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Abstract. In this paper we prove semiclassical resolvent estimates for op-

erators with normally hyperbolic trapping which are lossless relative to non-
trapping estimates but take place in weaker function spaces. In particular, we

obtain non-trapping estimates in standard L2 spaces for the resolvent sand-

wiched between operators which localize away from the trapped set Γ in a
rather weak sense, namely whose principal symbols vanish on Γ.

1. Introduction

The purpose of this paper is to obtain lossless, relative to non-trapping, albeit
weaker, in terms of function spaces, semiclassical estimates for pseudodiffererential
operators Ph(z) with normally hyperbolic trapping for z real. Thus, the main result
is an estimate of the form

‖u‖H~,Γ ≤ Ch−1‖Ph(z)u‖H∗~,Γ ,

with certain function spacesH~,Γ andH∗~,Γ, described below; away from the trapped

set these are just standard L2 spaces. As the main application of such estimates
is in so-called b-spaces, e.g. Kerr-de Sitter spaces, for which the estimates follow
from the semiclassical ones immediately in the presence of dilation invariance, we
also prove their counterpart in the general, non-dilation-invariant, b-setting.

So at first we consider a family Ph(z) of semiclassical pseudodifferential operators
Ph(z) ∈ Ψ~(X) on a closed manifold X, depending smoothly on the parameter
z ∈ C, with normally hyperbolic trapping, with trapped set Γ, and assume that
Ph(z) is formally self-adjoint for z ∈ R. Wunsch and Zworski [13] studied this
setting, imposing other global assumptions, the most important one being adding
complex absorption W in such a way that all bicharacteristics outside Γ, in both
the forward and backward directions, either enter the elliptic set of W in finite time
or tend to Γ, and in at least one of the two directions they tend to the elliptic set
of W . The bicharacteristics tending to Γ in the forward/backward directions are
forward/backward trapped; denote by Γ−, resp. Γ+ the forward, resp. backward
trapped set,1 and assume that these are smooth codimension one submanifolds of
the semiclassical characteristic set Σ~,z, intersecting transversally.
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1



2 PETER HINTZ AND ANDRAS VASY

In this normally hyperbolic setting Wunsch and Zworski [13] have shown poly-
nomial semiclassical resolvent estimates

‖u‖ ≤ Ch−N‖Ph(z)u‖, 0 < h < h0, (1.1)

in small strips | Im z| ≤ ch, c > 0 sufficiently small, N > 1, and indeed for z real,
the loss is merely logarithmic, i.e. one has

‖u‖ ≤ Ch−1(log h−1)‖Ph(z)u‖, 0 < h < h0, (1.2)

where ‖.‖ is the L2-norm. Dyatlov’s work [5] has since then improved the estimates
in Im z < 0 (for instance, by making c,N explicit).

We are concerned with improved estimates (for z almost real) if one localizes u
and Ph(z)u away from the trapping Γ in a rather weak sense, such as by applying
pseudodifferential operators with symbols vanishing at Γ. To place this into context,
recall that Datchev and Vasy [3, 4] have shown that under our assumptions, with
Im z = O(h∞), if A,B ∈ Ψ~(X) with WF′~(A) ∩ Γ = WF′~(B) ∩ Γ = ∅, B elliptic
on WF′~(A), then for all M there is N such that

‖Au‖ ≤ Ch−1‖BPh(z)u‖+ C ′hM‖u‖+ C ′′h−N‖(Id−B)Ph(z)u‖. (1.3)

Thus, if Ph(z)u is O(hN−1) at Γ (corresponding to the Id−B term in the estimate),
then on the elliptic set of A, hence off Γ by appropriate choice of A, u satisfies non-
trapping semiclassical estimates:

‖APh(z)−1Av‖ ≤ Ch−1‖v‖,

with A as above (take B as above with WF′~(Id−B) ∩WF′~(A) = ∅). Here the
O(h∞) bound on Im z arises from the a priori estimate, (1.1), and if 1 < N <
3/2, e.g. as is on, and sufficiently near, the real axis,2 then one can take Im z =
O(h−1+2N ). The purpose of this paper is to improve this result by relaxing the
conditions on WF′~(A) and WF′~(B) in (1.3).

