I.1

1. Let $f_n \in L^p([0,1])$, where $1 < p < \infty$. Suppose that $\|f_n\|_p \leq 1$ and moreover that $f_n(x) \to 0$ for a.e. $x \in [0,1]$. Prove that $f_n \to 0$ weakly in L^p.

2. Let v_1, \ldots, v_N be a finite sequence of unit vectors in a Hilbert space \mathcal{H}. Suppose that there exists a number $a \in (0, 1)$ such that

$$\langle v_i, v_j \rangle \leq -a, \forall i \neq j.$$

Find an upper bound for N in terms of a.

3. Let $h \in L^2(S^1)$ and assume that $h(t) \neq 0$ for a.e. $t \in S^1$. Prove that the subspace

$$V = \{ P(t)h(t) : P \text{ a trigonometric polynomial} \} \subset L^2(S^1)$$

is dense.

1. To show that $f_n \to 0$ weakly in L^p, it is enough to show that $\int_0^1 f_n g \to 0$ for each $g \in L^q([0,1])$, as L^q is the dual of L^p.

Let $g \in L^q$ and fix $\epsilon > 0$. Recall from measure theory that there is some $\delta > 0$ such that if $A \subset [0,1]$ has $m(A) < \delta$, then

$$\left(\int_A |g|^q \right)^{1/q} < \frac{\epsilon}{2}.$$

$f_n \to 0$ almost everywhere, so by Lusin’s theorem there is a set $A \subset [0,1]$ with $m(A) < \delta$ such that $f_n \to 0$ uniformly on $[0,1] \setminus A$. In other words, there is some N such that for all $n \geq N$ we have

$$|f_n(x)| \leq \frac{\epsilon}{2\|g\|_q} \text{ on } [0,1] \setminus A.$$

We then have that

$$|\langle f_n, g \rangle| \leq \int_A |f_n g| + \int_{[0,1]\setminus A} |f_n g|$$

$$\leq \|f_n\|_p \left(\int_A |g|^q \right)^{1/q} + \left(\int_{[0,1]\setminus A} |f_n|^p \right)^{1/p} \|g\|_q$$

$$\leq \frac{\epsilon}{2} + \frac{\epsilon}{2\|g\|_q} \cdot \|g\|_q = \epsilon.$$
2. Consider the element \(v = \sum_{i=1}^{N} v_i \). We then have that
\[
0 \leq \langle v, v \rangle = \sum_{i=1}^{N} v_i + 2 \sum_{i \neq j} \langle v_i, v_j \rangle \leq N - 2 \binom{N}{2} a = N - N(N - 1)a,
\]
and so \(N(N - 1)a \leq N \). In other words, \((N - 1)a \leq 1 \), or
\[
N \leq 1 + \frac{1}{a} = \frac{a + 1}{a}.
\]

3. To show that \(V \) is dense in \(L^2(S^1) \), we will use the fact that the trigonometric polynomials are dense here. We proceed by showing that if \(f \in L^2(S^1) \) is orthogonal to \(V \), then \(f = 0 \). Suppose that \(f \perp V \), so that
\[
\int_{S^1} P(x)h(x)\overline{f(x)}dx = 0
\]
for all trigonometric polynomials \(P \). In particular, we have that \(hf \) is orthogonal to the space of trigonometric polynomials. These are dense, so we must have that \(hf = 0 \). \(h(x) \neq 0 \) almost everywhere, so we can conclude that \(f = 0 \) almost everywhere, i.e. \(f = 0 \) in \(L^2(S^1) \).

\[\blacksquare \]

I.2 Let \(\{f_k\} \) be a sequence of real-valued functions defined on \([-1, 1]\) such that
\[
|f_k(x) - f_k(y)| \leq \sqrt{|x - y|} + \frac{1}{k}
\]
for all \(k \geq 0 \) and \(x, y \in [-1, 1] \). Suppose also that each \(f_k(0) = 0 \). Prove that some subsequence of the \(f_k \) converges uniformly to a continuous function \(f \) on \([-1, 1]\).

