserved and

for large L the asymptotic distribution of the energy becomes uniform over the propagating modes.
Let us defined

SYW —{X eRVE), X;20 Vi€ {l...,N@)}and X3 ene = (X, X)gue =1}
with (X,Y) SN X,Y; for (X,Y) € (RV®))?, and

A§(w) = diag(Af(w), ..., Af\,(w)(w)).

RN(w) —

Theorem 5.1 Let us assume that the energy transport matriz I'(w) is irreducible. Then, we have

N (w)
. 1 I
i | ST D) = At
with
A (w) = inf,(w) <( —TI%(w) + Aé(w))X, X>RN(M), (48)
xes?

which is positive as soon as one of the coefficients A$(w) is positive.

This result means that the total energy carried by the expected powers of the propagating modes
decays exponentially with the propagation distance, and the decay rate can be expressed in terms of
a variational formula over a finite-dimensional space.

Proof The coupled power equations admit a probabilistic representation in terms of a jump Markov

(w))

process. If we denote by (Y;N a jump Markov process with state space {1,..., N(w)} and

>0
intensity matrix I'*(w), then we have using the Feynman-Kac formula:

731((4), 2)=E {exp </0 A(}:’SN(“) (w)ds> l(YzN(“’>:j) ’YON(w) = l] . (49)
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YN(W)

Moreover, we have supposed that I'“(w) is irreducible. Then, ( f in an ergodic process with

)ez0
invariant measure fip(,), which is the uniform distribution over {1,..., N(w)}. That is, un(w)(j) =

1/N(w) Vj € {1,...,N(w)}. The self-adjoint generator of the jump Markov process (YtN(w))tZO is
given by

N (w)
LY6() = Thj(w) (@(n) — 6())
n=1
for every function ¢ from {1,..., N(w)} to R, and it is easy to check that EN(“’)MN(W) = 0. Let us

consider the local times
lr(j ——/ 1 W N\ds
(J) o (YSN( >_j)

for j € {1,...,N(w)} and T > 0, which corresponds to the time spent by the process (YtN(w))DO in
the state j during the time interval [0,7]. According to [5], we have a large deviation principle for
%lT viewed as a random process with values in Miv(w) which is the set of probability measures on

{1,...,N(w)}. More precisely, we have
. 1 A€ 1 N(w)
lim ElnE[exp(—L < ,zlL>RN(w))‘YO :l]

LYoo
= lim %ln]E{exp ( - /OL A;SN(u)ds) ‘YON(w) — l}

L—+o0
=l () + (A(). )
HEM]
with . 12 ) .
I(p) = || (- T(w)) \/EHQ,RN(u) = ((=T(W) Vit V) gn o -

Consequently,

N(w)

. 1 y _
LEIEOO 7 In ; T/ (w,L)| = —Ax(w).

Let us assume that A (w) =0. As Sf(w) is a compact space, there exists X € Siv(w) such that
Aso(w) = (= T*(w) + Ag(w)) Xo, Xo)gn e = 0.

Moreover, —I'*(w) and A(w) are two nonnegative matrices and 0 is a simple eigenvalue of —I'*(w) by
the Perron-Frobenius theorem. Then,

<(_Fc(w))X0?X0>RN(w) =0& Xog= VN (w)s

and
(AG(@) X0, Xo)pwiwy =0=Fj € {1,...,N(w)}, Xo(j) =0.
Therefore,
A (w) > 0.
[ |

The expression of A (w) is not simple. However, we have the following inequalities.

N(w)
_ 1
in A < Ao < Aw) = —— 5 A%w). 50
jen ™Ry M) < @ = AW N(w)j; i) (%0)

First, we assume that Vj € {1,..., N(w)}, Af(w) = A(w) > 0. In this case, using

This means that if all the coefficients which represent the radiation losses are equal, the decay rate
of the total energy of the propagating modes is given by this coefficient.
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Second, we assume that the coupling matrix is small, that is, we replace I'“(w) by 7'%(w) with
<1 IfVje{l,...,N(w)}, A(w) > 0 we have

lim A7 (w) = min A (w).
iy A ) JE{L N (@)} i)
From , it is the smallest value that A (w) can take. This result is consistent with the fact that
the coupling process on the transfer of energy between propagating modes is negligible and the decay
rate of the energy of a particular propagating mode j is given by its own decay coefficient A;(w).
Then, for the total energy of propagating modes the decay rate is given by the minimum of those

decay coefficients. Consequently, if there exists A§ (w) = 0, we have

lim A7 (w) = 0.

=0
The reason is the energy of the joth propagating mode stays approximately constant with a weak
transfer of energy, and

1 . .
lim —AL (w) = ;Tg/ (= TW)X, X)gwe >0,

where R
V= {X € Sf(w), suppX C {1,...,N(w)}\ supp(AC(w))} ;

because \/IiN(w) ¢ V.
Now, we assume that the coupling matrix is large, that is we replace I'“(w) by 1I'*(w) with 7 < 1.
In this case, we have
PE%) AT (w) = Aw).

From , it is the largest value that Ao (w) can take. The strong coupling produces a uniform
distribution of energy over the propagating modes and the decay rate becomes <Ac(w), ,uN(w)>RN(w) =

A(w) for each mode. A more convenient way to get this result is to use a probabilistic representation.
In fact, we have

z _ " A N(w) _
T/ (w,2) =E [exp (—/0 AYN(w(W)) 1(YZN(W):j) ‘YO = l]

s/T
T z/T N
= |exp <_Zz/0 A;gww(”)) 1(1@%‘”):3’) ‘Yo (@) _ l] ,
where (YtN(w))t>O is a jump Markov process with state space {1,..., N(w)} and intensity matrix

I'“(w). Using the ergodic properties of (YtN(“)))DO7 we get that
. T, 1 e
llg})’]} (w,L) = N exp (—A(w)L) .

Finally, if we assume that the radiation losses are negligible, that is we replace A°(w) by 7A%(w) with
T K 1, we have

lin%) Al (w) =0.

T

In fact, if the radiative loss is negligible, the coupling process becomes dominant, and we can show
that
VL > 07 sup ||7}T’l(w7 Z) - 7}0’1(("')7 Z)HQ,RN(“) = O(T)7
z€[0,L]

where 7%!(w,.) satisfies without the coefficient A°(w). In this situation
7 (w,L) =P (YLN(“’) — j‘YON(“’) — l) ,

and the total energy is conserved (see Figure [4)), and

N g _
Thino ;Am(w) =A(w) > 0.

As it was already observed in [9] the modal energy distribution converges as L — +o00 to a uniform
distribution:

. 0.1 _
Jim T D) = gy
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Figure 4: Illustration of negligible radiation losses in the shallow-water random waveguide model.

5.2 High-Frequency Approximation to Coupled Power Equations

In this section, under the assumption that nearest-neighbor coupling, introduced in Section [5.2.1] is
the main power transfer mechanism, we give an approximate solution of the coupled power equations
(47) in the high-frequency regime or in the limit of large number of propagating modes N(w) > 1.
Let us note that the limit of a large number of propagating modes N(w) > 1 corresponds to the
high-frequency regime w — +o00. Next, we analyze the energy carried by the propagating modes in
this regime.

The coupled power equations can be approximated in the high-frequency regime by a diffusion
equation. This approximation has been already obtained in [I4] for instance, in which we can find fur-
ther references about this topic. We can also refer to [18] for more discussions on this approximation.
For an application of such a diffusion model to acoustic propagation in randomly sound channels we
refer to [19], and for applications to time reversal of waves we refer to [I1].

Using the form of the covariance function , we find

ak4(w)lj 1(w)

1) = 2B + (35 = A
and
AS(w) = /kQ(w) ak (W) (@) i
g 0 2B;(w)yA(a? + (Bj(w) — y7)?)
where
I :iAiAlQ [S(O’j — 01,05 — 0'1) + S(O’j + 01,05 + O’l)
— S(O’j —o1,05+ al) - S(O’j +o0y,05 — O’l)i|,
Ljy ZEA?Ai [S(Uj —n,05 =) +8(o; +n,05+n)
PR T —
with

d rd
v v
S(’Ul,Ug):/ / ’}/0(.13173?2)(308(jxl)COS(EQxQ)dxldeQ,
o Jo

and where A;(w), A,(w), 0;(w), n(w), ¢;(w,z), and ¢,(w,z) are defined in Section [2.1]

5.2.1 Band-Limiting Idealization

In this section, we introduce a band-limiting idealization hypothesis in which the power spectral
density of the random fluctuations is assumed to be limited in both the transverse and the longitudinal
directions.
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We assume that the support of S lies in the square [ — 3 3”] X [f 37”, 37”} Then,

Mwaz{i@@%ﬁ@ﬁ@ﬂdamW%%W%%MW) mmimg j=1l=1
and
Jﬁwgz{iAﬂwAﬂwsﬁmﬁJWW%%@ﬂ—me mmi@ﬁl%@ﬂ—mwﬂﬁ%

From this assumption we get V0 < v < k?(w) and j € {1,..., N(w) — 2},
1
n(w) —oj(w) > nik(w)dy |1 — i oj(w) > nik(w)dd — (N(w) —2)7

> (’“’i(r“’)da - N(@) o

€[0,1)
Then, for j € {1,...,N(w) — 2},
3
£ - il
(éﬂw”() 7j(w) > <
and
Aj(w)=0, Vje{l,...,N(w)—2}.
Consequently, the coupled power equations become
d c C
@TJ@(Z) = —AZTN(2) +Thoin (Thoa(2) — T (2))
d c C
57}{1_1(2) = =AY TN (2) + T i voo (Th—2(2) = TR 1 (2))
+T% 1w (Ta(2) = T (2)) (51)

LTH) =T (T ()~ THE) + T (T (2) = (@) for e {2, N 2},
LTi(2) =15, (B() - T(2)),

with 7/(0) = 6.

The band-limiting idealization hypothesis is tantamount to a nearest-neighbor coupling. More
precisely, this assumption implies that V(j,1) € {1,..., N(w)}? the jth mode amplitude can exchange
informations with the {th amplitude mode if they are direct neighbors, that is, if they satisfy |j—1I| < 1.

5.2.2 High-Frequency Approximation

The evolution of the mean mode powers of the propagating modes can be described, in the high-
frequency regime or in the limit of a large number of propagating modes N(w) > 1, by a diffusion
model. This diffusive continuous model is equipped with boundary conditions which take into account
the effect of the radiating modes at the bottom and the free surface of the waveguide (see Figure
page .

Let, Vo € C°([0,1]), Yu € [0,1], and 2z > 0,

N(w)

N(w) _ TNl _ J [N (w)u]
TN ) = TV 2) = 3 o (355 T w0 2)

where ¢ — TN(W)( ,.) can be extended to an operator from L?(0,1) to itself. Here, L?(0,1) is
equipped with the inner product defined as follows: V(p,v) € L?(0,1)?

1
<@7¢>L2(071) :A 90('0)1/)(1))(1’0
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Theorem 5.2 We have
1. Yo € L*(0,1) and Vz > 0,

lim TN (z,u) = T,(2,u) in L*(0,1),

w——+00

where T,(z,u) satisfies the partial differential equation : ¥(z,u) € (0,+00) x (0,1),
0 0 0
5o = 5 (40557, ) (),

with the boundary conditions

%TW(Z,O) =0, 7,(z1)=0, and 7,(0,u)=p(u),

Vz > 0.
2. Yu € [0,1], V2 > 0, and Vo € C°([0,1]) such that p(1) = 0, we have

lim %N(“)(z,u) =T,(z,u).

w—+00
Here,
ao
1— (11— 25) (Bu)?’

with ag = 2(;;%, 0=+/1-1/n2, Sy = fod fod’YQ(CEl,.TJQ) cos (Zx1) cos (Zxg)dardry. ny is the index
of refraction in the ocean section [0,d], 1/a is the correlation length of the random inhomogeneities
in the longitudinal direction, and g is the covariance function of the random inhomogeneities in the
transverse direction.

oo (u) =

This theorem is a continuum approximation in the limit of a large number of propagating modes
N(w) > 1. This approximation gives us, in the high-frequency regime, a diffusion model for the
transfer of energy between the N (w)-discrete propagating modes, with a reflecting boundary condition
at x = 0 (the top of the waveguide in Figure [2[ page |3) and an absorbing boundary condition at u = 1
(the bottom of the waveguide in Figure [2)) which represents the radiative loss (see Figure [3)).

5.2.3 Exponential Decay in the High-Frequency Regime

In the high-frequency regime, we also observe that the energy carried by the continuum of propagating
modes decays exponentially with the propagation distance. The exponential decay of the energy in
the high-frequency regime is given by the following result.

Theorem 5.3 Vp € L%(0,1) \ {0} such that ¢ >0, and Yu € [0, 1),

1
lim Zln [7,(L,u)] = —Aw,

L—+o0
where L
Ay = inf 0o (V)¢ (v)2dv > 0
Jof | @ (V)¢ (v)“dv
and

D={pec(O1). lolmon =1 2ol0)=0. p1)=0}.

This result means that the energy carried by each propagating modes decays exponentially with the
propagation propagation, and the decay rate can be expressed in terms of a variational formula.
Consequently, the spatial inhomogeneities of the medium and the geometry of the shallow-water
waveguide lead us to an exponential decay phenomenon caused by the radiative loss into the ocean
bottom.
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Proof We can see that the operator Py, = 8% (am(o)a%) on L%([0,1]), with domain

D) = {e € #20.1), 5-o0) =0, (1) =0}

is self-adjoint. P, has a compact resolvent Ry = (M d — P.,)~! because [0,1] is a compact set and
then it has a point spectrum (A;);>1 with eigenvectors denoted by (¢o,j)j>1. Moreover, all the
eigenspaces are finite-dimensional subspaces of D(Ps,) and V¢ € D(Py) \ {0}

<POO(<IO)7 ¢>L2(071) < O

Let us organize the point spectrum in the nonincreasing way, - -- < Aa < A1 < 0. We have
L
%(Lv ’U) = Z <§0a ¢oo,j>L2(O)1)e ’ ¢oo,j(v)-
Jj=1

Lemma 5.1 \; is a simple eigenvalue and one can choose ¢oo 1 such that ¢oo1(v) >0 Vv € [0,1).