The main point of the theorem below is thus that its estimate degenerates only at,
as opposed to near, Γ. The proof given here is closely related to the proof of Wunsch
and Zworski [13, Section 4], but being suboptimal in terms of the L2-estimate,
even though it is optimal (non-trapping) when a pseudodifferential operator with
vanishing principal symbol at Γ is applied from both sides, it can take place in
a significantly simpler, standard, semiclassical pseudodifferential algebra. To set
this up, let Q± ∈ Ψ−∞~ (X) be self-adjoint and have symbols which are defining
functions of Γ± near Γ, within the characteristic set Σ~,z, say on a neighborhood
O of Γ. Let Q0 ∈ Ψ0

~(X) be a semiclassical operator with WF′~(Q0) ∩ Γ = ∅ which
is elliptic on Oc (and thus on a neighborhood of Oc), with real principal symbol
for convenience. One considers normally isotropic spaces at Γ, denoted H~,Γ, with
squared norms given by

‖u‖2H~,Γ
= ‖Q0u‖2 + ‖Q+u‖2 + ‖Q−u‖2 + h‖u‖2;

this is just the standard L2-space microlocally away from Γ as one of Q+, Q− or
Q0 is elliptic there, and it does not depend on the choice of Q0 as on O \ Γ one of

2In the latter case by the Phragmén-Lindelöf theorem.
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Q+ and Q− is elliptic at every point. The dual space relative to L2 is then3

H∗~,Γ = h1/2L2 +Q+L
2 +Q−L

2 +Q0L
2

(which is L2 as a space, but with this norm); Ph(z)u will then be measured in H∗~,Γ.

Theorem 1.1. Let P = Ph(z), Q± be as above, Im z = O(h2). Then

‖Q+u‖+ ‖Q−u‖ ≤ Ch−1‖Pu‖H∗~,Γ + C ′h1/2‖u‖, (1.4)

and thus by (1.2),
‖u‖H~,Γ ≤ Ch−1‖Pu‖H∗~,Γ . (1.5)

In fact, we also obtain a direct proof of (1.5) without using (1.2) at the end of
Section 2, as well as the aforementioned b-estimates in Section 3, see Theorem 3.2.

2. Semiclassical resolvent estimates on the real line

2.1. Notation and definitions. We will review some definitions of semiclassical
analysis, partially in order to fix our notation. For a general reference, see Zworski
[14].

Let X be a compact n-dimensional manifold without boundary, and fix a smooth
density on X.

• For u ∈ L2(X), denote by ‖u‖ its L2(X) norm; moreover, denote by 〈·, ·〉 the
(sesquilinear) inner product on L2(X).

• A family of functions u = (uh)h∈(0,1) on X is polynomially bounded if ‖u‖ ≤
Ch−N for some N . If k ∈ R, we say that u ∈ O(hk) if ‖u‖ ≤ Ckh

k, and
u ∈ O(h∞) if ‖u‖ ≤ CNhN for every N .

• For a = (ah)h∈(0,1) ∈ C∞(T ∗X), we say a ∈ hkSm(T ∗X) if a satisfies

|∂αz ∂
β
ζ ah(z, ζ)| ≤ Cαβhk〈ζ〉m−|β|

for all multiindices α, β and all N ∈ N in any coordinate chart, where the
z are coordinates in the base and ζ coordinates in the fiber. We define the
semiclassical quantization Oph(a) of a by

Oph(a)u(z) = (2πh)−n
∫
eizζ/ha(z, ζ)û(ζ/h) dζ

for u ∈ C∞c (X) supported in a chart and for general u ∈ C∞c (X) by using a
partition of unity. We write Oph(a) ∈ hkΨm

~ (X). The quantization depends
on the choice of partition of unity, but the resulting class of operators does not,
modulo operators that have Schwartz kernel in h∞C∞(X2). We say that a is a
symbol of Oph(a). The equivalence class of a in hkSm(T ∗X)/hk−1Sm−1(T ∗X)
is invariantly defined and is called the principal symbol of Oph(a). All oper-
ators below except Q0 ∈ Ψ0

~(X) will in fact have compact microsupport in
the sense that they are quantizations of symbols a ∈ hkSm(T ∗X) satisfying
in addition for all N

|∂αz ∂
β
ζ ah(z, ζ)| ≤ CNhN 〈ζ〉−N for all multiindices α, β

for ζ outside of a compact subset of T ∗X. We denote the class of such symbols
by hkS(T ∗X) and the corresponding class of operators by hkΨ~(X).

3One really has Q∗± and Q∗0 in this formula, but the reality of the principal symbols assures that

one may replace them by Q± and Q0 modulo hL2. See [7, Appendix A] for a general discussion

of the underlying functional analysis; also see Footnote 12.
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• If A,B ∈ Ψ~(X), then [A,B] ∈ hΨ~(X), and its principal symbol is h
i Hab,

where we define the Hamilton vector field in a coordinate chart by

Ha = (∂ζa)∂z − (∂za)∂ζ .