First note that the \(f_k \) are uniformly bounded by 2. We will construct a convergent subsequence of the \(f_k \) via a diagonalization process analogous to a hands-on proof of Arzela-Ascoli on an interval.

The sequence \(\{f_k(1)\} \) is bounded, so we may choose a convergent subsequence. In fact, we may choose a subsequence \(f_{k_0(j)} \) such that the values of \(f_{k_0(j)}(x) \) converge at the points \(x = -1, 0, 1 \). Now, given a subsequence \(f_{k_{a-1}(j)} \), we may choose a subsequence of this subsequence, call it \(f_{k_{a}(j)} \) such that its values at
\[
\left\{ \frac{j}{2^n} : j \in \{0, \pm 1, \ldots, \pm 2^n\} \right\}
\]
converge. Without loss of generality, we may assume that the \(r \)-th element of the \(r \)-th subsequence, \(f_{k_r(r)} \) satisfies
\[
|f_{k_r(r)}(\frac{j}{2^r}) - \text{its limit}| \leq \frac{1}{2^r}
\]
for all $j \in \{0, \pm 1, \ldots, \pm 2^n\}$. By a standard diagonalization argument, we obtain a subsequence (which, in an abuse of notation, we denote f_k) whose values converge at each dyadic rational. (To be more precise, the first element of our sequence is $f_{k_1(1)}$, and the r-th element is $f_{k_r(r)}$.)

We now claim that in fact f_k must converge uniformly to a continuous function. To do this we will first show that f_k is uniformly Cauchy to obtain a limiting function f. We will then show that this f must be continuous.

Fix $\varepsilon > 0$. Let N be such that $1/N < \varepsilon^2$ and $2^{(1-N)/2} < \varepsilon^2$. We claim that if $n, m \geq N$, then for all $x \in [-1, 1]$, $|f_n(x) - f_m(x)| < \varepsilon$. Indeed, there is an integer j such that $|x - j/2^n| \leq 1/2^{n+1}$. We then have that

$$|f_n(x) - f_m(x)| \leq |f_n(x) - f_n(j/2^n)| + |f_n(j/2^n) - f_m(j/2^n)| + |f_m(j/2^n) - f_m(x)|$$

$$\leq 2\sqrt{1/2^{n+1} + 2/N} + |f_n(j/2^n) - f_m(j/2^n)|$$

$$\leq 2^{-1/2} + 2/N + 2 \cdot 2^{1-N} \leq \varepsilon.$$

To rephrase the above in words, we may ensure that f_k are uniformly Cauchy on the dyadic rationals, and then the assumption about the f_k from the problem and the density of the dyadic rationals implies that the f_k are uniformly Cauchy. This gives us a limiting function f.

We now must show that f is continuous. Indeed, note that we must have

$$|f(x) - f(y)| \leq |f(x) - f_k(x)| + |f_k(x) - f_k(y)| + |f_k(y) - f(y)|$$

$$\leq \varepsilon + \sqrt{|x - y|} + 1/k + \varepsilon$$

$$\leq \sqrt{|x - y|} + 1/k + 2\varepsilon.$$

By taking limits, we see that $|f(x) - f(y)| \leq \sqrt{|x - y|}$ and so must be continuous.

I.3

1. Construct a sequence $\{f_n\}$ of positive continuous functions on \mathbb{R} such that $f_n(x)$ is bounded is $n \to \infty$ when $x \in \mathbb{Q}$, but $f_n(x)$ is unbounded for $x \in \mathbb{R}\setminus\mathbb{Q}$.

2. Prove that there is no sequence $\{g_n\}$ of positive continuous functions such that $g_n(x)$ is bounded when $x \in \mathbb{R}\setminus\mathbb{Q}$, but $g_n(x)$ is unbounded when $x \in \mathbb{Q}$.

1. The idea here is to construct a sequence of functions f_n with very large spikes so that for any rational number x, $f_n(x)$ is eventually 0. A picture here is very helpful, I think.

