A CORRECTION TO "PROPAGATION OF SINGULARITIES FOR THE WAVE EQUATION ON MANIFOLDS WITH CORNERS"

ANDRÁS VASY

There is a mistake in the proof of Proposition 7.3^{1} of [1], namely a term was omitted in (7.9), so that the displayed equation after (7.15), as well as its analogues after (7.16) do not hold. The term omitted corresponds to the term $|x|^{2}$ in (7.8) being differentiated by the term $2 A \xi \cdot \partial_{x}$ in the Hamilton vector field appearing in (6.3).

This mistake can be easily remedied as follows. First, after the displayed equation after (7.7) we specify one of the ρ_{j} slightly more carefully, namely we require

$$
\rho_{1}=1-\tau^{-2}|\zeta|_{y}^{2}
$$

note that $d \rho_{1} \neq 0$ at q_{0} for $\zeta \neq 0$ there. Then

$$
\left|\tau^{-1} W^{b} \omega_{0}\right| \leq C_{1}^{\prime} \omega_{0}^{1 / 2}\left(\omega_{0}^{1 / 2}+\left|t-t_{0}\right|\right)
$$

still holds.
The argument of [1] proceeds with a motivational calculation, followed by the precise version of what is needed. We follow this approach here. So first the correct motivational calculation is presented.

We still have $\left.p\right|_{x=0}=\tau^{2}-|\xi|_{y}^{2}-|\zeta|_{y}^{2}$. Thus, the equation after (7.9) can be strengthened to

$$
\tau^{-2}|\xi|_{y}^{2} \leq C\left(\tau^{-2}|p|+|x|+\omega_{0}^{1 / 2}\right)
$$

i.e. with $\left|t-t_{0}\right|$ dropped, using that $\left|\rho_{1}\right|=\left.\left|1-\tau^{-2}\right| \zeta\right|_{y} ^{2} \mid \leq \omega_{0}^{1 / 2}$. The analogue of (7.9) for ω_{0} in place of ω still holds:

$$
\begin{aligned}
\left|\tau^{-1} H_{p} \omega_{0}\right| & \leq \tilde{C}_{1}^{\prime \prime} \omega_{0}^{1 / 2}\left(\omega_{0}^{1 / 2}+|x|+\left|t-t_{0}\right|+\tau^{-2}|\xi|^{2}\right) \\
& \leq C_{1}^{\prime \prime} \omega^{1 / 2}\left(\omega^{1 / 2}+\left|t-t_{0}\right|+\tau^{-2}|p|\right)
\end{aligned}
$$

But we also have (and this was the dropped expression)

$$
\left.\left|\tau^{-1} H_{p}\right| x\right|^{2}\left|\leq \tilde{C}_{1}^{\prime}\right| x \mid\left(|x|+|\tau|^{-1}|\xi|\right) \leq C_{1}^{\prime} \omega^{1 / 2}\left(\omega^{1 / 2}+\left(\tau^{-2}|p|+\omega^{1 / 2}\right)^{1 / 2}\right)
$$

Thus, the displayed equation after (7.15) becomes (at $p=0$), with $C_{1}=C_{1}^{\prime}+C_{1}^{\prime \prime}$,

$$
\begin{aligned}
\tau^{-1} H_{p} \phi & =H_{p}\left(t-t_{0}\right)+\frac{1}{\epsilon^{2} \delta} H_{p} \omega \\
& \geq c_{0} / 2-\frac{1}{\epsilon^{2} \delta} C_{1} \omega^{1 / 2}\left(\omega^{1 / 2}+\left|t-t_{0}\right|+\omega^{1 / 4}\right) \\
& \geq c_{0} / 2-4 C_{1}\left(\delta+\frac{\delta}{\epsilon}+\left(\frac{\delta}{\epsilon}\right)^{1 / 2}\right) \geq c_{0} / 4>0
\end{aligned}
$$

[^0]provided that $\delta<\frac{c_{0}}{64 C_{1}}, \frac{\epsilon}{\delta}>\max \left(\frac{64 C_{1}}{c_{0}},\left(\frac{64 C_{1}}{c_{0}}\right)^{2}\right)$, i.e. that δ is small, but ϵ / δ is not too small - roughly, ϵ can go to 0 at most proportionally to δ (with an appropriate constant) as $\delta \rightarrow 0$. The rest of the rough argument then goes through.

The precise version is similar. In (7.10) the estimate on the f_{i} term must be weakened:

$$
\begin{aligned}
& \tau^{-1} H_{p} \omega=f_{0}+\sum_{i} f_{i} \tau^{-1} \xi_{i}+\sum_{i, j} f_{i j} \tau^{-2} \xi_{i} \xi_{j} \\
& f_{i}, f_{i j} \in \mathcal{C}^{\infty}\left({ }^{\mathrm{b}} T^{*} X\right),\left|f_{i}\right| \leq C_{1} \omega^{1 / 2},\left|f_{i j}\right| \leq C_{1} \omega^{1 / 2}
\end{aligned}
$$