Proof (of Lemma This lemma is a consequence of the Krein-Rutman theorem, but not its
strongest form [26]. Indeed, the set of nonnegative functions in L?([0,1]) has an empty interior.
However, using the smoothness of the eigenvector the proof also works in our case as we shall see it.

Using the maximum principle we know that if p € L?([0,1]) such that ¢ > 0, we have 7,,(L,.) > 0,
and then Ry () > 0. Consequently, applying the Krein-Rutman theorem [26] to the resolvent operator
Ry with A > 0 and which is a compact operator, the spectral radius p(R)) is an eigenvalue, for which
one can associate an eigenvector ¢,(g,) such that Vv € [0,1], ¢,(r,)(v) > 0. However, we have
Vo € [0,1), py(r,)(v) > 0. In fact, let us assume that there exists vo € [0,1) such that ¢,(g,)(vo) = 0,
then Ry (¢r,)(vo) = 0. Moreover, Rx(¢r,) = p(Rx)©,(r,) is an eigenvector for P, and then ¢,(g,)
is a smooth function on [0, 1]. Therefore, according to the proof of Theorem [5.2| we have

—+o0
Ra(or)o0) = [ €N T (k)i
e AP
:/0 e TME [pp(ry) (@(8) Lie<ry ] dt
P o At
o[ [Ny a0it] =0,

where P, is the unique solution of the martingale problem associated to Lg_ = 8% (Em(o)a%) and
starting from wvg. Here, we have chosen @o such that Yo € [0,1], Goo(v) = Goo(—v) = ano(v), and
the martingale problem associated to Lz is well-posed. Moreover, 71 = inf(t > 0, |z(¢)] > 1).
Consequently, Py, ( [;' e ¢ ,r,)(lz(t)|)dt = 0) = 1. However, we know that there exists v1 € (0, 1)
such that @,(r,)(v1) > 0, and then v; < vo < 1. Therefore, Py, (11 < 7,) = 1, and by the Markov
property

0 < BP0 [ 1, o] = B0 [T 1 e mimy)]
< E]P’1 [e—‘rm 1(Tv1 <+oo)]
< EPvo [e= T 1(T,Ul<+oo)]v

which is impossible. Therefore, Vo € [0,1), ©,(g,) > 0. Now, to see that the eigenvalue p(R)) is
simple, let ¢ € L2(0,1) \ {0} such that Ry(¢) = p(Rx)e, and let

Pgp, R —  C°0,1])
t — PRy —t%

which is a continuous function. We recall that ¢ is a smooth function on [0,1]. Let us show that
3t € R such that ¢ = tp,(g,), that is 0 € Pg,(R). To do this let us assume that 0 ¢ Pg, (R). By
linearity one can assume that Jvy € [0,1) such that ¢(vg) > 0. Let n > 0 be small enough to have
vo € [0,1—n]. Let K,f = {¢ € C°([0,1 —n]),Yv € [0,1 = n],p(v) > 0}, then the interior of K
for the sup norm on [0,1] is K,/ = {¢ € C°([0,1 —n]),Yv € [0,1 — 7], o(v) > 0}. Moreover, for ¢
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small enough r, —tp € K", and pr, —te ¢ K, for t large enough. Then 3ty € R such that
YR, —top € K;r \ K;rf However, ¢r, —top > 0, but pgr, —top # 0 because 0 ¢ Pg, (R). Following
the previous work we have

p(Rx)(#ry — tow) = Ra(wr, — toy) € K,I T
Consequently, p(Ry) = 1/(A — A1) implies that A; is also a simple eigenvalue and one can choose
$oo1 = Ra(¢ry) = p(Rx)pr, € KT
That concludes the proof of Lemma O

As a result, Vo € L%(0,1) \ {0} such that ¢ > 0, Vv € [0,1) we get

lim %ln [7,(L,v)] = A,

L—+o00
and
A= sup Py (), v =—-Asx <0.
' ©ED(Poo) < =(¢) >L2([0’1D >
HS@HL2([0,1]):1
|

In Theorem we take ¢ € L?(0,1)\ {0} such that ¢ > 0, which can be consider as being the initial
repartition of energy over the continuum of modes. However, the result of Theorem is also valid

for any ¢ € L2(0,1) \ {0} such that (0, o1} 20 4 > 0-

5.3 High-Frequency Approximation to Coupled Power Equation with Neg-
ligible Radiation Losses

In the case of negligible radiation losses, we also get a continuous diffusive model for the coupled
power equations in the high-frequency regime or in the limit of a large number of propagating modes
N(w) > 1. This diffusive continuous model is equipped with boundary conditions which take into
account the negligible effect of the radiation losses at the bottom and the free surface of the waveguide
(see Figure {4| page . }

Now, let us assume that the radiation losses are negligible, that is, A°(w) = TA°(w) with 7 < 1.
We have already remarked that, if the radiation losses are negligible, then the coupling process is
predominant and we have

VL >0, sup. 177! (w, 2) = T (@, 2)l2,zve) = O(7),
z€[0,L

where 7%!(w,.) satisfies

d C

ZTV(2) = Thoaw (T84 () - V')

d .

ST =T, (T2 = T2)) + T, (T ()~ T(@)) forj e {2, N = 1),
d

ZT(2) =15, () - 1))

with 7! (0) = 8.

5.3.1 High Frequency Approximation
Let, Vo € C°([0,1]), Vu € [0,1], and z > 0,
N(w) :
TN (zu) = TN (z) = (p( ﬁ )%[mmu](z)’

Jj=1

where ¢ — ’]Z/,N(w)(z, .) can be extended into an operator from L?(0, 1) to itself.
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Theorem 5.4 We have
1. Vo € L*(0,1) and Vz > 0,
lim ’Z;N(“)(zm) =T,(z,u) in L*(0,1),

w——+00

where T,(z,u) satisfies the partial differential equation : ¥(z,u) € (0,+00) x (0,1),

%Tv(z,u) = (% (aoo(')aau'fw> (2, u),

with the boundary conditions

ETAP(Z’ 0) = 07

0
5 —7,(2,1) =0, and T,(0,u) = ¢(u),

ov
Vz > 0.

2. Yu €10,1), Vz > 0, and Yo € C°([0,1]) such that p(1) =0, we have
lim TV (z,u) = T,(z,u).

w—+00 L
Here,
1= (1= ) 0"

with apg = 2(12?‘%’ 0=+/1-— l/n%, SO = fod fodf)/o(xl’;gQ) CcOS (gxl) COS (%xQ)dxlde. ni 18 the index
of refraction in the ocean section [0,d], 1/a is the correlation length of the random inhomogeneities
in the longitudinal direction, and o is the covariance function of the random inhomogeneities in the
transverse direction.

oo (u)

This theorem is a continuum approximation in the limit of a large number of propagating modes in
the case where the radiation losses are negligible.This approximation gives us, in the high-frequency
regime, a diffusion model for the transfer of energy between the N(w)-discrete propagating modes,
with two reflecting boundary conditions at u = 0 (the top of the waveguide in Figure 2| page [3) and
u = 1 (the bottom of the waveguide in Figure [2)). Here, the two reflecting boundary conditions mean
that there is no radiative loss anymore (see Figure [4)).

5.3.2 Asymptotic behavior of 7(L,v) as L — +0o0

In the case where the radiation losses are negligible, we have seen in Section that the decay rate
satisfies lim, o A7 (w) = 0 and 7%!(w, L) converge to the uniform distribution over {1,..., N(w)} as
L — 400 [9]. In the high-frequency regime we have the following continuous version.

Theorem 5.5 Vo € L?(0,1) and Yu € [0, 1],
1
Jim Tz = [ o,

that is, the energy carried by the continuum of propagating modes converges exponentially fast to the
uniform distribution over [0,1] as L — +o0.

As a result, the energy is conserved and the modal energy distribution converges to a uniform distri-
bution as L — +o00.

Proof We can see that the operator P, = 8% (aoo(-)a%) on L*([0,1]), with domain

D(P) = {0 € O, Jp0 =0, o) =0}

is self-adjoint. Moreover, Py, has a compact resolvant because [0, 1] is a compact set and then it has
a point spectrum ()\;);>0 with eigenvectors denoted by (¢oc,;)j>0. Moreover, all the eigenspaces are
finite-dimensional subspaces of D(Py) and Vo € D(Px) \ {0}

<P00(80)7 %0>L2(0,1) S O
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Let us remark that Mg = 0 is a simple eigenvalue with eigenvector ¢o,0 = 1. Then, the spectrum is
include in (—o0, 0] and we have the following decomposition

1
Tv(zav):/o <)D(U)Clv_|'2:<<)07¢oo,j>Lz(0’1)€>\jz¢oc,j(v)'

j=1
Therefore, Yu € [0, 1],

1
Jim Tz = [ o,

with exponential rate A\; < 0.

Conclusion

In this paper we have analyzed the propagation of waves in a shallow-water acoustic waveguide with
random perturbations. In such a waveguide, the wave field can be decomposed into three kinds
of modes, which are the propagating, the radiating, and the evanescent modes, and the random
perturbations produce a coupling between these modes.

We have shown that the evolution of the propagating mode amplitudes can be described as a
diffusion process (Theorems and . This diffusion takes into account the main coupling mecha-
nisms: The coupling with the evanescent modes induces a mode-dependent and frequency-dependent
phase modulation on the propagating modes, the coupling with the radiating modes, in addition
to a mode-dependent and frequency-dependent phase modulation, induces a mode-dependent and
frequency-dependent attenuation on the propagating modes. In other words, the propagating modes
lose energy in the form of radiation into the bottom of the waveguide and their total energy decays
exponentially with the propagation distance. We can express the decay rate in terms of a variational
formula over a finite-dimensional space (Theorem [5.1)).

Under the assumption that nearest-neighbor coupling is the main power transfer mechanism, the
evolution of the mean mode powers of the propagating modes can be described, in the high frequency
regime or in the limit of a large number of propagating modes, by a continuous diffusive model with
boundary conditions which take into account the effect of the radiation losses at the bottom and the
free surface of the waveguide. In this regime, we observe that the energy carried by the continuum of
propagating modes also decay exponentially with the propagation distance. The exponential decay
rate can be express in terms of a variational formula (Theorem [5.3)).

The diffusive systems obtained in this paper can be used to analyze pulse propagation and refo-
cusing during time-reversal experiments in underwater acoustics [11].

6 Appendix
6.1 Gaussian Random Field

This section is a short remainder about some properties of Gaussian random fields that we use in the
proofs of Theorems and in Sections [3:2] and [3:3] All the results exposed in this section can be
shown using the standard properties of Gaussian random fields presented in [I] and [2] for instance.

In this paper, the random perturbations of the medium parameters are modeled using a random
process denoted by (V(z,t),z € [0,d],t > 0). Throughout this paper the process V is a continuous
real-valued zero-mean Gaussian field with a covariance function given by

E[V(z,2)V(y,22)] = y0(z,y)e” =771 V(z,y) € [0,d]* and V(z1, 22) € [0,400)*.  (52)

Here, a > 0; 7o : [0,d] x [0, d] — R is a Lipschitz function, which is the kernel of a nonnegative operator,
that is, there exists a nonnegative operator Q., from L?(0,d) to itself such that V(p, ) € L?(0, d)?

d pd
(Quo(#):¥) 20,0y = /0 /0 0(2; y) ()¢ (y)dedy.

Consequently, one can consider the process (V(.,%)):>0 as being a continuous zero-mean Gaussian
field with values in L?(0,d) and covariance operator Q.,. In other words, ¥n € N*, V(p1,...,¢,) €
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L2(0,d)", and Y(t1 ..., t,) € [0, 4+00)"
(Vw (tl)a ceey V«pn (tn)) = <<V(7 tl)a <'01>L2(0,d)7 ey <V(7 tn)v @">L2(O,d))

is a real-valued zero-mean Gaussian vector such that V(j,1) € {1,...,n}?

E [V%' (tj)vtpz (tl)] = <Q'YD (@j)v ¢l>L2(07d)6_a‘tj —ul, (53)
With this point of view we have the following proposition.

Proposition 6.1 We have

1. (V(.,t))>0 is a continuous zero-mean stationary Gaussian field with values in L*(0,d) and
autocorrelation function given by . Then, we have Vn € N* and Vt > 0,

(/Od\v(x,t)yzdx>n] —E (/Od|v(x,o)\2dx>n

2. We have the following Markov property. Let
Fi=0V(,s),s<t)

E < +00. (54)

be the o-algebra generated by (V(.,s),s <t). We have

(Vit+m|7) = (Viot+m|evm),
where the equality holds in law, and this law is the one of a Gaussian field with mean
E[V(.,t+h)|F] =e "V (1)
and covariance, V(p, ) € L*(0,d)?,

E[Vw(t + h)Vy(t 4+ h) — E[V,(t + h)|F]E[ Vi (t + h)|F] ft}
= <Q’Yo (¢>’w>L2(0,d) (1 - e_2ah) .

The Markov property of the random process (V(.,t)):>o is a direct consequence of the exponential
form of the autocorrelation function with respect to the variable ¢ [I]. This property will be used
in the proof of Theorems [4.1] which are based on the perturbed-test-function method.

Now, we are interested in some estimation on the supremum of V(z,t) with respect to the two
variables z and ¢t. To this end, let us introduce some notations [2]. Let ¢ > 0 be a small parameter
and L > 0. We consider the following pseudo-metric on the square [0, d] x [0, L/¢] defined by

m((2,1), (5,9) =B [(V(2,8) = V(y,9)2]* < Koo [It = 5] + | — ]].