We start by letting

$$h(x) = \begin{cases} 2x & x \in [0, 1/2] \\ 2 - 2x & x \in [1/2, 1] \end{cases}.$$
extended to be periodic with period 1. Now, for $x \in \mathbb{R}$, we let

$$f_n(x) = (n + 1)h(n! \cdot x).$$

We then have that $f_n(x) = 0$ for all $x \in \mathbb{Q}$ such that $n! \cdot x \in \mathbb{Z}$. In particular, if $x \in \mathbb{Q}$, we have that $f_n(x) = 0$ for all large enough x, and so $f_n(x)$ is bounded for $x \in \mathbb{Q}$.

It remains to show only that $f_n(x)$ is unbounded when $x \notin \mathbb{Q}$. Indeed, consider the sets

$$B_M = \{ x : f_n(x) \text{ eventually bounded by } M \}$$

$$= \bigcup_k \bigcap_{n \geq k} \left(\bigcup_j \left[j \cdot \frac{M}{j!} - \frac{M}{2(n+1)!} \cdot \frac{j}{n!} + \frac{M}{2(n+1)!} \cdot \frac{j}{n!} + \frac{M}{2(n+1)!} \right] \right)$$

$$= \bigcup_k S_{M,k}.$$

Observe that the sets $S_{M,k}$ are finite; indeed, it is easy to check that

$$S_{M,k} = \{ \frac{j}{k!} : j \in \mathbb{Z} \}.$$

This tells us that

$$B_M = \bigcup_k S_{M,k} = \mathbb{Q},$$

and so

$$\{ x : f_n(x) \text{ is bounded} \} = \bigcup_M B_M = \mathbb{Q}.$$

Thus $f_n(x)$ is unbounded for all $x \in \mathbb{R} \setminus \mathbb{Q}$.

2. We just showed that the set of points where $g_n(x)$ is bounded is

$$\bigcup_{M=1}^{\infty} \bigcup_k \bigcap_{n \geq k} \{ x : g_n(x) \leq M \}.$$

$g_n(x)$ is continuous, so this is a countable union of closed sets, and so is a F_σ set. $\mathbb{R} \setminus \mathbb{Q}$ is not an F_σ set, so we cannot have such a sequence.

Here is a quick proof that $\mathbb{R} \setminus \mathbb{Q}$ is not an F_σ. If it were, then \mathbb{Q} would be a G_δ set. Both \mathbb{Q} and $\mathbb{R} \setminus \mathbb{Q}$ would then both be dense G_δ sets, so the Baire category theorem tells us that their intersection should be dense. But this is impossible because they have empty intersection.

I.5 Let C be a closed convex set in a Hilbert space \mathcal{H}. Prove that C contains a unique element of minimal norm.
Let
\[\eta = \inf_{z \in C} \|z\|. \]
If \(\eta = 0 \), then there is a sequence \(z_j \in C \), \(\|z_j\| \to 0 \), so \(z_j \to 0 \). \(C \) is closed, so \(0 \in C \), and then \(0 \) is the unique element of minimal norm. We may thus assume that \(\eta > 0 \).

We start by claiming that \(C \) contains an element of minimal norm. Indeed, take \(z_j \in C \) such that \(\|z_j\| \to \eta \). The convexity of \(C \) implies that \(\frac{z_j + z_k}{2} \in C \), so that
\[
\|z_j + z_k\|^2 = 4 \left\| \frac{z_j + z_k}{2} \right\|^2 \geq 4\eta^2.
\]
Recall now the parallelogram law for a Hilbert space:
\[
\|x - y\|^2 + \|x + y\|^2 = 2 \left(\|x\|^2 + \|y\|^2 \right).
\]
Applying this we have that
\[
\|z_j - z_k\|^2 = 2 \left(\|z_k\|^2 + \|z_j\|^2 \right) - \|z_j + z_k\|^2
\leq 2 \left(\|z_k\|^2 + \|z_j\|^2 \right) - 4\eta^2 \to 4\eta^2 - 4\eta^2 = 0
\]
as \(j, k \to \infty \). Thus the \(z_j \) are a Cauchy sequence and so converge to some \(z \in \mathcal{H} \). \(C \) is closed, so \(z \in C \), and the norm function is continuous, so \(\|z\| = \eta \), so that \(C \) contains an element of minimal norm.