• By a bicharacteristic of A we mean an integral curve of the Hamilton vector
field of the principal symbol of A. We denote the integral curve passing
through the point ρ ∈ T ∗X by γρ, i.e. γρ(0) = ρ and γ′ρ(s) = Ha(γρ(s)).
We shall also write φs(ρ) := γρ(s) for the bicharacteristic flow.

• For a polynomially bounded family (uh)h∈(0,1) and k ∈ R ∪ {∞}, we say that

u = O(hk) at a point ρ ∈ T ∗X if there exists a ∈ S(T ∗X) with a(ρ) 6= 0 such
that ‖Oph(a)u‖ = O(hk). We define the semiclassical wave front set WF~(u)
of u as the complement of the set of all ρ ∈ T ∗X at which u = O(h∞).

• The microsupport of A = Oph(a) ∈ hkΨ~(X), denoted WF′~(A), is the com-
plement of the set of all ρ ∈ T ∗X so that |∂αa| = O(h∞) near ρ for every
multiindex α, in any (and therefore in every) coordinate chart.

• For A ∈ hkΨ~(X) with principal symbol a ∈ hkS(T ∗X), we say that A is
elliptic at ρ ∈ T ∗X if there is a constant C > 0 such that |a(ρ′)| ≥ Chk for
ρ′ near ρ and h sufficiently small. For a subset E b T ∗X, we say that A is
elliptic on E if A is elliptic at each point of E. If A ∈ hkΨ~(X) is elliptic on
E b T ∗X and Au = f with u, f polynomially bounded and f is O(1) on E,
then microlocal elliptic regularity states that u is O(h−k) on E.

• The semiclassical characteristic set of the semiclassical operator A ∈ Ψ~(X)
with principal symbol a is defined by Σ~ = {ρ ∈ T ∗X : a(ρ) = 0}.

• If A ∈ Ψ~(X) has a principal symbol with non-positive imaginary part, u, f
are polynomially bounded, Au = f , and u = O(hk) at ρ, f = O(hk+1) on
γρ([0, T ]) for some T > 0, then the propagation of singularities states that
u = O(hk) at γρ(T ).

• Let P ∈ Ψ~(X) be a semiclassical operator. Let U ⊂ X denote an open subset
so that the cotangent bundle over U contains what will be the trapped set, and
place complex absorbing potentials in a neighborhood of U c.4 We recall the
notion of normal hyperbolicity from [13]: Define the backward, resp. forward,

trapped set Γ̃+, resp. Γ̃−, by

Γ̃± = {ρ ∈ T ∗X : γρ(s) /∈ T ∗UcX for all ∓ s ≥ 0}.

Let Γλ± = Γ̃±∩p−1(λ) be the backward/forward trapped set within the energy

surface p−1(λ), and define the trapped set Γλ := Γλ+ ∩ Γλ−. In the context of
Theorem 1.1, we will only work within the characteristic set of p, hence with
Γ± := Γ0

± and Γ := Γ0. We say that P is normally hyperbolically trapping if:
(1) There exists δ > 0 such that dp 6= 0 on p−1(λ) for |λ| < δ;

(2) Γ̃± ∩ p−1(−δ, δ) are smooth codimension one submanifolds intersecting

transversally at Γ̃ ∩ p−1(−δ, δ);
(3) the flow is hyperbolic in the normal directions to Γλ within the energy

surface: There exist subbundles E±λ of TΓλ(Γλ±) such that TΓλΓλ± =

TΓλ ⊕ E±λ , where dφs : E±λ → E±λ , and there exists θ > 0 such that for

4See [13, 11] for details; the point here is that the relevant part of our analysis takes place
microlocally near the trapped set, and the complex absorbing potentials allow us to ‘cut off’ the

bicharacteristic flow in a neighborhood of the trapped set.
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all |λ| < δ

‖dφs(v)‖ ≤ Ce−θ|t|‖v‖ for all v ∈ E∓λ ,±t ≥ 0.