Let us remark that [0, d] x [0, L /€] associated to the pseudo-metric m is a compact set. From Theorem
1.3.3 in [2], we have

diam([0,d]x[0,L/€])/2
E| sup |V(z,1)] gK/ HY?(r)dr
0

z€[0,d]
SUPzc(0,d] Yo(,x) dL
< Kl In KQ* d’l“,
2
0 r<e

tel0,L /€]
where H(r) = In(N(r)), and N(r) denotes the smallest number of balls, for the pseudo-metric m,
with radius r to cover the square [0, d] x [0, L/€]. Here, diam stands for the diameter with respect to
the pseudo-metric m. Consequently, we have the following proposition.

Proposition 6.2 Yy > 0 and VK > 0,

lim ]P’(e“ sup  sup |V(z,t)] > K) =0. (55)
=0 w€(0,d] t€[0,L /€]

Moreover, according to Theorem 2.1.1 in [2], one can show that the limit is obtained exponentially
fast as e — 0.



C. GOMEZ SHALLOW-WATER PROPAGATION 33

6.2 Proof of Theorem [4.1]

The proof of this theorem is in two parts. The process (Tg’e(z))po is not adapted with respect to
the filtration 7 = F, /.. Then, the first part of the proof consists in simplifying the problem and
introducing a new process for which the martingale approach can be used. The first part of the proof
follows the ideas of [I5]. The second part of proof of this theorem is based on a martingale approach
using the perturbed-test-function method and follows the ideas developed in [4].

Then, let us introduce ’i‘g’ﬁ(.) the unique solution of the differential equation

%Tf,e(z) = \%Haa <§) T&e(z) + <Gaa>'i‘£’€(z), (56)

with T4¢(0) = Id and where (G**) is defined, Vy € He, by

3 i e +o0
aa = " » ()] cos (8;2)e~ VI dzdr 'y,
(G >g(y) /_Oo 2@'\/7/0 E[Cjy (0)Cjy (2)] cos (B;2) dzdry'y;

Vje{l,...,N} and <Gaa>w(y) =0 for v € (&, k?). We have the following proposition that describes

the relation between the two processes T(z) and ’i‘&s(z).

Proposition 6.3

Yy € He and Vi > 0, lirr(l)]P’ ( sup || TS(2)(y) — T

z€[0,L]

()W), > 77) =0.
Let us remark that the new process (’i‘g’e(z))po is adapted to the filtration F¢ and

~£,€
1T () (W) 17, = Iyl ¥z > 0.

Let Ty = ||yHHga
Brte = { A € Her Il = (0 X, <7}

the closed ball with radius r,, and {gn,n > 1} a dense subset of B, 7,.. We equip B, 3, with the
distance dp,, ,, defined by

+oo

1
dBrU‘)-(g )‘1“' Z?’ )‘_,Uf,gn>7.t£

V(A p) € (Br, 1 )?, and then (B, d&‘yﬁe) is a compact metric space.

Using a particular tightness criterion, we prove the tightness of the family (’i‘s’e(.))ée(o’l) on
C([0, +00), (B,«y,Hg,dBTy’H&)), which is a polish space. We have chosen such a space to be able to
apply the Portmanteau theorem. In a second part, we shall characterize all subsequence limits as
solutions of a well-posed martingale problem in the Hilbert space He.

We have the following version of the Arzela-Ascoli theorem [3| [I3] for processes with values in a
complete separable metric space.

Theorem 6.1 A set B C C([0, +00), (Bryﬂ{,dlgwﬂg)) has a compact closure if and only if

vT >0, limsupmr(g,n) =0,
n—0gcA
with

mr(g,n) = sup dp, . (9(s),9(t)).
(s,t)€l0,T]?
[t—s|<n

From this result, we obtain the classical tightness criterion.
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Theorem 6.2 A family of probability measure (}P’E)ee(o 1y on C([0, +00), (BTvaE’dBry,HE)) 1s tight if

and only if

VI'>0,7">0 lim sup P(g; mr(g,n) >n') =0.
1=0¢e(0,1)

From the definition of the metric dBT e the tightness criterion becomes the following.

Theorem 6.3 A family of processes (X)ce(o,1) is tight in C([0,+00), (Bryﬁé,dlgw’%)) if and only
if (<XE,)\>HE)6€(O ) is tight on C([0,40),C) VA € He.

This last theorem looks like the tightness criterion of Mitoma and Fouque |21, [6].
For any A € H¢, we set Tie(z)(y) = <’i‘£’€(z)(y),)\>ﬁg. According to Theorem the family

(T%°()(w))e is tight in ([0, +00). (B, 1. d5,, ) if and only if the family (T3°(.)()). is tight on
C([0, +0),C) VA € He. Furthermore, (’i‘ge()(y))6 is a family of continuous processes. Then, it is

sufficient to prove that VA € He, (’i‘ie()(y))6 is tight in D([0, +00), C), which is the set of cad-lag
functions with values in C equipped with the Skorokhod topology.

Proof (of Proposition [6.3]) Differentiating the square norm and using the fact that H**(z) is skew
Hermitian, we get

3

T (2) () — T (2)(y >||HE
=P / (G (2) = (6™ )T (2)(w), T () () — T

£e

()W), du

He

2l (G| / ||Tf’6<u><y>—T“(u)(y)n%g.

Let ' > 0, we will split the interval [0, z/€] into intervals of length n’/1/e. The idea is that over these
intervals the fast dynamic of G averages out while T*¢ does not move significantly. We have

= &€

¢ /Oz/6<(eaa<u>><Ga“>)T€7€<eu><y>,Tfﬁ(w)(y)T (@),

He

()% .
<fe [T (@) — (@) T ) T w) - T (@),
z/e .
e, 1 (@0 = @D T 6. T ) - T @) )), 4o
Ven' 1 Ve ¢
with
z/e e
e (@ — (@) T ) w), T ) - T )w), dif
(7] He

L 1/2
< | (/ la™ (%) |12du) +Ven' [(G™)|

< sup [|T(2) () |l | T (2) (y) — 'j-“é’e(z)(y)HHE
z€[0,L]
since 0 < z — [\/gn’} Ven' < \/en', and
(&% e
[T (@~ (@) T ), T () ) - T (), dul
0 ¢

[ ] 1) 2
éﬁfz Ve / ( +””<(Gw — (G*) T (eu) (), T (eu)(y) — T (ew)(y) ), du.
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Moreover,

T (eu)(y) =T§’€(mn’x/5)(y)+/u VEH™ () TS (e0) (y) + €G™ () T (ev) (y)dv

%
and N
T (eu)(y) = T (maf Vo) (y) + / VA )T (@) () + (G )T (e0) (y)dv.
me
Therefore, we have
(m+1) 2 e
Ve / L (@) = (G ) T () (1), T (ew)(y) - T (w)(y) ), du
m-= 3
(m+1) 2 .
= ve[ (@ W) — (@) T G VO ), T (Ve y) — T (VO )
m-_z 3
(m+1)"—,€ u e
T (@ )~ (@) H )T () (1), T () y) - T () )
ml= m-_ 13
(G ()~ (G)) G ()T (@) (). T () ) — T (1)),
(G () — (G T Vo)), B (0) (T (e0) ) = T (e0) 1)),

+ E2((G () = (G™)) T (mi V) ), G ()T (ev) (y) — (G )T (e0)(w)) .

He

Consequently, by the Gronwall’s inequality

sup [T(2)() - T W, < Ble,n)ellle )l

where
1/2
Ble,n') —2lel/4f (/ le™ (2) | du) + Ve [{G)|

X sup IIT“( YW IT () () = T () (W) e

z€[0,L

(2e[lG™ @l + (G I] 1B (0)]

o s o
aa aa 2 € € = &€
+e2[|GH (w)] + (G ) s ITS(2) (W)l 1TS(2) () = T (2) (1) |2 dv du
<m+1>f

o

and

p( sw ITC) ) - T W, > n) < B(Blen) = geIlelL),
z€[0,L]

Setting 0’ = ne*2H<Gm>HL, we have
P(Ble.n) 2 0") <B(Ble;n) > 0", sup [T ()(y)l%, < M)

z€[0,L]

+P( sup [T ()W), = M)

z€[0,L

(G (1)~ (@) T V) ), T VO ) — T VO 0))

35
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We already know that the process ’i‘ge()(y) is bounded. Moreover,

1
IP(B > T 2 <M)<—EB 1
() 2y sup T @) < M) < GE BN wes@mig, <u)

with

E |:B(6,7’]/)1( >:| SK[n/2+61/4\/,'?+ ﬁ(n/_’_n/z)]

sup. cjo,2) I T6(2) () <M
L
I:ﬂn/ ] -1

+2ve Y

1
[ (sup.cio ) TS ()W) 13, <M)

(m+1) 1 el
Ve[ (@ w - (@) T o Vo), T G VO ) — B (VO 0)) |
m-_e 3
SK[n/2+61/4\/7+\[n/+77/2)]

1/2
Y /

+2\fK Z ‘\f/(mﬂfgaa () <Gaa>duH2 ’

n

o

m=0

S

smcef( +)ff dvdu-%and
m_oz

B e ()] < ke

(/0d|V(x,0)|2dx)2] (57)

for u € [0, L]. As a result, it remains us to estimate only one term.
Lemma 6.1
[ﬁ} -1 (m+1):}—/g 2 1/2
lyve 30 E H\/E/mf G ()~ (G"yaul | =o0.

Proof (of Lemma [6.1]) Let us remark that we have the following decomposition. For each j €
{1,...,N}, almost every v € (¢,k?), and Vy € He,

N L2
G (2)(y) = Y G )y + /5 G2 (2)y, d,
=1
N k2
G2(2)(y) = Y G2y + /5 G, ()
=1
Letting

(m+1) 2
1ENG G (u) — (G du,
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we have (j,0)% € {1,... ,N}2 such that j # [, and almost every v € (&, k?)
(m+1
Pj; = \[/ Gaa( ) = <Gaa>jj du,
(m—&-l)f
jl - \[/ (L )duv
(m+1>f
Pjy = \[/ Gaa (u)du,

n’

(m+1 NG
P = e / , | i

o

(m+1%
’w*\[/ , G5 (u)du,
%
and
k2 N k2 k2
||P||2<Z|Pﬂ|2+z / PPy + [ S Palays [ [ PPy ar
ji=1 € =1 € J¢
Moreover,

E [V(acl, 21)V (22, 22)V (z3, 23)V (24, 24)} =F [V(mh 21)V (z2, 22)} E [V(ac;;, z3)V (24, z;;)}

n E[V(gghzl)V(zg,Zg)]E[V(IQ,ZQ)V(I4,Z4)}

+ F [V(xl, 21)V (24, z4)] E [V(xz, z9)V (x3, 23)}

= 0@, w2)0 (w3, wq)e 1l e elza 2l

—alz1—z3] g —alzz—z4]

+0(w1, 23)70(22, T4 )€
+v0(x1, 24)v0(22, 73)€

7a|z17z4|€7a|z27z3|
b

37

which is the fourth order moment of a Gaussian field. To compute the expectation of the square
norm of P we must know these moments. Following that decomposition, the square norm of P can be
decomposed in three parts. First, after a long computation, the two parts corresponding to the two
last terms of the previous decomposition are dominated by /€ uniformly in m. Then, we focus our

attention on the part corresponding to the first part of the previous decomposition. For E[|Pm/|2],

E[IP+i|?], and E[|P;|?] with j # [, we get after a long computation terms of the form

(m+1) L (mt1) L
6/ f/ z(\ﬁ 57)“1 —i(vy' - 5J)u2dU1 dug = 0(6),

’

(m+1)Ze  p(m41)2
€ v v et Br=vMur o=i(Br=vMv2 gy doyy = O(e),

et (Bi=By)ur =i (Bi=B)u2 gy, iy = O(e).

For E[|P,,/|?] we separate the integral into two parts.

K pk?
/ / E[|Pw,|2]d7’d7:/ E[|Pw,|2]d7’d7+/ E[|P.|?]dY dv,
13 13 I>, 1

<u

where p > 0 and

Ly ={(n7) e €82 |Vi- V7| 2},

L ={(n7) € €1 |[VA— V| <n}
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J.

and on I, we get terms of the form

Consequently,
E[|Pyy[*]dy dvy < K/I dy' dry,
<p

n

(i) Ze pmaD T ‘
€ / / Ve / Y VAT D =T V2 Gy dugdndy = O(e).
I, m% ml‘f/

Now, it remains us to study E[|ij|2]. After a long computation, the terms of order one produced
by G{j are compensated by the terms of order one given by <G““>j. Moreover, the other terms are

dominated by /e.
As a result, we get

[ﬁ]_l (m+1)i 2 1/2
_ Ve
mve > E H\/E/ / G‘m(u)—<G““>duH <K.[ dvdy
€e— 0 mal I<M

and one can conclude the proof of Lemma [6.1] by letting ¢ — 0.0

S

From the previous lemma, we finally get, Vn’ > 0

el

Wy > ) < K,

T P( sup | T(2)(y) - T°°

=0 \zelo,1)

since using the Gronwall’s inequality and we have

lim E]P’( sup [|T5(2)(y)||? ZM):O.
A T B s 190,

Consequently, we conclude the proof of Proposition by letting ' — 0. W

According to Proposition to study the convergence in distribution of the process (Tfs()(y))

€
it suffices to study the convergence for (’i‘ge()(y))s Moreover, we shall consider the complex case
for more convenient manipulations. Letting A € H¢, we consider the equation

Ve e

G 0w = Jom (1000 (1)) v e (B 0m).
with Hy = (H,\),, , Gy = ({(G**)(), A

>H5, where, for j € {1, . .,N} and almost every v € (£, k?)

