Problem 1. A Lie Group is a group G which is also a manifold, and is such that the operations

$$G \times G \to G$$

$$(x, y) \to xy$$

and

$$G \to G$$

$$x \to x^{-1}$$

are both smooth. Show that the tangent bundle TG is always trivial. That is there is an invertible map of bundles

$$TG \simeq G \times \mathbb{R}^n$$

where $n = \dim(G)$. (One example of a Lie Group is the space of invertible linear maps on finite dimensional vector space V.)

Problem 2. Remember the last definition of the tangent bundle defined its fiber TM_p at a point $p \in M$ to be the vector space of derivations at p. That is the space of of maps:

$$C^\infty(M) \to \mathbb{R}$$

which are linear over \mathbb{R} and further are “derivations at p”:

$$l(fg) = f(p)l(g) + g(p)l(f)$$

1. Show that the operators $l = \frac{\partial}{\partial x_i}|_p$ have this property. (partial differentiation evaluated at p)

2. Show that $\dim(TM_p) = \dim(M)$. For this you may find it useful to prove the following Lemma:

Lemma 1. Let f be a C^∞ function in a convex open neighborhood U of 0 in \mathbb{R}^n, with $f(0) = 0$. Then there are C^∞ functions $g_i: U \to \mathbb{R}$ with $f(x_1, \ldots, x_n) = \sum_{i=1}^n x_i g_i(x_1, \ldots, x_n)$.

(Hint: if you have trouble, take a look at Spivak’s a Comprehensive Introduction to Differential Geometry Vol 1 pages 78-79 (in the current edition) where he discusses this definition.)

Problem 3. Compute the fundamental group of the complement to the Hopf link in \mathbb{R}^3.

Problem 4. Draw immersed circles in \mathbb{R}^2 with Whitney indices $0, 1, -1, 2$ and -2.