2.2. Details on the setup and proof of the main result. Let p = p~,z be
the semiclassical principal symbol of Ph(z). Recall from the work of Wunsch and
Zworski [13, Lemma 4.1], with a corrected argument in [12], that for defining func-
tions φ± of Γ± (near Γ, namely in a neighborhood O of Γ) within the characteristic
set of p one can take φ± with

Hpφ± = ∓c2±φ±
with c± > 0 near Γ, and with5

{φ+, φ−} > 0

near Γ. This is the only relevant feature of normal hyperbolicity for this paper; thus
these identitities and estimates could be taken as its definition for our purposes.
By shrinking O if necessary we may assume that this Poisson bracket as well as c±
have positive lower bounds on O. Then notice that

Hpφ
2
+ = −2c2+φ

2
+, Hpφ

2
− = 2c2−φ

2
−.

As indicated in the introduction, we consider normally isotropic spaces at Γ, de-
noted H~,Γ, with squared norms given by

‖u‖2H~,Γ
= ‖Q0u‖2 + ‖Q+u‖2 + ‖Q−u‖2 + h‖u‖2;

we can take Q± with principal symbol φ±, while Q0 is elliptic on Oc with real
principal symbol. This is just the standard L2-space microlocally away from Γ as
one of Q+, Q− or Q0 is elliptic there, and it does not depend on the choice of Q0

as on O \ Γ one of Q+ and Q− is elliptic at every point. Notice that in fact

(Q+ − iQ−)∗(Q+ − iQ−) = Q∗+Q+ +Q∗−Q− − i[Q+, Q−]

and if B ∈ Ψ~(X) with WF′~(B) ⊂ O then

h‖Bv‖2 ≤ C Re〈i[Q+, Q−]Bv,Bv〉+ ChN
′
‖v‖2,

C > 0, in view of {φ+, φ−} > 0 on O, so

Q∗+Q+ +Q∗−Q− =
1

2
(Q∗+Q+ +Q∗−Q− + (Q+ − iQ−)∗(Q+ − iQ−) + i[Q+, Q−])

shows that, for h > 0 small, the norm on H~,Γ is equivalent to just the norm

‖u‖2H~,Γ,2
= ‖Q0u‖2 + ‖Q+u‖2 + ‖Q−u‖2.

As mentioned in the introduction, the dual space relative to L2 is then

H∗~,Γ = h1/2L2 +Q+L
2 +Q−L

2 +Q0L
2.

Then Ψ~(X) acts on H~,Γ, and thus on H∗~,Γ, for B ∈ Ψ~(X) preserves h−1/2L2

and gives

‖Q+Bu‖ ≤ ‖BQ+u‖+ ‖[Q+, B]u‖ ≤ C‖Q+u‖+ h‖u‖L2 ,

with a similar result for Q− and Q0. We remark that the notation H~,Γ is justified
as the space depends only on Γ, not on the particular defining functions φ± as any

5These defining functions exist globally when Γ± is orientable; but even if Γ± is not such, the
square is globally defined. There is only a minor change required below if φ± are not well defined;

see Footnote 6.
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other defining functions would change Q± by an elliptic factor modulo an element of
hΨ~(X), whose contribution to the squared norm can be absorbed into Ch2‖u‖2L2 ,
and thus dropped altogether (for h small) in view of the equivalence of the two
norms discussed above.

We are now ready to prove Theorem 1.1. Note that this theorem in particular
implies the main result of [3] in this setting, in that the estimates are of the same
kind, except that in [3] Pu is assumed to be microlocalized away from, and u is
estimated microlocally away from, Γ.

We also remark that the microlocal version of the two estimates of the theorem
is that given any neighborhood O′ of Γ with closure in O, there exist B0 ∈ Ψ~(X)
elliptic at Γ, B1, B2 ∈ Ψ~(X) with WF′~(B2)∩Γ+ = ∅, WF′~(Bj) ⊂ O′ for j = 0, 1, 2
such that

‖B0Q+u‖+ ‖B0Q−u‖ ≤ h−1‖B1Pu‖H∗~,Γ + ‖B2u‖L2 + C ′h1/2‖u‖L2 , (2.1)

respectively

‖B0u‖H~,Γ ≤ h−1‖B1Pu‖H∗~,Γ + ‖B2u‖L2 + C ′h‖u‖L2 ; (2.2)

see (2.8). The theorem is proved by controlling the B2u term using the backward
non-trapped nature of Γ− \ Γ.

Proof of Theorem 1.1. We first prove (1.4), which proves (1.5) by (1.2). Then we
modify the proof slightly to show (1.5) directly, and in particular prove a weaker
version of the Wunsch-Zworski estimate (1.2), namely

‖u‖L2 ≤ Ch−2‖Pu‖L2 .