12 N ) _ 2 » o
S Bivy

i 15~ _Cu_ -y YO -
H,(T,C,s) = —{ T__Bi=vr)s, +/ iV =Vl /dy’}.
! 2 ; VB R s e !

The proof of Theorem is based on the perturbed-test-function approach. Using the notion of
a pseudogenerator, we prove tightness and characterize all subsequence limits.

6.2.1 Pseudogenerator

We recall the techniques developed by Kurtz and Kushner [16]. Let M€ be the set of all F¢-measurable
functions f(t) for which sup,<7E[[f(¢)|]] < +oco and where T > 0 is fixed. The p — lim and the
pseudogenerator are defined as follows. Let f and f° in M€ V6 > 0. We say that f = p — limg f if

supE[l/*(1)]] < +oo and  LmE[f°(t) - f()] =0 vt
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The domain of A€ is denoted by D (A¢). We say that f € D(A) and A°f = ¢ if f and g are in

D (A€) and
[Et[f(t +§)] —f) _ g(t)} =0,

where Ef is the conditional expectation given i and Fy = F;/.. A useful result about A€ is given
by the following theorem.

— lim
§—0

Theorem 6.4 Let f € D(A). Then

- /O e F(w)du

is an (Ff)-martingale.

6.2.2 Tightness
We consider the classical complex derivative with the following notation: If v = o + i3, then 9, =

% (8a — Zag) and Oy = % (3a + 18,3)

Proposition 6.4 VA € He, the family (Tie()(y)) is tight on D ([0, +00), C).

€€(0,1)

Proof According to Theorem 4 in [16], we need to show the three following lemmas. Let X € He, f
be a smooth function, and f§(t) = f (TA (t)(y )) We have,

agio =t (15 0w) | 2 (10w (1).1) +6 (T 0w)]

Let

Lemma 6.2 VT > 0, lim, supg<,<p|ff ()] = 0 almost surely, and sup,>oE[|f{(t)|]] = O (Ve).

Proof (of Lemma [6.2)) Using the Markov property of the Gaussian field V', we have

i) = " 0,1 (T3 00w) Frat) - ¥ 001 (15 0w)) Fra®
with
s [ G (D) syt mbe a8 B))
Fl,)\(t)_jzzl ; ﬂjﬂle Tl (t)(y)a2+(ﬂl_ﬂj)2

+/k201'7(§> (VA8 LS (1) )aﬂ(f Bi) 7,] %
3

NG TR (AP
I Cyi (%) G Bi—vDE ~£7 a+i(B — /)
*/,5 L; B W) G )

K Cyyr (ﬁ) V- )’”56 a+i(vy' — \F) T
v e T ) | N
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Using , we easily get
E[lff(®)] < VeK(f,N).

and
i) < K\ f)ve sup  sup |V (z,1)].
0<t<T /e x€[0,d]
Then, we can conclude with D
Lemma 6.3 {A°(f§+ f7) (t),e € (0,1),0 <t < T} is uniformly integrable VT > 0.

Proof (of Lemma A computation gives us
€ € € I ~ &€ t t t
A (fo + f1) (t) = F (T (t)(y)’0(6>®0<6>56>7

C(T) ® C(T)ql 929392 — Cth q2 (T)Cqs qa (T)
for (g1, 92,93,q4) € ({1, ., N}U(E, k:2))4, with

where

Py (T, Cy5) = 0, (T) [EX(T,C,5) + G (T)| + 05/ (T) | FL(T, C5) + G (T)
+ 0 f(T)FR(T,C, s) + 02f(T)F}(T, C, s)
+ 050, f(T)F3(T, C, s) + 0,05 f (T)F}(T, C, 5),

and
F)}(T,C,s) =
N .
k! Ciuv oi(Bu—;) a+i(8 — B;)
v e LU 1/ 5 STZ/—
4 g |:l’zl BB} ﬂl/ a?+ (B — B;)?
N jll"/” (W—B)S a+7f(ﬁl _ﬂ]) 7
Z - J J T’Y”md
1=1"¢ ﬁjﬁl VY : !
2 N
+/k‘ Z C]'Y U Z(ﬁl/*ﬁj)ST/ Q+Z(f ﬁ]) /
k2 k2 .
]’Y Y St VYT=Bi)sp_, a+ Z(W — ﬂj) d'yld’y” A
// Ta?+ (\/'7 - 5)2 !
By W !

N .
Cyur iy~ + (B — \7)

k?4 k
_4/5 [z' 1/ VB Br l/a2+(ﬁlf\ﬁ)2

N

2 .
N / ’ Mei(ﬁ_ﬁ)sTdevﬁ
¢ \/W a2+ (6 — ")

k2 N .
Gy RICTENGIL B a+i(vy —7) &y
2 WA VAP
a+

f
/k2 /k2 w Y iVAT - f)sTw i(vVy = B))
fv W + (VY = V7)?

=1

sy dY" | Ny,

40
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E

+

+

(T,C,s)
N
:_kj Z Z JlJ’l’ ot (B1=B+By—B;1)sp Tz fH‘ (51— By)
j,j/:1 l/ 1 5jﬁlﬂj /Bl’ (ﬁl ﬁj)

N k2 o, . ]
) [ e S
3 B BB/ ' o

MNW BitBu=Finsm_, Tl,aﬂf ﬂj "

AR W WA

=1

k2 N

k* pk?
/ / C]'Y£‘7,'72 \/7 /BJ+\/’72 ﬁ )ST T / a+z \/7 /BJ 1d7§ W

a2 4+ (V] — B))?
N

k2 ;
B k:4 /  Chiypr (gl_gjw,,—\/%)sTlTl,M
=1 ﬂ]ﬂl\/’%ﬂl/ a? + (6 — B;)?

+ Jl’)’z"/g 1(@ 5J+\/,72 \/'TQ)GTT . a+2(ﬁl ﬁ]) d’y'
Z/ m + (3-8 "

K2 N o,
+/ Cm%vzl Ve B;+Bz/—\/"72)ST Tl’ a+4( \F ﬁ] d/
3

k?  rk?
/ / Gt A8 WSTWT,““f AR
Bj

N ATy
N

kO Conlg'tt i A48 —By0) +ilB =)
Rk —_migt B [ ST T ’

4 /5 ;::1 1,12/221 \/’Wﬁlﬁj'ﬁl' + (8= vn)?
N

K2 .y ;
NN A ¢ \/71

K N \/
+/ Cw—ﬂl VARV —B,0s (T atil W ~d;

PER a—+1 \ﬁ Vi
/ / Oy VAL VATV 5=B;1) *T, T, d%d%
1 2 2
VA A

=1

k4 K pk? + (ﬂ - )
/ / 'Yll’YQl/ (ﬁl*ﬁ+ﬁl'7\/ﬁ)STlTl/ ¢ il ﬁ
s VBN @+ (B = yn)?

/ M i(Bi— \/7+\/’7§7\/772)ST1T,Y/ C;—’_ Z(ﬁl — \/’W)Z d"}é
2 —
TN N

=1

k> N

_ G Wi VB —/R)s T, Tl/ atilym - \/71)

/ﬁ E\/m v -y

41

k2 k2 /
/ / Cringromy /A VAT - VST, T, atilyvm = vi) dyidy | Ay, Ay dyadyys,

717272 1/4 'Yi ’)/1)2
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F{(T,C,s)
4 N ;
_ Z Z _ G i Bi=B5 =By +B;0)smp & + (B — )
j,j’:1 l’ 1 ﬁ]ﬁlﬂ] 6l' a2 + (5l - ﬁ])Q
N k2 L
+ Citis ot (B1=Bi=/75+8;1) ST, T a + i(B = ;) dr,

D
= 7/¢ \/B;BiBy /Y + (B = B;)?

K2 N

Cj’yij/l, \/7 ﬁ] /Gl/‘f’ﬁ )ST Tl’ a’+7’ \/ 5] l

+/§ Vz—;\/ﬂjﬁﬂj’ﬂl/ \F B;)?

K?  pk?
/ / C]'Y{J/"/z Z(\/’Tl ﬁj \/’TQ""B )ST T,y/ a+l \/> ﬁ‘] 1d’Vé )\])\Jl
2 2
Bi B @AY

N N

k /k Ciityrr (3 a+i(B — B;)
+ 2 Bi— Bi— ,Bl/Jr\/'TQ)sT T J
4 JZ:; ¢ 1,12/:21 v/ 53‘51\/7251’ a? + (6 — 3;)*

N

}C2
+ / le"/z’Yé (B~ B —/74+ /772)5’]:‘ T,y' (12+ Z(ﬁl ﬁj) d"}/
2
NN @t B =By

=1

k2 N

Cingat (/A —B5— Bty , Tz' ativy 5] o,

+/5 Vz—;\/ﬁj\/ﬁl' \f G)?

k2 K2
/ / ]”/1"/2'7’2 z(\/i Bi— \/’724-\/% ST T,yé a+Z \/ Y ﬁ] d id,yé >\7j)\72d72
\ Bi/ V2% a + (vVm — 5)?

4 N [ N .
k C’Yllj/l/ ei(ﬁl—\/’ﬁ—ﬁz/-ﬁ-ﬂﬂ)STzTi a -+ Z(ﬂl Y 71)

k2
+4/§ ]; l;m "o+ (B - vm)?

N

k? Co it
I R e \/>))2d7£
& S VBBI Y Vel

+/ ZMMFW@'W s T Tl/CH_ \F ‘F

k2 k2 a+i( T )
7171J "3 (’/%7\/77171/75+’61')5T7fﬁ Vi —vn Ay vy | DA
1772 9 7 )2 1272 Y174

N NG a?+ (V7 —vn

=1

K2 N

k*  pk?
k4/ / B N T S o YRR W0 % ol BV LY.
= VBB a?+ (B — ym)?
N

(O~ i (Bi—v/AT— \/VZJ”/%)STZT a+i(B — /1) dn

+ A Y
;/6 VA Pt (G- ymp

k2 N

C’Yl’Y{’ml' 1(\/> V1= 5u+\/"72)ST Tl’ a—|—z VY \/>

A SV eV

K* pk?
/ / %71%%1/4 i/ VT~ \/E*'\/TQ)ST T, a+i( \/ SRvVALY didh | Ay Ay dyrdyo.
(M717273) a? + (/71 — vn)?

This expression combined with gives us, sup, , E[ |A° (f5 + ff) (t)| | <+o0. O
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Lemma 6.4

. T ~§&,e
lim lmP/( sup |T, (¢ >M)=0.
M —+o00 €e—0 (0§t£T| A ( )(y)| - >

Proof (of Lemma [6.4])) We recall that ||’i‘€’e(t)(y)||HE = |lyll#, and then

< £pe < £pe
T O <T@l 1Ml = Yllre 1AM -

O
This last lemma completes the proof of Proposition |

6.2.3 Martingale problem

43

In this section, we shall characterize all subsequence limits by showing they are solution of a well-

posed martingale problem. To do that, we consider a converging subsequence of ('i‘f’e(.)(y))ee(OJ)

which converges to a limit T%(.)(y). For the sake of simplicity we denote by (TE’E(.)(y))EE(O’l) the

subsequence.

Convergence Result

Proposition 6.5 VA € H¢ and Vf smooth test function,
F(TS(H)W))
- [ 2 (T§@w) (F T A), -+ 0n (TS W) (T )0, A)
0 3

FOLF(TS)w) (K (TS W):A), -+ 27 (TS () ) (K (T ) ().,

0600 (T5(5)(9) (LT N)A), -+ 2005 (T5(5)w) (E(TE(5)0) (). )

18 a martingale, where

re. —Th —ASS /s — A%
1 — 1y _
K(T)()‘>j = _5 ZF}lTjTl)\l - 5 Z (F;l + ’LF;l) TjTl)\l,
=1 =1
1]
1 1 _
L(T)(N); = 5 > THT TN + 5 > THTIT,,
=1

=1
I#j

and
Jg(T)v = K(T)(/\)v = L(T)()‘)v =0

for almost every v € (£,k%), and for (T, \) € 'Hg.

Proof (of Proposition [6.5)) Let

o= [ B[R (000 (Y e (t). )]

— B (T (1)), E[C(0) & C(0)], 2 ) du.

Lemma 6.5

sup E[|f3(t)[] = O (e)

t>0

He

ds
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and

A (S + 55+ 150 = B (T (000 BICO) 9 CO)LE ) + A

uhere sup s B [[A(e.8)] = O(V0).
Proof (of Lemma [6.5) Using a change of variable we get f5(¢) = eB(e, t) with

B(e, 1) :/O+Oo Eg I:FA (Tg’e(t)(y)’c (“+ i) ©d <“+ i) et 2)}

— B (Tf‘(t)(y),E[C(O) ® C(0)],u + z> du.

44

By a computation, we get that sup,,~qE[|B(e,t)]] < +oo, and after a long but straightforward

computation we get the second part of the lemma. [J

Next, let G (T¥(£)(y), £) = Fr(T"(1)(y), E[C(0) ® C(0)], £) and

€

Lemma 6.6 VT’ > 0, we have

lim sup E(f5(1)]] = 0.
e~V o<t<T

Proof (of Lemma Using a change of variable, we get

fi(t) = —/

Let g > 0, we have

t
!

G (T ()(w), ) —_lim 1 / “e (T ()w). 5) ds] du.

