Applied Math Seminar
Fall Quarter 2005
3:15 p.m.
Sloan Mathematics Corner
Building 380, Room 380-C


Friday, November 11, 2005


Shi Jin
University of Wisconsin-Madison

Hamiltonian-preserving schemes for the Liouville equation with discontinuous potentials


Abstract:

When numerically solving the Liouville equation with a discontinuous potential, one faces the problem of severe time step restriction, and the inconsistency to the constant Hamiltonian which is related to the problem of how the weak solution should be defined for such linear hyperbolic equations with singular coefficients. In this talk, we present a class of Hamiltonian-preserving schemes that are able to overcome these numerical deficiencies. The key idea is to build into the numerical flux the behavior of a classical particle at a potential barrier. We establish the stability theory of these new schemes, and analyze their numerical accuracy. Numerical experiments are carried out to verify the theoretical results. This method can also be applied to the level set methods for the computations of multivalued physical observables in the semiclassical limit of the linear Schrodinger equation with a discontinuous potential. For wave equations with discontinuous local speeds, this leads to numerical schemes consistent with Snell's Law of Refraction.

Seminar Main Page