The uniqueness of this element also follows from the parallelogram law and the convexity of \(C \). If \(x, y \) are two such elements, then by the above we must have
\[
\|x + y\|^2 \geq 4\eta^2,
\]
and so the parallelogram law implies that
\[
\|x - y\|^2 = 2\|x\|^2 + 2\|y\|^2 - \|x + y\|^2 \leq 4\eta^2 - 4\eta^2 = 0,
\]
and so \(x = y \).

\[\blacksquare \]

II.1 Let \(f \in C^0([\alpha, \beta]) \), where \(0 < \alpha < \beta < 1 \). For each \(n = 1, 2, \ldots \), define
\[
P_n(x) = \frac{\int_{\alpha}^{\beta} f(u) \left[1 - (u - x)^2 \right]^n du}{\int_{-1}^{1} (1 - u^2)^n du}.
\]
Show that \(P_n(x) \) is a polynomial of degree at most \(2n \) and that for any closed subinterval \([a, b] \subset (\alpha, \beta) \), \(P_n \to f \) uniformly.
Consider first the polynomials
\[
k_n(t) = \frac{(1-t^2)^n}{\int_{-1}^{1} (1-u^2)^n du}.
\]
Observe that \(\int_{-1}^{1} k_n(t)dt = 1\), and that \(k_n(t) \geq 0\). We claim that for any \(\delta > 0\), \(k_n(t)\) converges uniformly to 0 on \([-1, 1]\setminus(-\delta, \delta)\).

We’ll start by computing a formula for
\[
A_n = \int_{-1}^{1} (1-u^2)^n du.
\]
Indeed, observe that by integrating by parts, we can see that
\[
\int_{-1}^{1} t^2 (1-t^2)^n dt = -\frac{t}{2(n+1)}(1-t^2)^{n+1}|_{-1}^{1} + \frac{1}{2(n+1)} \int_{-1}^{1} (1-t^2)^{n+1} dt
\]
\[
= 0 + \frac{A_{n+1}}{2(n+1)} = \frac{A_{n+1}}{2n+2}.
\]
We then have the recurrence relation
\[
A_{n+1} = \int_{-1}^{1} (1-t^2)^{n+1} = A_n - \frac{1}{2(n+1)} A_{n+1},
\]
i.e.
\[
A_{n+1} = \frac{2n+2}{2n+3} A_n.
\]
We can easily verify that
\[
A_1 = \int_{-1}^{1} (1-t^2) dt = \frac{4}{3},
\]
so we have
\[
A_n = 2 \prod_{j=1}^{n} \frac{2j}{2j+1}.
\]
Now fix \(\delta > 0\). If \(n\) is large enough, then \(\frac{2n+2}{2n+3} \geq (1-\delta^2)^{1/2}\), and so
\[
k_{n+1}(\delta) = \frac{(1-\delta^2)A_n}{A_{n+1}} k_n(\delta) \leq (1-\delta^2)^{1/2} k_n(\delta).
\]
In particular, we have that if \(N\) is large, then for all \(n \geq N\),
\[
k_n(\delta) \leq (1-\delta^2)^{(n-N)/2} k_N(\delta).
\]
\(k_n(t)\) is decreasing for \(t > 0\) and is also an even function, so this tells us that for all \(x \in [-1, 1]\setminus(-\delta, \delta)\),
\[
k_n(x) \leq (1-\delta^2)^{(n-N)/2} k_N(\delta),
\]
so we have shown the desired uniform convergence.

Now that we know these properties of k_n, we wish to show that P_n converges uniformly to f. We can write

$$P_n(x) = \int_\alpha^\beta f(u)k_n(x-u)du = \int_{-1}^1 f(u)\chi(u)k_n(x-u)du = \int_{-1}^1 f(x-u)\chi(x-u)k_n(u)du,$$

where χ is the characteristic function of the interval $[\alpha, \beta]$.