T—+oco T 0

Gx (Tg’e(t)(y),u)f lim %/0 e T56 ,s) ]du

T—~+o00

K(T' £ Y) <
< K(p,T,&y) + Z/ dy ... dvj,
Jj=1 <;4

where for j € {1,2,3,4},

Iz, {('Yl)le{l, gy € ERY I a)ieqr,a—gy € {Brs-. ., BN}

J 4—j
and ()ieq1,....4p € {—1,1}*, with ’Z“lﬁ+ ZMHCH‘ < M}~
=1 =1
Finally,
] 1 (T _
lim sup E / G (TE’C(t)(y),u> — lim —/ G (Tf’g(t)(y)”s) ds| du
e=00<s<T7 0 T—+o0 T' Jg

4
K(T',s,y)Z/,_ dyi ...dvj,
j=171%,

and then by letting 1 — 0 we get the announced result. OJ

Let fe(t) = f§(t) + fi(t) + f5(t) + f5(t). A computation gives
AFE(t) = Jim % /0 G (T (0)(v).s) ds + Cle.1)
5 (T W) + Cle),
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where, Yy > 0,
4

Ty sw E(C(et)] < KT 60y [ dn.dy,

e—0 J
0<t<T" j=1 Iz,

using the boundness condition . Moreover, for (T, ) € Hg, G is defined as follow
G (T) =00 f (T) (JE(T), A)yy + 0af (T) (JE(T), )y,

FOLF(T)(R(T) (). ), + 327 (T) (K (T) (1))

He

000, (D) (L(T) ), A), + 8,0 (T) (E(T) (). ),

He
where
B k4 C-l-/l/ a"_l(ﬂl _ﬂ) N
K(T)(\); = —— YTy S5
( )( )J 4 5].+BJ§-)L+,BV ﬂjﬂlﬁj’ﬁl’ l lcﬂ—‘r(ﬁl—ﬁj)Q J
5 k,4 C'l iy — a+7'(ﬂl 7ﬂ)
L(T)(\),; = — i T, LA
(T)(N); = > BiBB Br L a+ (B B2

B —Bjr=Bi—By

for j € {1,..., N}, with
C =E[C(0) ® C(0)],

and

K(T)(A)y = L(T)(A)y =0

for almost every v € (&, k?).

We assume that the following nondegeneracy condition holds. The wavenumbers 3; are distinct
along with their sums and differences. This assumption is also considered in [7], [9] and [I4]. As a
result we get

G (T 0w) = o

~ &€ &€
00 (T 0w)) (£ (T (0) W), -
By Theorem (MJ“; (), is an (Ff)-martingale. Then, for every bounded continuous function h,

every sequence 0 < s < --- < 8, < 5 < t, and every family (\;);c1,....,n} With values in ¢ we have

¢
=o€ . . . c re
E {h (TA]. (si)(y):1 < Sn) (f (t) — f(s) —/ Acf (u)du)} =0.
Finally, using (58)) and Lemmas and we can conclude the proof of Proposition u

Uniqueness In order to prove uniqueness, we decompose Tg()(y) into real and imaginary parts.
Then, let us consider the new process

_ Ylé(t) 1, _ 2, -
Yo(t) = {YM (t)} , where Y"4(t) = Re(T*(t)(y)) and Y>*(t) = Im(T*(t)(y)).
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This new process takes its values in G¢ x G, where G¢ = RY x L%((£,k?),R). G¢ x G is equipped
with the inner product defined by

N k2
(T,S)g xg. = »_ T;S; + T3S} +/ T, S, + T>8%dy
j=1 ¢
V(T,S) € Ge x Ge. We also use the notation Yi (t) = <Y§(t), )\>g ; with A € Ge x Ge. We introduce
£ XYe

the operator T on G¢ x G¢ given by
nggxg£—>g§ ng,

T! T?

=]
By Proposition [6.5] we get the following result.
Proposition 6.6 VA € G¢ x G, Vf € COO(]R)

18 a martingale, where

with, for j € {1,...,N},

e, — ASS s, — ASS
BS(Y); = % j l = 5 + 55| T5(Y)
A (Y)(A ZF Y)A +TH(Y)A]
Ay (Y)(N); = =Y, Zr (YN + YA + T5( ZI‘ Y)A + THY)AY
l;é] l?f]
A3(Y)(N); = A Z LH[Y)? + (YD)?],
=1
I#]

and
BS(Y) = A,(Y)(A) = 4,(Y)(\) = 4,(Y)(N) = 0

for almost every v € (£,k?), and for (Y, \) € (Ge x 95)2.
Proof (of Proposition - Using Proposition
FO(0) — [ Re((E X)) ) ) (¥55)

+ 5Re(<(L + K)(TS(s)(1)) (V) A>H€)f” (Y5.(s))ds
is a martingale. Let us remark that we also denote by A the function A\' + i\, and
Re(<Tf(t)(y),A>H£) = (Y4(t), \)g, g, and Im((TE(t)(y),A>H§) = (T(Y* (1), g, o
Then, we have
Re((J(T5())). Ay, ) = (BEYE(): \) g,
Re({(L+ E)(T(s)1))(V), A)5,,) = (AY*(s)(A): A)g, g,
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As a consequence of Proposition VA € G x G, letting successively f € C;°(R) such that f(s) = s
and f(s) = s? if [s| < ryl|A|lgxg, we get that

(M0 N, = M5O = (Y0 = [ BE(YE s N,

is a continuous martingale with quadratic variation given by

<M§>(t):/0 <A(Y’5(s))()\),)\>ggxg§ds.

Proposition 6.7 Vf € CZ(Ge x Ge),
t
MS () = F(YE() — /0 LEF(YE(s))ds (59)

is a continuous martingale, where VY € Ge x Ge

LEf(Y) = %trace (A(Y)D?£(Y)) + (B*(Y), DJC(Y)>g5xgE :

Moreover, the martingale problem associated to the generator LE is well-posed.
Proof (of Proposition We begin with the following lemma.
Lemma 6.7
A:Ge x Ge — LT (G x Ge)
B* :Ge x Ge — Ge x G,
where LT (Ge x Ge) is a set of nonnegative operators with finite trace.

Proof V(Y,\) € (Ge x G¢)?, we have

(AN Mg xg, = Re(((E+ E)T)N), Ay, )
N e —
= Re( 3 T[T - Ton) [T — T )
7,l=1

N 2
+ T[T - Ty
Jl=1
il
with T =YY" +4Y? and A = A\! +4\2. First, V(4,1) € {1,..., N}? such that j # [, I'¢; is nonnegative
because it is proportional to the power spectral density of Cj; at §; — 3; frequency. Second, the matrix
I'! is nonnegative since VX € CV, we have

4 N +o0 o 4 +o0
IXTIX = % 3 /0 E[C,;(0)Cu(2)|d= X, X = ™ /O E[C (0)C (2)]dz > 0

- 2
J,l=1

because it is proportional to the power spectral density of C¢(z) = >° ey ()X ; at 0 frequency, and
with Xj =X,/B;,Vj € {1,...,N}. Moreover,

N
trace(A(Y)) = DTV + (VP < sw T V1o
j=1 J



C. GOMEZ SHALLOW-WATER PROPAGATION 48

Consequently, following the proof of Theorem 4.1.4 in [30], is a martingale. However, B¢ and A
are not bounded functions but this problem can be compensated by the fact that the process Yg(.)
takes its values in B, g, xg,-

Moreover, from this lemma there exists a linear operator o from G X Ge to La(Ge x Ge), which is
the set of Hilbert-Schmidt operators from G¢ x G¢ to itself, such that A(Y) = 6(Y)oo*(Y). According
to Theorem 3.2.2 and 4.4.1 in [30], the martingale problem associated to L¢ is well-posed because
VY € gg X g§

lo(¥) | < K(N)[[¥ g

Let us recall that the process Y*(.) is an element of C([0,+00), (Br,.gexge» 4B, o, xq. ), and we

cannot assert that Yf(.) is uniquely determined. In fact, we need to know if its law is supported by
C([0,+00), (Ge x Ge, ||-llgexge ))- Letting

FOY) = [T K @ THE R (Y = y)Gexge»
where
(¢, k) @ TI(E, K?) 1 Ge x Ge — Ge x Ge,

el — el

As Y*(.) is a solution on C([0, +00), (Brwggxgg,dlgry’ggxgg)) of the martingale associated to L¢, we
get

E[f(Y*(£)] =0 ¥t >0,
and therefore TI(&, k?)®II(E, k2)(YS(.)) = TI(€, k2)RTI(&, k2) (Re(y), Im(y)). Consequently, the process
YE(.) is strongly continuous since the weak and the strong topologies are the same on RY. Finally,
Yg(.) is uniquely characterized as being the unique solution of the martingale problem associated to
L and starting from (Re(y), Im(y)), and that concludes the proof of Theorem

6.3 Proof of Theorem [4.2]

Let Ho = CN x L?(0,k?) and y € Hy. We begin by showing the tightness of the process (T*(.)(y¢))e,
which is the unique solution of the martingale problem associated to L¢ and starting from y® =
I1(¢,400)(y). As the radiating part TI1(0, k2)(T(.)(¢)) of the process T*(.)(y¢) is constant equal
to TI(&, k?)(y%), to prove the tightness of (T%(.)(y¢))¢ is suffices to show the tightness of the finite-
dimensional process (IT(k2,400)(T*(.)(¢¢)))e. Let E$ be the conditional expectation given the o-
algebra o(T(u)(y¢),0 < u < t). Then, Vt > 0, Yh € (0,1) and Vs € [0, h], we have

B [Tt + ) () T (6) () 2 |

SB[t 4 5) = Y () [ ] + ES [IY24(t +5) = Y2 (0)l13

M-

< SES [(Yg’5 (t+s)— Yé’g(t))z}

I
I“i

[(/tm Lffjl.(Yg(u))duf] FES [(M]fl (t+s)— M (t)ﬂ,

IA
M=
&

||
~
o

with VY € Gy x Gy, le (Y) = Yé-. Therefore, using that the process T¢(.)(y¢) takes its values in
B, w., we first get

Ef[ / - LS XS (w)du) | < K 12,

and second,

€1 ( 1 /e e o\ e ¢ B ¢
ES{(MS,(t+s)— MS()) | =S| < MS, >4y — < MS, >, | <Kh
A A f 1
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with .

< Mfc; >t:/0 LE(F)P (Y () = 25 (Y () LE f1(Y (u)) du.
Consequently, the process (T*(.)(y¢))e is tight on C([0,+00), (Ho, ||.|#,))- Now, to characterize all
limits of converging subsequences, let us denote by TO(.)(y) such a limit point. First, for every smooth

function f on Hy, for every bounded continuous function h, and every sequence 0 < s1 < -+ < 8§, <
s < t, we have

E [h (T ()1 < <) <f<T5<t><yf>> T ) - / fef (T““)(yg”d’“ﬂ -
Second,

sup ‘Ef(T) — /.ng(T)‘ <K sup |A;’E —AS|+ ‘A‘;’& - A3+ |/<a§ — K.
TGBTy,HO

Consequently, TY(.)(y) is a solution of the martingale problem associated to £ and starting from y.
However, following the proof of the uniqueness in Theorem this martingale problem is well-posed
and therefore T¢(.)(y¢) converges in distribution to the unique solution of the martingale problem
associated to £ and starting from y.

6.4 Proof of Theorem [5.2]

The proof of this theorem follows ideas developed in [27, Chapter 11]. In order to prove this theorem
we use a probabilistic representation of 'Z}l (w, ) by using the Feynman-Kac formula. To this end, we

introduce the jump Markov process (XtN) with state space { —(N-1)/N,...,0,...,(N— 1)/N}

>0
and generator given by

) A ORI )

forle{1,...,N — 2},

o () B (o (5) -0 () # e (o(557) - (1))

for l € {—(N —2),...,~1},

00 = 5 (o () - 00) + 52 (o (F) - 00).

e (S5 i ((2552) (2552

Using the Feynman-Kac formula, we get for (4,1) € {1,..., N(w)}?

and

[e“?v Tt (g mg ) AR R g gy

1(|x5|+}v;¢)} -
Let f be a bounded continuous function on [0, 1], we consider 7" (w, L) as a family of bounded measures
on [0,1] by setting

—AS [Ea CN—idv—A%_ [F1 _ N_2\dv 1
T}(w,L) =Ei [e A il A N C f<|X£v|+N)].