Let χ0(t) = e−1/t for t > 0, χ0(t) = 0 for t ≤ 0, χ ∈ C∞c ([0,∞)) be identically 1
near 0 with χ′ ≤ 0, and indeed with χ′χ = −χ2

1, χ1 ≥ 0, χ1 ∈ C∞c ([0,∞)), and let
ψ ∈ C∞c (R) be identically 1 near 0. Let

a = χ0(φ2
+ − φ2

− + κ)χ(φ2
+)ψ(p),

κ > 0 small. Notice that on supp a, if χ is supported in [0, R],

φ2
+ ≤ R, φ2

− ≤ φ2
+ + κ = R+ κ,

so a is localized near Γ if R and κ are taken sufficiently small. Then

1

4
Hp(a

2) =− (c2+φ
2
+ + c2−φ

2
−)(χ0χ

′
0)(φ2

+ − φ2
− + κ)χ(φ2

+)2ψ(p)2

− c2+φ2
+(χ′χ)(φ2

+)χ0(φ2
+ − φ2

− + κ)2ψ(p)2.

Now χ′0 ≥ 0, so the two terms have opposite signs. Let6

a± = φ±

√
(χ0χ′0)(φ2

+ − φ2
− + κ)χ(φ2

+)ψ(p),

and
e− = c+φ+χ1(φ2

+)χ0(φ2
+ − φ2

− + κ)ψ(p);

then
1

4
Hp(a

2) = −c2+a2
+ − c2−a2

− + e2
−. (2.3)

6If φ± is not defined globally, a± are not defined as stated. (The term e2− need not have a sign,

so this issue does not arise for it; see the Weyl quantization argument below.) However, a± need

not be real below, so as long as one can choose ψ± complex valued with |ψ±|2 = φ2
±, replacing the

first factor of φ± with ψ± in the definition of a± allows one to complete the argument in general.



NON-TRAPPING ESTIMATES 7

Here

supp e− ⊂ supp a,

supp e− ∩ Γ+ = ∅,

with the last statement following from φ2
+ taking values away from 0 on suppχ1;

see Figure 1.

Figure 1. Supports of the commutant a and the error term e−
in the positive commutator argument of the non-trapping estimate
near the trapped set Γ, Theorem 1.1. The support of a is indicated
in light gray; on supp a\supp e−, darker colors correspond to larger
values of a. Also shown are the forward, resp. backward, trapped
set Γ−, resp. Γ+, and the bicharacteristic flow nearby. The figure
already suggests that Hp(a

2) is non-positive away from supp e−,
and actually negative away from supp e− ∪ Γ; see equation (2.3).

One then takes A ∈ Ψ~(X) with principal symbol a, and with WF′~(A) ⊂ supp a,
A± ∈ Ψ~(X) with principal symbols of a±, and with WF′~(A±) ⊂ supp a±, C±
have symbol c± and with WF′~(C±) ⊂ supp c±; one similarly lets E− ∈ Ψ~(X)
have principal symbol e−, and wave front set in the support of e−. This gives that

i

4h
[P,A∗A] = −(C+A+)∗(C+A+)− (C−A−)∗(C−A−) + E∗−E− + hF, (2.4)

for some F ∈ Ψ~(X) with

WF′~(F ) ⊂ supp a.

Thus

i

4h
〈[P,A∗A]u, u〉 = −‖C+A+u‖2 − ‖C−A−u‖2 + ‖E−u‖2 + h〈Fu, u〉.

Expanding the left hand side gives

〈PA∗Au, u〉 − 〈A∗APu, u〉
= 〈Au,APu〉 − 〈APu,Au〉+ 〈(P − P ∗)A∗Au, u〉.
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As we are assuming that P − P ∗ is O(h2) near Γ, we may also assume that this
holds on supp a, thus the last term is O(h2)‖u‖2. Thus,

‖C+A+u‖2 + ‖C−A−u‖2 ≤ ‖E−u‖2 + h−1|〈APu,Au〉|+ C1h‖u‖2. (2.5)

Now, by the duality of H~,Γ and H∗~,Γ relative to the L2 inner product,

|〈APu,Au〉| ≤ ‖APu‖H∗~,Γ‖Au‖H~,Γ ≤
hε

2
‖Au‖2H~,Γ

+
1

2hε
‖APu‖2H∗~,Γ .