$f_{i}, f_{i j}$ homogeneous of degree 0 . This affects the estimates on r_{i} below (7.16):

$$
\left|r_{0}\right| \leq \frac{C_{2}}{\epsilon^{2} \delta} \omega^{1 / 2}\left(\left|t-t_{0}\right|+\omega^{1 / 2}\right),\left|\tau r_{i}\right| \leq \frac{C_{2}}{\epsilon^{2} \delta} \omega^{1 / 2},\left|\tau^{2} r_{i j}\right| \leq \frac{C_{2}}{\epsilon^{2} \delta} \omega^{1 / 2}
$$

and supp r_{i} lying in $\omega^{1 / 2} \leq 3 \epsilon \delta,\left|t-t_{0}\right|<3 \delta$. Thus,

$$
\left|r_{0}\right| \leq 3 C_{2}\left(\delta+\frac{\delta}{\epsilon}\right),\left|\tau r_{i}\right| \leq 3 C_{2} \epsilon^{-1},\left|\tau^{2} r_{i j}\right| \leq 3 C_{2} \epsilon^{-1}
$$

Thus, only the R_{i} term needs to be treated differently from [1]. We again let $T \in \Psi_{\mathrm{b}}^{-1}(X)$ be elliptic with principal symbol $|\tau|^{-1}$ near $\dot{\Sigma}$ (more precisely, on a neighborhood of $\operatorname{supp} a), T^{-} \in \Psi_{\mathrm{b}}^{1}(X)$ a parametrix, so $T^{-} T=\operatorname{Id}+F, F \in$ $\Psi_{\mathrm{b}}^{-\infty}(X)$. Then there exists $R_{i}^{\prime} \in \Psi_{\mathrm{b}}^{-1}(X)$ such that for any $\gamma>0$,

$$
\begin{aligned}
\left\|R_{i} w\right\|=\left\|R_{i}\left(T^{-} T-F\right) w\right\| & \leq\left\|\left(R_{i} T^{-}\right)(T w)\right\|+\left\|R_{i} F w\right\| \\
& \leq 6 C_{2} \epsilon^{-1}\|T w\|+\left\|R_{i}^{\prime} T w\right\|+\left\|R_{i} F w\right\|
\end{aligned}
$$

for all w with $T w \in L^{2}(X)$, hence

$$
\begin{aligned}
& \left|\left\langle R_{i} D_{x_{i}} v, v\right\rangle\right| \leq 6 C_{2} \epsilon^{-1}\left\|T D_{x_{i}} v\right\|\|v\| \\
& \quad+2 \gamma\|v\|^{2}+\gamma^{-1}\left\|R_{i}^{\prime} T D_{x_{i}} v\right\|^{2}+\gamma^{-1}\left\|F_{i} D_{x_{i}} v\right\|^{2}
\end{aligned}
$$

with $F_{i} \in \Psi_{\mathrm{b}}^{-\infty}(X)$. Now we use that R_{i} is microlocalized in an $\epsilon \delta$-neighborhood of \mathcal{G}, rather than merely a δ-neighborhood, as in [1], due to the more careful choice of $\rho_{1}: \mathcal{G}$ is given by $\rho_{1}=0, x=0$, and we are microlocalized to the region where $\left|\rho_{1}\right| \leq 3 \epsilon \delta,|x| \leq 3 \epsilon \delta$. For $v=\tilde{B}_{r} u, \tilde{B}_{r}=\tilde{B} \Lambda_{r}$, Lemma 7.1 thus gives (taking into account that we need to estimate $\left\|T D_{x_{i}} v\right\|$ rather than its square)

$$
\begin{aligned}
\mid\left\langle R_{i} D_{x_{i}} v\right. & , v\rangle \mid \leq 6 C_{2}^{\prime} \epsilon^{-1}(\epsilon \delta)^{1 / 2}\left\|\tilde{B}_{r} u\right\|^{2} \\
& +C_{0} \gamma^{-1}\left(\left\|G \tilde{B}_{r} u\right\|_{H^{1}(X)}^{2}+\left\|\tilde{B}_{r} u\right\|_{H_{\mathrm{loc}}^{1}(X)}^{2}+\|\tilde{G} P u\|_{H^{-1}(X)}^{2}+\|P u\|_{H_{\mathrm{loc}}^{1}(X)}^{2}\right) \\
& +3 \gamma\left\|\tilde{B}_{r} u\right\|^{2}+\gamma^{-1}\left\|R_{i}^{\prime} T D_{x_{i}} \tilde{B}_{r} u\right\|^{2}+\gamma^{-1}\left\|F_{i} D_{x_{i}} \tilde{B}_{r} u\right\|^{2}
\end{aligned}
$$

where the first term is the main change compared to [1]. Its coefficient, $(\delta / \epsilon)^{1 / 2}$, means that it can then be handled exactly as the $R_{i j}$ term in [1], thus completing the proof.

References

[1] A. Vasy. Propagation of singularities for the wave equation on manifolds with corners. Annals of Mathematics, 168:749-812, 2008.

Department of Mathematics, Stanford University, Stanford, CA 94305-2125, U.S.A.
E-mail address: andras@math.stanford.edu

[^0]: Date: December 1, 2008.
 1991 Mathematics Subject Classification. 58J47, 35L20.
 This work is partially supported by NSF grant DMS-0801226.
 ${ }^{1}$ Below all equation and proposition numbers of the form (7.xx) or $7 . \mathrm{xx}$ refer to [1].