N

In the first part of the proof, we consider the case v € [0,1) and in a second part we shall treat
the case v =1.
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Let w € [0,1) such that I(N)/N — u. We begin by introducing some notations. Throughout

the proof we denote by Tj(j)N the Ith passage in j/N, for j € {—(N —1),...,N — 1}. To avoid the

unboundness in £V of the reflecting barriers £V ¢(£(N — 1)/N), we introduce the stopping time

o _ (1) (1)
TN = T(N—[No])/N N TZ(N—[Na])/N

with o € (0,1). Let X7 = Xg\fg, Vt > 0, be the stopped process and d(N) = (I(N) —1)/N. We
denote by IP’QEN) the law of (X}V);>¢ starting from d(N) and by IP’N’T) the law of (X;"'");>0 starting

d(N
from d(N). Let
0 [_ 0
o = 55 (a=0037).

where Gy (-) € C*(R) is an extension over R of as(-), which is defined on [~1,1], and such that the
martingale problem associated to Lz__ and starting from u is well posed. We denote by P, this unique
solution. Let ¢ € C§°(R),

Goo

M (t) = p(a(t)) — o(x(0)) - / Lo p(a(s))ds,

and 7, = inf(u > 0, |z(¢)| > r) for r € (0,1).
Lemma 6.8 Vo € C°(R), Yo € (2/3,1),

lim sup 1LY o(v) = Lz p(v)] =0,
V200 pe - Xl p]ul 4, 2]

where LN o(v) is defined as follows. Vj € {1,...,N — 2},

LY(v) =T5 4 (Qp <]_Nl> R <]]V)>

(e () (2)
forve[j/N,(j+1)/N), and

LYe(v) =T5 44 (‘p (_jj\jr 1) ¥ (;Vj )
¢

c —Jj—1
11540 (SO( = ) -

Proof (of Lemma We shall restrict the proof of this lemma to the proof of

ifve (= +1)/N,—j/N].

lim sup |CN<p(U) — La_ p(v)| =0,

since the other case is completely similar by symmetry. We start the proof of this technical lemma
by proving Lemma [2.1] page

— v _ :
Proof (of Lemma [2.1)) Let h.(v) = IR and g(v) arctan(v). We recall that Vj €
{1,...,N}, tan(o;) = —he(o;) First,

o541 — 0 = 7| < |g(tan (0541 = (G + D)) — g(tan (o) — jm))]
< K|tan (041) — tan (0;)]
< Klhe(0j41) — he(0;)]
<K sup hl(v)

v€[oj,0541]
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2
where h.(v) = — (k9" which is a positive and increasing function. Moreover,
((n1kd6)2—v2)2

O'N,[Na] S (N - [NaDﬂ'
and then .
sup ‘aj+1—aj—7r‘ :(’)<N§—§a).
Second, in the same way we have

Oj+2=20j+1 + 0
= g(tan (O’j+2 -+ 2)7r)) — Qg(tan (O'j+1 -+ 1)7r)) —|—g(tan (Uj —jﬂ))
= —(g(he(oj12)) = 29(he(oj41)) + g(he(oy)))

and

9(he(0j42)) = 29(he(0511)) + g(he(05)) = [¢'(he(0j11)) — g (he(0)))]. [he(0j12) — he(oj41)]
+ g/ (he(05)) [he(0j42) = 2he(0j41) + he(o)]

he (UJ +2) "
[ helosa) ~ 090 di
h

e(ojt1)
he(ojt1) "
= [ o) - 070
he(oj)
Moreover,
19/ (he(0j41)) = ' (he(0)))]-|he(0j12) = he(oj11)| < K N'72.
Oj+2
he(ogs) = 2he(oy) 4 hoy) = [ O < it m) e
Tit+1
Oj+2 Oj+1
+/ h.(t — ) dt — / Rl (t) dt,
Tj+1 gj
with
Tj+2
/ R (t) — h(t — ) dt| < K h(on_[ye)) = O(NZ73%),
Ojt+1
n 2’0
because hl(v) = %, and
Oj+2 Oj1tT
‘/ RL(t — ) dt—/ h’e(t—ﬂ)dt‘
Oj+1 oj+m
< hylon-ive)) (|oj2 = 01 — 7| + 042 — 0541 — 7)
S KNI*?)O('
Finally,

he(oj42) he(ojt1)
[ o g @ dt = [ (o) - 0g70) de
h h

e(oj41) (o))
<K ((he(0j12) = he(0741))* + (he(011) — he(0))?)
S I(]\/'173Oz7
and
sup |0j42 — 2041 + 0j] = O(N'73).

je{l,..,N—[Na]—2}

This completes the proof of Lemma since we can take o > 1/3 and we have Ni—3a < Ni-3a [
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From this lemma, we immediately get

sup |S(0'j+1*O'j,(fj-g-l*aj)*s(ﬂ',ﬂ')‘
je{1,...,N—[N~]—-1}

<K sup |oj41 — 05 — 7 :O(N%—%a).
jE{l, ., N=[No]—1}

Before showing that

sup ‘AQ — O(N® Y,
jef{l,...,N—[Na]}

where A; is defined by (8)), we prove that

1
=0 ——).
je{1,sil.%,l?zva]}|0j ]7T| (Nl‘a>
In fact, Vj € {1,...,N*}

loj — jm| = |g(tan (o; — jm)) — arctan(tan(O))’

< K| tan(o;)|
S Khe(O'[Na]).

Moreover, o[ye) < N%m and then

o =0 ()

Consequently,
sup ‘A? B g‘ <K sup sin’(o;) _ sin(20;) < {(_
je{l,.N—] je{l o N=[N} | Gj 20, Ni-«
because
.9 .
; 20; 1
sup ’sm (UJ) B 51112( éj)’ <
jelt, o N=[Nal G o \/(nlkde) — 0% ne
n sup sin(20,) . sin(20;)
Je{INe]+1,..N=[Ne]} | 20 je{t[Nely | 20;

K n 1 n sin(20;) — sin(2j)
S sup
N/2Ha/2 5 20(Nal 41 jef,.[Na])

20]‘

<K ! + ! + ! su ’ ] |
—_—t — + — o; —jm| | .
= Ni/2+a2 7 Na T 5 je{l,i..,ﬁ[)Na]} i—J

Now, let us introduce

BN — a iA?A?HS(UjH — 04,0541 — 05)
i o2 o? a2+ i — 95 2
2n?2 \/1 - n%k;dQ \/1 - nfﬁ(lp (Bj — Bj+1)
Then, for j € {1,...,N—2} and v € []ﬁ,%]
2
N o\ (nikde m v +1 N
o= (") (ia) 15 ()

() ()]
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Consequently, from the following decomposition

(o) e () m s () e ()]

n%d%ﬂﬁa (o)
— N2 [¢<WT+1) ( ) ( [Nv] — )] [ij B n?;i_ze?am(v)]
2 9202
# N o) e () [¥B ) = M5 e
i 1

M [¥ (o) 2 ( () o)
) [N(w([Ni]J D) -e() -]

and because it is easy to show that

) () 0] o)
o () 2 oM7) -] <o)

it suffices to show the two following points

2d292
lim sup sup BJN L 5 aoo(v)‘ =0
N el N=[Ne]-1} ve[ 4, ] g
® 27292
. . 3 N N Tlld 0 d _
lim sup sup N(Bj Bj+1) = %aoo(v)‘ =0

N = _ P
Je{l, . \N=[Ne]=1} pe[ &, 5]

We decompose the proof of these two points into two sublemmas.

Lemma 6.9 2242
mid” aw(v)‘ -0

lim sup sup B jN —

N je{l, . N=IN®)=1} ve[ 4, 4]

Proof (of Lemma [6.9) Vj € {1,...,N — [N®] — 1} and Vv € {%, %}, we have the following
inequalities,
1 1 1

o2 < 2 2 o2
— 2 (o o _ J
1 nZk2d2 \/(1 — Tkgdz) (1 — 7"?2212) 1 n2k2dZ

Moreover, for I € {j,j + 1}

1 1 )§’j+1 j—1 20

1— ()2 | _ nikd ‘(1 —62)2

n?k2d?

<

==

Consequently,

sup sup L — L ‘ =0 (1)
Gl N=[Ne]-1) we[ 4, i) | 1 = (60)? \/(1 B 072) (1 _ %2-+1 ) N
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Next,
(72» 0'2 9
J J+1 m nikd
’”*k(\/l_'n§k2d2"\/1 2k2d2)'_22““L‘;?*‘
1= e
o? o2 1 g
J Jj+1 nikd
= K‘nlk(\/l B W B \/1 B n%deQ) - g(gj+1 - Uj)ligz“
1 - ot
+K‘(o'j+1 - W)Ldz‘
an]édQ
K 1 5 0 i
< Nm(dfrl —Uj) +K’0j+1 —Oj—ﬂ"ﬁ < KNz~ 2
and then ) )
sw | - | =o(ni-te),
je{l, e, N=[N]=1} 'a? + (B — Bjt1) R
2+L"17
d2 o2
1771%]2(12

Moreover Vj € {1,...,N — [N®] — 1} and Vv € [ﬁ %},we have

sl <ol < 5
\/ 0']2. \/1 — (9’[})2 ’/llkd
L- n2k2d?
and finally
sup sup ’ 3 1 5~ 21 @02 O(NE—E"
JEQLN=INI=1} e [ ] 1€ + (8 = Bi+1)* a2+ T
This concludes the proof of Lemma [6.9]0]
Lemma 6.10
nid?0? d
lim sup sup N(BN BJJY,_1> — 72 ‘ =0.
N je(t, o N=[Na]=1} pe[ 25 2 v

54

Proof (of Lemma [6.10| m We separate the proof of this lemma into two step. First, for each j €

{1 — [N —2} let
oN =N ! B 1
J o2, o2, P =
L=\ - mide |1 e\ i
We can write Vv € [%, %]
262 1 o 962
CJN_ : VI N/ = Fdw — Y
(=80 ~ o S ameni T =00
n2k2d?
Z’ﬁ w o o "
dw—N( J+2 __%J )
3 3
F ik (L—w?) mkd  nikd/ (1 - (6v)?)3
21242
Oita 1 )
—|—N( J ) ( B )
b~ k) T o 2 VI (002
T

s (V(ZE - ) )

)
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We can check that the function v — (1_(%% is bounded on [0, 1] and

542 gj; N 1_3
N( it2 J)—29‘<7‘ - 2‘ 29‘ —1‘<KN o
‘ mkd  nikd S ikd %t T T ke S

Moreover, v — (17(99% is bounded on [0, 1] and

’ 1 1 ’ < K 0
/1 — (6v)2 L o2, ~N(1- 32)3/2.

372
nik

. 1 1
Finally, 0 < ¢ ~ < N and
1— Jj+1

n%kzdz

nikd w Oii9 o v
N - N J+ _ J
‘ /’?; (1—w?)3 gdw - (nlkd nlkd)( — (6v)?)3

iz
202 + 1
<N/ o — O] dw—2+
(1-62)%

[(f’v— ) + (- 53]

Consequently,

sup sup ‘CN 1 9 ‘_ o
je{l,...,N—[N”]_l}ve[%v%] - v

Second, for j € {1,...,N7 [N%] — 1} and v € [%, %], we have
w2 0%v
N ( 1 _ 1 )+ & I |
a? + (Bj+1 — Bj+2)®  a® + (B — Bj41)? (az + o2 (v )2

1—(6v)?

1 1
= ‘N<a2 + (Bj4+1 — Bjt2)? a2+ (Bj — 5j+1)2>

— N((Bj+1 = Bjy2) — (B5 — Bjt1)) e Egﬂ ggH;Z)Q ‘
J — Mi+l
—2(8; — Bj41) Zé (172(092132)2
N((Biry — Biro) — (Bs — B )
+ | N (841 = Bia2) = (8 = Bi+) RS ERERC )2\

T—(00)?

For the first term on the right of the previous inequality, we have

1 1
‘N(GP + (Bjs1 — Bjr2)? a2 + (85 — Bj+1)? )

—2(8; — Bj+1)
= N((Bj+1 = Bjv2) = (Bj = Bin 5
((Bra1 — Bre2) — ( +>)<a2+(ﬂj_ﬁj+l)2)\

< K N((Bj41 — Bjrz) — (B — ﬂj+1))2,

and we shall see just below that

1
sup |Bjr2 — 2841 — Bj| = O(ﬁ)'

je{1,...,N—[N]—2}

Now, for the second term we have previously get

sup sup

™ Ov 1_3
B = Bj — 5 —mees| = O(NE 32,
JEL N=[N=1} e [ ] ‘ AR (fv)?
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Then, to finish the proof of this lemma it suffices to show that

sup sup [ N(8; = 2841 + Bjaa) + —

— | = O(N*7%).
JEML o N=[IN*I=2} e [ aa] (1—(6v)?)>

To show this relation we shall use the following decompositions. For I € {j,7 + 1}

a} of 1 T
1— —L——f1- — —— (o141 — o) bl
n2k2d> n2k2d> ok 0 T o) o7

1= n3k2d?

Ti+1

nykd O1+1 1
- w) 4
/ffzkd <n1kd w) (1—w?)? w

ni

and
0'2 0'2 0'2 0
Nnk( 1— 9 91— Jitt oy J+2)+ d
' \/ n2k2d2 \/ n2k2d? k2] g (ev)z)%
_ b e 70

= d o—]+1

e

— (042 — 0j41)
J+1 ]- - )
\/ 2k2d2 \/ nZk2d?

+ Nk (/ (Zﬂ; _w) (1 7w2)%dw B /:fd (Zizfi _w) (1 1102)%dw)'

First, using Lemma [2.1] we have

1 nikd

Second, we have

GJ+1

7T
E
d (541 = —(9j+2 = gj11) 3
J+1 ( )2
2k2 2k2
Tj+1
N mkd nikd
= —(0j41—0; =) -
d o2 o2,
1 — =2 1— 23+
nik2d? nik2d?
Tj+1
nikd
_H(Uj+2_2o—j+1 +Jj) >
1— it
n?k2d?

9 Iji+1 0
nikd nikd

n2k2d?