Further, for ε > 0 small, ε‖Q+Au‖2 can be estimated in terms of ‖C+A+u‖2 +
O(h)‖u‖2, as can be seen by comparing the principal symbols, in particular using
the ellipticity of C+ on supp a. One can thus absorb ε

2‖Au‖
2
H~,Γ

into the left hand

side of (2.5). This shows

‖C+A+u‖2 + ‖C−A−u‖2 ≤ C‖E−u‖2 + Ch−2‖APu‖2H∗~,Γ + Ch‖u‖2,

which together with the non-trapping control of E−u (the region supp e− is dis-
joint from Γ+, so it is backward non-trapped and thus E−u is controlled by Pu
microlocalized off Γ+, thus by Q+Pu, modulo higher order in h terms in Pu) proves
the first part of Theorem 1.1. Thus, if we have a bound ‖u‖ ≤ C ′h−1−s‖Pu‖L2 ,
0 < s < 1/2, and thus h‖u‖2 ≤ C ′h−1−2s‖Pu‖2L2 ≤ C ′′h−1−2s‖Pu‖2H∗~,Γ , this

implies a non-trapping estimate:

‖u‖H~,Γ ≤ Ch−1‖Pu‖H∗~,Γ .

This completes the proof of Theorem 1.1.
In fact, as mentioned earlier, a slight change of point of view proves Theorem 1.1

directly. To see this, we use the Weyl quantization7 when choosing a, a±, c±, e−;
since we are on a manifold, this requires identifying functions with half-densities
via trivialization of the half-density bundle by the Riemannian metric; this iden-
tification preserves self-adjointness. We also write P~,z as the Weyl quantization
of p0 + hp1 with p0, p1 real modulo O(h2). Then the principal symbol calculation
above holds with p0 in place of p, and with p1 included it yields additional terms

1

4
Hp(a

2) =− (c2+φ
2
+ + c2−φ

2
− − hφ+Hp1

φ+ + hφ−Hp1
φ−)

× (χ0χ
′
0)(φ2

+ − φ2
− + κ)χ(φ2

+)2ψ(p)2

− (c2+φ
2
+ − hφ+Hp1

φ+)(χ′χ)(φ2
+)χ0(φ2

+ − φ2
− + κ)2ψ(p)2.

Now, (2.4) becomes

i

4h
[P,A∗A] =− (C+A+)∗(C+A+)− (C−A−)∗(C−A−)

+ h(A∗+G+ +G∗+A+ +A∗−G− +G∗−A−) + E + h2F,
(2.6)

with G± being the Weyl quantization of

g± = ±1

2
(Hp1

φ±)
√

(χ0χ′0)(φ2
+ − φ2

− + κ)χ(φ2
+)ψ(p),

and with F ∈ Ψ~(X) with

WF′~(F ) ⊂ supp a.

7In fact, the Weyl quantization is irrelevant. It is straightforward to see that if A ∈ Ψ~(X)
and if the principal symbol of A is real then the real part of the subprincipal symbol is defined

independently of choices. This is all that is needed for the argument below.
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Correspondingly, (2.5) becomes

‖C+A+u‖2 + ‖C−A−u‖2 ≤ |〈Eu, u〉|+ h−1|〈APu,Au〉|
+ 2h‖A+u‖‖G+u‖+ 2h‖A−u‖‖G−u‖+ C1h

2‖u‖2.
(2.7)

The terms with G± on the right hand side can be estimated by

ε‖A+u‖2 + ε−1h2‖G+u‖2 + ε‖A−u‖2 + ε−1h2‖G−u‖2,
and for ε > 0 sufficiently small, the ‖A±u‖2 terms can now be absorbed into the
left hand side of (2.7). Proceeding as above yields

‖C+A+u‖2 + ‖C−A−u‖2 ≤ C|〈Eu, u〉|+ Ch−2‖APu‖2H∗~,Γ + Ch2‖u‖2. (2.8)

Together with the non-trapping for the E term this gives the global estimate

‖u‖2H~,Γ
≤ Ch−2‖Pu‖2H∗~,Γ + Ch2‖u‖2,

and now the last term on the right hand side can be absorbed in the left hand side
for sufficiently small h, giving the estimate (1.5). �

3. Non-trapping estimates in non-dilation invariant settings

We now transfer Theorem 1.1 into the b-setting; the discussion in the previous
section is essentially the dilation invariant special case of this,8 though in the b-
setting there is additional localization near the boundary.

3.1. Notation and definitions. For a general reference for b-analysis, see Melrose
[6].

Let M be an n-dimensional compact manifold with boundary X.