Fix $\epsilon > 0$ and $[a, b] \subset (\alpha, \beta)$. Let $\delta > 0$ be such that $|b - \beta| < \delta$, $|a - \alpha| < \delta$, and that $|f(x) - f(y)| < \frac{\epsilon}{2}$ whenever $|x - y| < \delta$. Let N be such that for all $n \geq N$,

$$|k_n(x)| \leq \frac{\epsilon}{4\|f\|_{C^0}}$$

whenever $x \in [-1, 1] \setminus (-\delta, \delta)$. We then use that $\int_{-1}^1 k_n = 1$ to write

$$|P_n(x) - f(x)| = \left|\int_{-1}^1 (f(x-u)\chi(x-u) - f(x)\chi(x))k_n(u)du\right|$$

$$\leq \int_{[-1,1]\setminus(-\delta,\delta)} |f(x)\chi(x) - f(x-u)\chi(x-u)|k_n(u)du$$

$$+ \int_{-\delta}^\delta |f(x-u)\chi(x-u) - f(x)\chi(x)|k_n(u)du$$

$$\leq 2\|f\|_{C^0} \int_{[-1,1]\setminus(-\delta,\delta)} k_n(u)du + \frac{\epsilon}{2} \int_{-1}^1 k_n(u)du$$

$$\leq \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon,$$

because $|x - (x - u)| = |u| < \delta$.

That P_n are polynomials of degree at most $2n$ follows from the fact that we may write $k_n(x-u) = \sum_{i=0}^{2n} g_{n,i}(u)x^i$, where $g_{n,i}$ are polynomials in u, and then

$$P_n(x) = \sum_{i=0}^{n} x^i \int_\alpha^\beta f(u)g_{n,i}(u)du.$$

II.2 Let W be any vector space, and suppose that u, v_1, \ldots, v_k are linear functionals on W. Endow W with the weakest topology such that the functionals v_1, \ldots, v_k are continuous. Suppose that u is continuous in this topology. Prove that u is a linear combination of the v_j.

We first claim that

$$\bigcap_{j=1}^k \ker v_j \subset \ker u.$$
Indeed, we know that a basis for the topology of W at 0 consists of the sets

$$U_\epsilon = \{ w \in W : |v_j(w)| < \epsilon \text{ for all } j = 1, \ldots, k \}.$$

u is continuous with respect to this topology, so there is some $\epsilon > 0$ such that

$$U_\epsilon \subset \{ w \in W : |u(w)| < 1 \},$$

and so for all $\delta > 0$,

$$U_{\delta\epsilon} \subset \{ w \in W : |u(w)| < \delta \}.$$

We know that

$$\bigcap_{j=1}^{k} \ker v_j \subset U_\epsilon$$

for all ϵ, and so

$$\bigcap_{j=1}^{k} \ker v_j \subset \{ w \in W : |u(w)| < \delta \}$$

for all δ. Thus if $x \in \cap \ker v_j$, then $u(x) = 0$, i.e. $x \in \ker u$.

Now we claim that if

$$\bigcap_{j=1}^{k} \ker v_j \subset \ker u,$$

then u must be a linear combination of the v_j. Without loss of generality, we may assume that the v_j are linearly independent. Consider the map $W \to \mathbb{R}^{k+1}$ given by

$$w \mapsto (v_1(w), \ldots, v_k(w), u(w)).$$

We know that $\cap \ker v_j \subset \ker u$, so $(0, \ldots, 0, 1)$ is not in the image of this map. There is thus some non-zero vector $(\beta_1, \ldots, \beta_k, \alpha)$ orthogonal (by the standard dot product on \mathbb{R}^{k+1}) to the image of this map. This tells us that for all $w \in W$,

$$\alpha u(w) + \sum_{j=1}^{k} \beta_j v_j(w) = 0.$$

In other words, $\alpha u + \sum \beta_j v_j = 0$. The v_j were linearly independent, so $\alpha \neq 0$ or else this would give a linear dependence among the v_j. Thus

$$u = -\frac{1}{\alpha} \sum_{j=1}^{k} \beta_j v_j,$$

so that u is a linear combination of the v_j.

\[\blacksquare \]