Tj+1 7j+2
nikd Ojt1 ) 1 /nlkd (gj+2 ) 1 1_34_9
- dw — —w)———dw = O(Nz—3272),
/"jd (nlkd v (1-— uﬂ)% v oit1 \nikd v (1— uﬂ)% v ( )

d(N[Vl—z‘;idz w_a;al} o)

56

where, according to Lemma [2.1} . the first and the third term are O(N2~3%), and the second term is

O(N?73%). That concludes the proof of Lemmal6.10| for a € (2/3,1).0

Consequently, thanks to Lemma and Lemma we get

e[, =

su 1LY o(v) = Lo o] = O(N(2 3a)V(a— 1))
]

this concludes the proof of Lemma [6.8]0]

Lemma 6.11 Pd(}:/) is tight on D([0,4+00),R).
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Proof (of Lemma [6.11) Let M; = o(x(u), 0 < u < t). According to Theorem 3 in [16, Chapter
3], we have to show the two following points. First,

lim h]{[n Pd(}v) (sup|x(t)| > K) =0
>0

K—+o00 >
= 1. Second, for each N,

The first point is satisfied since we have VN, P, (supysolz(t)| < 1)

h e (0,1), s €[0,h] and t > 0,
P (a(t + 5) — 2(£)2|My) < K h
if |s| <1, we have

Concerning the second point, letting ¢ € C;°(R) such that ¢(s)
BP0 ((a(t + 5) — a(6) 2 My) < 2E5) (M2 (¢ +5) — MY (0)2IMy)
Nor t+s 2
pY:T
2 EPach) ( / )dw) ‘Mt>,
with .
M) = e(alt) = p(ol0) = [ £¥(ats))is,
which is a (M;)>o-martingale under ]P’Cll\z ny and we know that
N — [N
Pd(zv) (bup|$( )| < N) =1
Moreover, by Lemma [6.§]
sup sup 1LY p(v)|< 400
NoIN) ][4, Meled)
>N N> N

N ’UG[* ~

and the fact that LY p(0) = 0, we get
Nor t+s 2
EFav) <(/ Lng(x(w))dw> ‘Mt> < Ch?.
¢

We recall that .
< M;,V >y= / (LN @? = 20LN ) (2(s))ds
0

Then, using the martingale property of ( (t))t>0, we have
M (1))?|M,) = — MJ(t ATR))P M)
= EFaon) (MY ((t + 5) A 7y)?
= EFa << MY > onrg —
(t+s)ATx
(LN — 20N ) (x(w))dw‘/\/lt

N
— P /
tATR

P (MY (¢ + 5) — R (MY ((t+5) A7)
— M;V(t A T]%)2|Mt)
< Mé\] TS |Mt)

< Ch.
In fact, by Lemma [6.§ we have
su su LY p(v)| < +o0,
W S L7 p(v)]
ve| e S e ]
sup sup 1LY ©%(v)] < +oo,
N Ue[—Niz[\fNa],—%]U[%,Nij[VNa]
if < +o0. O
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Lemma 6.12 Let Q, be a limit point of the relatively compact sequence (Pz}z))N. Then, Yy €
C°(R) and Vr € (0,1), (My(t ATp))e>0 is a (M)¢-martingale under Q.

Proof (of Lemma [6.12]) Let (Pﬁ%)) be a converging subsequence. Throughout this proof we
N/

will take N for N’ to simplify the notations. Let 0 < ¢; < t3 and ® be a bounded continuous
My, -measurable function. We have

N, N, T

E i (MY (to A7) @) = B0 (MY (t1 A7) ®) .

Furthermore, Vt > 0
Nor AT, Nor ATy
EFacm </ ﬁN@(x(S))ds‘I)) = E" (v (/ ﬁNw(x(S))l(x(s)eI?@)ds(b>
0 0
N tAT,
+ ]EPd(N) (/0 [:N(p(x(s))l(x(s)_o)ds@) ,

with I = [-(N — [N*])/N,—1/N]U[1/N,(N — [N°])/N]. Using Lemma6.§]

N,

tAT,
. P N _
11]{]11 ‘IE a() (/0 (LY p(x(s)) — Lap(x(s))) l(w(s)el%)dﬂD)’ =0.
Consequently, we have to prove the two following points:

N,T
o limy E 4™ (M (t A 7,)®) = EQ (M (t A7) ®).

o limy B (fowr 1(I(8):0)d$) =0.

We prove the first point as follows. The problem is to apply the mapping theorem to the functional
M (tAT.) and to do this we must have Q, (D, (tar,)) = 0, where Dys_(;a7,) is the set of discontinuities
of My,(t A 7,) for the Skorokhod topology. While M, () is continuous for this topology, it is not
necessarily true for 7,.. However, we can follow the proof of Lemma 11.1.3 in [27] and then use a
family of stopping times for which we can apply the mapping theorem.

We know that the size of the jumps of (X}V); is constant equal to 1/N, therefore we have
Qu(C([0, +0),R)) =1 (see Theorem 13.4 in [3] for instance). Then

Qu (DMV,(t/\'rT)) = Qu (DM<,,(t/\'rr) N C([07 +OO)aR)>

We recall that the Skorokhod topology on C([0, +00),R) coincides with the usual topology defined on
this space. Therefore, Dys_(¢ar,) N C([0, +00),R) is the set of discontinuities of M (t A 7,.) under the
topology of C([0,4+00),R), and 7, restrict to C(]|0,+0o0),R) is lower semi-continuous. Consequently,
according to the proof of lemmas 11.1.2 in [27], there exists a sequence (7). such that r,, / r and

Qu ((7r,, < 400) N D;, NC([0,+0),R)) = Q, ((7, < +00) N Dy,)) =0.

Then, Qu(Daz,(trr,,)) = 0 and we can apply the mapping theorem to My (t A 7y, ), i.e
N,T
lign B4 (M (¢ A 77, )®) = B (M (£ A 7,) ).

Finally, we obtain
EQu (M (ta A7y, )®) = BE@ (M, (ty AT, )®),

and
HmE% (M, (t A7, )®) = EQ (M (t A 7,)®)

because 7., /" 7.. Consequently,

EQ (M (ta A7) ®) = B9 (My(t1 A T,)®).
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For the second point, we have

N tAT, tAT, t
B4 ( / 1(z<s>0>d8> = Eaqv) { / 1(@_0)013} < Eo { / 1(X§V—o>d5} )
0 0 0

since the stopped process spends less time in 0 than the original process and the last inequality is
given by the Markov property. We denote by NP the number of returns in 0 during the time interval

[0,¢] and by (Y}),>0 the renewal process associated with the return times in 0, (Uéi))izl, of the process
(XN, with Yy = O'(()O) = 0. Moreover, for o/ € (0,1)

[N1Fe) oD

t
Eo [/O 1(ngv_0)ds] < tP (NtOz[NH“ ])+EO ]Z:;) /ggﬂ 1(x~—0)ds
t [N+ 41
< e B [N)] +
= eyl T

(G+1)

since (f:{;) 1(X£v:0)ds) _is an i.i.d sequence with mean 1/I'S;. We recall that N +1 is a stopping
0 J

time for (Y;);>1. Then,

. NY+1
Bo [0 ] = Bo | 3 ¥, | = (B0 [N9] + 1) B[]
j=1

Furthermore,
Bo [USN?H)] = o {USN{]H) (1(ng:0) " 1(X§V¢0)>}
=E, [inf (s>1TN, xN, = O)l(xzvzo)} +Eo [inf (s>0, X\, = 0)1(ng¢0)
where TN = inf (3 > 0, Xﬁrs =+ O). Then, using the Markov property we get

< tPy (XN =0) + 2]\;; !
12
and
N-1
Eo {inf (s>0, X[}, =0)1 (xx #0)} = Y K {inf (s>0, X/, =0)1 (x2=3)
j=—(N-1)
J#0
N-1
= > (B[R] )Ro(xN =)
j=—(N-1)

where K is a constant independent of N. Consequently,
s, 2N -1
2N —1 rs,

! 1

Eo[N{] < K

and
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From Lemma we have Vr € (0,1), Q, = @L on M, . From this relation and the fact that
Qu(C([0, +0),R)) = P,(C([0,400),R)) =1, Q, =P, on M, since 7. /7 asr /1.

Let f € €*(]0,1]) with compact support included in [0,1) and let (IP’;\ENT,QN/ be a converging
subsequence as in the previous proof. We have

Tfl(N/)(w,t) = Eqnry {f (XtNI| + ]\17,> 1(t<7'1°‘w):| +r(N), (60)

with

_AS [t1 o dv—AS, ‘q o
B [

1
x f (|XtN| + N) (1(71‘3‘,§t<‘r}3,+)\) + 1(t>7g+x))} ;

where 7% = T((le)_l)/N A T(l()N 1,y and X € (0,¢). Using Lemma and Lemma we can study

the first term on the right in (60).

Eqnr [f (|XtN/| + ]\1],> 1(t<7;,)] = i) [f <|x(t)| + ]\1f'> 1(“%/)}
_ EP;V(IN’ [f <|x(t)| + ]\1/"> 1(t<71‘3/)} s

since (t < 75) € Mr¢ and ]P’d(N) = IP’ ’ on M;e. Moreover,

EE {f <x(t)| n ]\17,) 1@«;,)}

]P)N/VC 1 N/ _ Nla _|_ 1 . o
= Efac) [f <|x(t)| + N)] ~f <[N]> P (> 780)
P "

=E a0 [f(J=(£)])] + o(1).
Consequently,

i Eacw [ (16014 ) Lerg | = B 700D

However,

E% [f(|z(6))1(r,<p)] = 0.
In fact, let 75 = inf(t > 0,Yv > t,z(v) = z(t)) be the first time for which the process becomes
constant. From the Portmanteau theorem

1= hm Pd(N,) (m) <Qu (m) )

where A denote the closure under the Skorokhod topology of a subset A of D([0, +0c0),R). Moreover,
we have

(s <m1)N(m < )N (2(0) =u) NC(]0, +0),R)
=(rs <m)N (1 <t) (z(0) = u) NC([0,+00),R).

Then,

Qu(|z(t)] € supp(f), 71 < t) < Qu(|z(t)] € supp(f),7s <71 < 1)
< Qu(|a(t)] € supp(f), [x(t)] = 1) =0,

and

B [7 (1% 57 ) Bearg )| = B9 [F0D ] = B (1010
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Finally, by the following lemma we get

lion T (w, 1) = B [£(12() )1 m] -

We can remark that this limit does not depend on the subsequence (N’). The following lemma
represents the loss of energy from the propagating modes produced by the coupling between the
propagating and the radiating modes. Moreover, this lemma implies the absorbing condition at the
boundary 1 in Theorem which implies the dissipation behavior in Theorem

Lemma 6.13 limpy. r(N') = 0.
Proof

—AS fo1 , N/_1nds
|7'(N/)| < ||f||oo <]Ed(N') |:€ e (‘X.N =5 ) 1(t>7‘]%,+)\):|

+ Py <|XtN | + ﬁ € supp(f), 78 <t <71 + A)) .

First, let o/ € (3/4,1) and N}¥ the number of passages in (N — 1)/N during the time interval [0, ¢].

A%'f(’tl(lxé\’/FiN;\ﬁl)ds Aor ot (1xN' 1= Nfl)d

Eqnvy |e 1(t>'r]%,+)\):| < Egn) {6

X 1 .
< (t>7—(11\,)/ 1>/N/+A)+ (t>T N/ 1)/N’+)\)>:|

ds

(t>r(}v>, 1yyne )

— A€ tl
WS (v

We shall work only with Egn) {e } but the same proof works

for the other term.

fo ‘XN’ N/—1 ds
Eqnv) {e ( ) (t>T(N, 1)/N,+,\)}
7A?\I’ fot 1 N/_N’'—-1 ds
< ]Ed(N/) |:6 (Xs N7 ) l(NtN/>[N°‘,]+1):|

+]P)d(N’) (Nt]\/’ S [N()/],t— T((]if)’—l)/N' Z A) .

On (NN > [N'®'] + 1), we have

c Nt ! (N’ 1)/N'
AC j‘tl 1 yds 7A I(J) 1 N/_N'—1 d
e NN RECERYNIN Gl 1
o w0
@ c N 1)/N
[N'®] _pg, f =/

1(XN,:N]/V_,1)dS

s

E))
< H e T(N'—1)/N’
j=1

We denote by ngl\;_n/zv the time of the first return in (N — 1)/N, then

_A?V/ f()tl(XN’:N/71)d5
Ed(N/) e : N ]‘(NN/Z[N"",]-"-U
/CXI (]tl) ’
(N] —AC féj\)’ /N 1(XN,7N/_1)ds
s - N/
< T B ¢ R
=1

!’
o [N/a]
7Ac f() (N — 1)/1\”

’ ’_ d
S ]EN/—I e ( N_N 1) °

s TN/
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(G+1)

.

simce < ((jl;’—l)/N l(XN_Nl)dS> is an i.i.d sequence. Moreover, we can check that A?\/ > C’N3/2 and
T 5 TN
(N-1)/N j

then

1 (1)

) a ’_ / a ’_ ’
—A%r Jo (v 1(XN/:N/—1)dS —~CN'3/2 Jo e 1(XN/:N/71)dS

Ex_i |e s N7 <Ex_i |e s N7

N/ N’

In fact, a computation gives
A __ak54%l/"“kd ny/n? — (n1kdf)?
&=
167N usao \/Gnahd)? =7 (14 (By = §/ukd)? = 17)2)

. S~ ox.m— o)
(7 — (uakd0)2) sin (1) + 17 cos? (1)

However, we recall that the support of S lies in the square [—3—“ 3—"] X [——, 37”} , then we can restrict

202
the integration over [nl kd6,n,kdb + 37”} Moreover,

(5 ~ Vo =) = 0= o,

3r\? n?/(nikd)?
<<2)1—wmmmng’

ON 77]

f it
or some Yy € [nlkd’ nkd

where K stands for a constant independent of N, because 6 < 1 and k > 1. Therefore,

TledGJr%

mzw/ /% — (n1kd0)2dy > K" N3/2,

1kdb

where we assume that the function S has a positive minimum, and then K" > 0.
Now, let us remark that Vo € [0,In(N/4)]

—v
e S 1-— WU
and @ 1
(N’=1)/N’
IEN/,l / 1 ;  N’'—1 dS = —_=—.
~ o (x3=5) TS 1 a0
Then, we get
ey .
. _K' N'3/2 I (N'=1)/N l(XNI:N'—l)dS -1 K" ) 1
, ] 7 _ _
N1 € ST NeA In(N'1/%)
and
~Ant J3 g s wro1yds [N“"]ln[l—iKsﬂ (1—71 )]
NN 2L 1374 In(N/1/4
Ed(N’) [e ( N ) 1(N,5N'2[N’a/]+1) <e N (NI )|
Moreover,

N o (1) (IN°]) (1)
Pa(w) (Nt < [Nt - T(N—1)/N = )‘) < Pyw) (T(Nl)/N ~T(N-1)/N 2 >‘>

(1)

L (IN°])
< XEd(N) (T(N—l)/N ~T(N-1)/N
N (1)
< \ Ev-1/~n [U(N—l)/N}
K

S N
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Consequently,
t
S 1(\X§V'\=N1,\,71)ds

fim By {6 1<t>rg,+x>} =0

Second, let ¢y € (0,1) such that supp(f) C [0,cy —1/N'] and z € [0, ¢f), then

1
Py (|gi +— € supp(f), T St <TR+ A) < Pany (XN € [—cpoep],mh St <TH +A)

N
N — [N®
< Paw (XtN € [~epref], X7 = #,rﬁ <t<td +>\>
N — [N®
+ Py (XtN € [—er ep), XN = —#,T;\’[ <t<rY +A) .