• Let Vb(M) be the Lie algebra of b-vector fields on M , i.e. of vector fields on M
which are tangent to X. Elements of Vb(M) are sections of a natural vector
bundle on M , namely the b-tangent bundle bTM ; in local coordinates (τ, x)
near X, the fibers of bTM are spanned by τ∂τ and ∂x. The fibers of the dual
bundle bT ∗M , called b-cotangent bundle, are spanned by dτ

τ and dx.

It is often convenient to consider the fiber compactification bT ∗M of bT ∗M ,
where the fibers are replaced by their radial compactification. The new bound-

ary of bT ∗M at fiber infinity is the b-cosphere bundle bS∗M ; it still possesses

the compactification of the ‘old’ boundary bT ∗XM , see Figure 2. bS∗M is
naturally the quotient of bT ∗M \o by the R+-action of dilation in the fibers of
the cotangent bundle. Many sets that we will consider below are conic subsets
of bT ∗M \ o, and we will often view them as subsets of bS∗M .

• For a ∈ C∞(bT ∗M), we say a ∈ Sm(bT ∗M) if a satisfies

|∂αz ∂
β
ζ a(z, ζ)| ≤ Cαβ〈ζ〉m−|β| for all multiindices α, β

in any coordinate chart, where z are coordinates in the base and ζ coordinates
in the fiber; more precisely, in local coordinates (τ, x) near X, we take ζ =
(σ, ξ), where we write b-covectors as

σ
dτ

τ
+
∑
j

ξj dxj .

8See [11, Section 3.1] for a discussion of the relationship between b- and semiclassical analysis.
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Figure 2. The radially compactified cotangent bundle bT ∗M near
bT ∗XM ; the cosphere bundle bS∗M , which is the boundary at

fiber infinity of bT ∗M , is also shown, as well as the zero section

oM ⊂ bT ∗M and the zero section over the boundary oX ⊂ bT ∗XM .

We define the quantization Op(a) of a, acting on smooth functions u supported
in a coordinate chart, by

Op(a)u(τ, x) = (2π)−n
∫
ei(τ−τ

′)σ̃+i(x−x′)ξφ

(
τ − τ ′

τ

)
× a(τ, x, τ σ̃, ξ)u(τ ′, x′) dτ ′ dx′ dσ̃ dξ,

where the τ ′-integral is over [0,∞), and φ ∈ C∞c ((−1/2, 1/2)) is identically 1
near 0.9 For general u, define Op(a)u using a partition of unity. We write
Op(a) ∈ Ψm

b (M). We say that a is a symbol of Op(a). The equivalence class
of a in Sm(bT ∗M)/Sm−1(bT ∗M) is invariantly defined on bT ∗M and is called
the principal symbol of Op(a). We will tacitly assume that all our operators
have homogeneous principal symbols.

• If A ∈ Ψm1

b (M) and B ∈ Ψm2

b (M), then [A,B] ∈ Ψm1+m2−1
b (M), and its

principal symbol is 1
iHab ≡

1
i {a, b}, where the Hamilton vector field Ha of

the principal symbol a of A is the extension of the Hamilton vector field from
T ∗M◦ \ o to bT ∗M \ o, which is a homogeneous degree m− 1 vector field on
bT ∗M \ o tangent to the boundary bT ∗XM . In local coordinates (τ, x, σ, ξ) on
bT ∗M as above, this has the form

Ha = (∂σa)(τ∂τ )− (τ∂τa)∂σ +
∑
j

(
(∂ξja)∂xj − (∂xja)∂ξj

)
. (3.1)

• We define bicharacteristics completely analogously to the semiclassical setting.
• The microsupport WF′b(A) ⊂ bT ∗M \ o of A = Op(a) ∈ Ψm

b (M) is the
complement of the set of all ρ ∈ bT ∗M \ o such that a is rapidly decaying in a
conic neighborhood around ρ. Note that WF′b(A) is conic, hence we will also
view it as a subset of bS∗M .

• Fix a b-density on M , which is locally of the form a
∣∣dτ
τ dz

∣∣, a > 0.

• Define the b-Sobolev space Hk
b (M) for k ∈ Z≥0 by

Hk
b (M) = {u ∈ L2(M) : X1 · · ·Xku ∈ L2(M), X1, . . . , Xj ∈ Vb(M)},

and for general k ∈ R by duality and interpolation. Moreover, define the
weighted b-Sobolev spaces Hs,α

b (M) := ταHs
b(M) for s, α ∈ R, where τ is

9The cutoff φ ensures that these operators lie in the ‘small b-calculus’ of Melrose, in particular
that such quantizations act on weighted b-Sobolev spaces, defined below.
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a boundary defining function, i.e. τ = 0 at X and dτ 6= 0 there. Every b-
pseudodifferential operatorA ∈ Ψm

b (M) defines a bounded mapA : Hs,α
b (M)→

Hs−m,α
b (M), s, α ∈ R.