We shall treat only the case where X% = (N — [N?])/N, but the following proof works also in the

other case. Let ¢¢ € (c¢f,1), p € (0,1) such that [¢y — p,éf + p] C (cf,1) and X € (0,1). Using the

strong Markov property we have

N — [N¢]
N

= PiN_z[vNa] (T((Jl\f)—l)/N > X) + IEJﬂ[\f]“f] (Tﬁfip <A+ /\/) )
N

Pac) (XtN € [~er e, X7 = TR <t< Ty +/\)

where 7z,1, = inf(t > 0, [2(t) — ¢¢| > p). First, a computation gives

N-2

(1) , 1 (1) 1 N+1+1 K
Pa—pe (T(NA)/N = /\> < e [T(NJ)/N} -V ; i S Nia
I=N—[N«

Second, the sequence (r(N’))y- is bounded. Let (r(N"))n~ be a converging subsequence. We recall

that IP’?(’N) = ]P’i\(r’]e) on Mo, where ¢(N) = [Nés]/N, and by Lemma [6.11 the sequence (]P’i\(f;,’f,))N”

is tight. Let (]P’?E;G;%) be a converging subsequence to Qz,. Moreover, 7z,+, < 7§ and therefore
N///

(Tg stp SA+ N ) € M. Consequently, by the Portmanteau theorem

11

E Pi\éNn/) (Téfj:p S >\ + >\/) - % ]P)i\g;;;;/’l;) (Tﬁf:tp S A + )‘/)

_— N/,/77—
S %\1[1;% IPC(N’”) ((T?:fip S A + )\/))

< Qg ((TE‘fip <A+ )‘/)) :

We recall that Qz, (C([0, +00),R)) =1 and we can show that

(Tesap S A+ X) NC([0, +00), R) = (7z,4p < A+ N) NC([0,+00),R).

Then,
MPZN;’T’) (Téfiﬂ < )‘,) < Qg (Tﬁfip <A+ X) )

and o
[ r(N") < Qe, (2 < A+ X).

Finally, limpy+ 7(N"") = 0 and the limit of all subsequences (r(N"))n» of (r(N'))n+ is 0. O

f
quence. By the previous work, there exists an another subsequence such that

To finish, (TZ(N) (w,t))N is a bounded sequence. Let (Tfl(N/)(w,t)) v be a converging subse-

. I(N" P
lim 77 (@,1) = EP (£l L] -
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where the limit does not depend on the particular subsequence, then all subsequence limits of
(Tfl(N)(w,tD are equal to EF* [f(|z(t)])1(1<-,)]. Consequently,
N

liJ{In’Z}l(N)(wJ) = E@u [f(‘x<t)|)1(t<‘rl)] :

Now, we have to show that this equality holds even for a sequence (I(N))y such that [(N)/N —
u =1, ielimy Tfl(N)(w,t) = 0. To do this, we write for A € (0,¢),

(N
T @,8) < 1 loe (Pawy (< 781y + )

71\1\7 fotl N=N*1 du
+ Ea(v [6 (=) 1(t>'r() +/\):| )

(N-1)/N

We have already shown in Lemma that the second term on the right in the previous inequality
goes to 0. The proof did not depend of the sequence (d(N))y. Moreover, we have

(1) 1

1 (1)
—n/n) T A) A A) [T(N—

Pd(N) (t < 7' 1)/N)} s

and

N-2
N+1+j I(N)
E 7—(1) — <K (1 - — .
d(N) |: (N—l)/N):| i ; ]+1 j+2 N

U
Consequently, we have VYu € [0,1] and V(I(N))n such that [(N)/N — u,
li 7, (w0, 1) = B [£(|2())Le<ry)] (61)

where the limit satisfies the required conditions. Finally, from the decomposition used in the proof of
Theorem we have Vo € L?(0,1) and ¢ a smooth function with compact support

||TL,0N(L7 ) - TLP<L7 ')HLQ(O,l) < 2”90 - ¢||L2(O,1) + HT@N<L5 ) - %(L7 ')||L2(0,1)-

Using the density of the smooth functions with compact support in L?(0,1) for ||.||z2(0,1) and the
dominated convergence theorem we get the first point of Theorem The second point is a direct
consequence of the probabilistic representation and the density for the sup norm over [0, 1] in
{p €CY([0,1]), ¢(1) = 0} of the smooth functions with compact support included in [0,1).

6.5 Proof of Theorem [5.4]

As in the proof of Theorem we use a probabilistic representation of ']Z-OJ (2) by using the Feynman-
Kac formula. However, we introduce the jump Markov process which is a symmetric version with
respect to reflecting barrier (N — 1)/N of that used in the proof of Theorem

Let (XtN)t>0 be a jump Markov process with state space { —(N —1)/N,...,(N—1)/N,...,3(N -

1)/N } and generator given by

o () =T (o (52) -0 () # e (o (51) -0 (%))

forl e {—(N —-2),...,—1},

£ () =t (o (5) 0 () # o (o (5) - (57)

forle{1,...,N —2},

l [—1 l

LN ¢ (N) = a(von)42 1—2(N—1)|+1 <¢ <N> —¢ (N))
[+1 l

+ Il av_1)] i—2(v—1) |41 <¢> <;) —¢ <N>)
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forl € {N,...,2N — 3},

l l+1 l
LN ¢ (N> oo 2(N—1) I+1-2(N—-1) <¢ (N> - ¢ (N>>

c -1 l
+ 1 a(v_1) 141-2(v—1) <¢ (N) -9 (N))
forle {2N —1,...,3N — 2},

e (05 ) = (o (-57) o (55)):
e (M) =i (o (M) -0 <3NN3>>’

2 ~00)).
o (550) -5 (550 ) B o) ()
e () () o () G () (5)

We recall that 7%!(2) can be viewed as a probability measure on [0, 1] by setting

2-Er(3)m

Jj=1

2

for all bounded continuous function f on [0,1]. Let 0 < r < 1 and f be a smooth function with
support included in [0,1 — 7). In order to make the link between 7%!(z) and the process X%, let us
introduce an extension of f by setting

f(=v+1/N) if ve|[—(N-1)/N,0]
V() = f(v+1/N) if v e [0,(N—1)/N]
f(=v+ (2N -1)/N) if we[(N-1)/N,2(N-1)/N

f—(2N=3)/N) if wve[2(N-1)/N,(3N —3)/N|.
With these two functions we get the following representation. Vi € {1,..., N},

,Z—fO,l(z) _ [fN S(XN)]

N

Moreover, we have

T =B [FP(X0] 40 (z1v> =Eis [£(9:(XN)] +0 (}V) ,
where
9:v) = { :s elseévfhere, ve(=(l-m)1-ru{d+n3-r)

with vs € (1 — 7,1 —1/2), and where

(o [
frlv) = f(=v+2) if wve]
flv—=2) if wvel2,3].

Let w € [0,1) such that {(N)/N — u. One can assume u € [0,1 — ) by changing r if necessary. As
in the proof of Theorem we have the following lemma.
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Lemma 6.14 Vo € C§°(R).

[Nv]

I ‘EN A ‘:0,
yim sup @( N ) )

where
po_ [ N-1-[Nf 1] [1 N-1-[N/]
N N "N N’ N
N —1+[Nr] 2N 3] [2N -1 3N -3 [N7]
N " N N N ’

and ar o 5 a C'-extended version of ase such that

Aoo (=) if ve(—(1-r),0]
0 oo(v) = oo (V) if  wvel0,1-7)
™00 ao(—v+2) if  wve(l+n2
(v —2) if  wve2,3-—71),

and the martingale problem associated to L and starting from wu is well-posed.

Ay, oo

Lemma 6.15 The law of the process (9-(XN))n starting from d(N) = (I(N) — 1)/N s tight on
D([0,4+00),R).

Proof (of Lemma [6.15)) Let F}¥ = o(XY, s <t). According to Theorem 3 in [16, Chapter 3]. We
have to show only the two following points. First, we have

lim Tim P H(XY) 2 K ) =0,
Wl T T (gl )1 > )

since VN, Suptzo\gr(XtN)\ < 3. Second, we have for each N, h € (0,1), s € [0,h] and ¢ > 0,
Ea(n ((9-(X1N0) = 9n (X)) FY) < K b
In fact, we have

Ean) ((9r(X1%5) = 90 (X)2IFN) < 2Bay (MY (8 + s) — Moy ()% FY)

t+s 2
+2Eyn) <</ ﬁNgr(XfUV)dw> ‘ﬁjv) :
t

t
MY (1) = g, (XD) — o (X)) — / £V g (XN)ds,

with

which is a (F}¥);>o-martingale. We also have

sup sup 1LY g, (v)|< +oo
N v€[7 N1\71,3N§1]\{0’2N1\71}

since by Lemma

sup  sup |£Ngr(v)| < 4o00.
N velyU{vs}

Moreover, LN g,.(0) = LN g,.(2(N — 1)/N) = 0. Then, we get

t+s 2
Ea(n) << ENgT(Xg)dw>
t

fﬁ) < Ch*.

We recall that ;
<MY >t:/ (£N g2 — 29, g,) (XN)ds.
0
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Consequently, by the martingale property of (M, (t))t>0,
Eany (Mg (t 4 s) = My (£)*|FY) = Eacy (M) (t+ s) — MY (1)*|FY)
= Eav) (Mg, (t+ 5)* = My (1) 7))
= ]Ed(N) (< Mgr Sty — < MI]\(fi >y |.7tN)
t+s
=Eqn) / (CNgf - 29r£Ngr) (X2)
t

< Ch.

In fact, in addition to the previous arguments, we also have

sup  sup |LNgZ(v)| < +oo,
N velnU{vs}

supy LNg (O) = F“’ < 400, and supy LV g2(2(N - 1)/2) = 2% < +o00. That concludes the proof
Lemma 615 O

Now, let us introduce some notations. Vj € N*| let

9 =inf (t> 797, 2t)e[-1,-(1-r)Ul—rl+7r)U(B-r13])
D =inf (t>79, z(t)e(-1-r),l-r)U(1+r3-1)),

with Tﬁ,oc) = 0. Using the previous lemma, there exists (N’) such that

WA Eaovn [£2(g:(X2))] = E&[£*(x(2))].

Moreover,

B [ (e(2)] = LB [Pl v e
Jj=1
= DB B2 7o) o <Moo ]
Jj=1 T '
where M; = o(z(s), 0 < s <t¢). With the following lemma we can identify each excursion between
(5-1) 28

Tre  and Ty

Lemma 6.16 V) € N*, the conditional law @u( . |MT(j—1)) coincide up to the stopping time TT(J)

with the conditional law @;( |MT£JC_1>), where @Z is the unique solution of the martingale problem

associated to L and starting from u.

Ar oo

follows from Lemma |6.14] and the fact that we are studying excursions between T,(,jc Y and T(j ) By

Proof (of Lemma [6.16]) This proof is a conditional version of Lemma Moreover, this lemma
Lemma , in addition to g,.(XY) = XY for T7§’jc_1) <z<t,

t/\T,,(.J)
li]{[nEd(N) [/ L:N@(Xév) - L (p(XéV)| dS‘MT(ljll)‘| =0,

o o
- ’
rie

and we also have

K 1
EO |;/0 l(ngo)ds] =0 (Na’/\(la’)) ’

t
1
E2(N_1)/N |:/0 1(X.£V—2(N1)/N)ds:| =0 <Na’A(1a’))

by symmetry of the process X~. As in the proof of Lemma we get that Vo € C5°(R)

) AT
o(a(t AT)) — p(a(rlD)) - / T La, o p(a(s))ds

Tﬁ? 1 )
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is a martingale under the conditional law Qu( . |M7gj71)). Finally, from the uniqueness of the mar-
tingale problem associated to L, ., Qu( . ‘MT(j—l)) coincide up to the stopping time ﬂgj) with
FZ( . |MT’<.J;1)) (see Theorem 6.2.2 in [27]). That concludes the proof of Lemma O

From the previous lemma, Vj € N*, we have

B[ £ @ gocrtn] = B [£ @D o0 2. |

and then , .
S B [0 (XN )] = B [£*(a(2))] = EF [ (=),
where the limit does not depend to (N’). Consequently,

Jlim T @) =B [ (@(2)] = T (=),

with 9
5, (2 u) = La, Ti(2u) = Lo Ty (2, 0).
For the boundary conditions, first let h € (0, 1) such that 0 < h <« 1, we have

H(Tp ()~ Ty(e, ) = 1 T (Ep [(X)] ~ B [(X2)]) = 0,

because of the symmetry of the process X~V and f*, and therefore,
0
2—T+(2,0) =0.
au f(Z? )

Second, in the same way, let h € (0, 1) such that h < 1. Moreover, one can assume r < h by changing
r if necessary. Then, we have

%(Tf(zal —h) = Tp(z,1+h)) = % lim (E[NuiN—hn [ (X)) —Evagm [2(x)]) =0,

N——+oc0

and therefore,

o
25-Ty(2,1) =0.

As a result, using the density of the smooth functions with compact support in L?(0, 1) for ||.|| £2(0,1)
and the dominated convergence theorem we get the first point of Theorem The second point

is a consequence of the maximum principle and the density for the sup norm over [0,1] in {p €
C°([0,1]), ¢(1) = 0} of the smooth functions with compact support included in [0,1). W
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