• For A ∈ Ψm
b (M) with principal symbol a ∈ Sm(bT ∗M), we say that A is

elliptic at ρ ∈ bT ∗M \o if there is a constant C > 0 such that |a(z, ζ)| ≥ C|ζ|m
for (z, ζ) in a conic neighborhood of ρ. The characteristic set of A is the
complement (in bT ∗M \ o) of the set of all ρ at which A is elliptic.

• For u ∈ H−∞,αb (M), define itsHs,α
b wave front set WFs,αb (u) ⊂ bT ∗M\o as the

complement of the set of all ρ ∈ bT ∗M \o for which there exists a ∈ S0(bT ∗M)
elliptic at ρ such that Op(a)u ∈ Hs,α

b (M). In particular, WFs,αb (u) = ∅ if and
only if u ∈ Hs,α

b (M).
• Microlocal elliptic regularity states that if Au = f with A ∈ Ψm

b (M), u, f ∈
H−∞,αb (M), ρ /∈WFs−m,αb (f) and A is elliptic at ρ, then ρ /∈WFs,αb (u).

• If A ∈ Ψm
b (M) has a principal symbol with non-positive imaginary part, u, f ∈

H−∞,αb (M), Au = f , moreover ρ /∈WFs,αb (u) and γρ([0, T ])∩WFs−m+1,α
b (f) =

∅ for some T > 0, then the propagation of singularities states that γρ(T ) /∈
WFs,αb (u).

3.2. Setup, statement and proof of the result. Suppose P ∈ Ψm
b (M), P−P∗ ∈

Ψm−2
b (M). Let p be the principal symbol of P, which is thus a homogeneous

degree m function on bT ∗M \ o, which we assume to be real-valued. Let ρ̃ denote
a homogeneous degree −1 defining function of bS∗M . Then the rescaled Hamilton
vector field

V = ρ̃m−1Hp

is a C∞ vector field on bT ∗M away from the 0-section, and it is tangent to all
boundary faces. The characteristic set Σ is the zero-set of the smooth func-
tion ρ̃mp in bS∗M . We will, somewhat imprecisely, refer to the flow of V in
Σ ⊂ bS∗M as the Hamilton, or (null)bicharacteristic flow; its integral curves, the
(null)bicharacteristics, are reparameterizations of those of the Hamilton vector field
Hp, projected by the quotient map bT ∗M \ o→ bS∗M .

We first work microlocally near the trapped set, namely assume that

(1) Γ ⊂ Σ∩ bS∗XM is a smooth submanifold disjoint from the image of T ∗X \o
(so τDτ is elliptic near Γ),

(2) Γ+ is a smooth submanifold of Σ ∩ bS∗XM in a neighborhood U1 of Γ,
(3) Γ− is a smooth submanifold of Σ transversal to Σ ∩ bS∗XM in U1,
(4) Γ+ has codimension 2 in Σ, Γ− has codimension 1,
(5) Γ+ and Γ− intersect transversally in Σ with Γ+ ∩ Γ− = Γ,
(6) the rescaled Hamilton vector field V = ρ̃m−1Hp0 is tangent to both Γ+ and

Γ−, and thus to Γ.

We assume that Γ+ is backward trapped for the Hamilton flow (i.e. bicharacter-
istics in Γ+ near Γ tend to Γ as the parameter goes to −∞), i.e. is the unstable
manifold of Γ, while Γ− is forward trapped, i.e. is the stable manifold of Γ, see
Figure 3; indeed, we assume a quantitative version of this. (There is a completely
analogous statement if Γ+ is forward trapped and Γ− is backward trapped: replac-
ing P by −P preserves all assumptions, but reverses the Hamilton flow.) To state
this, let φ− be a defining function of Γ−, and let φ+ ∈ C∞(bS∗M) be a defining
function of Γ+ in bS∗XM ; thus Γ+ is defined within bS∗M by τ = 0, φ+ = 0. Notice
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Figure 3. An examplary situation with trapping: Shown are the
(projection from bS∗M to the base M of the) trapped set Γ, the b-
cosphere bundle over X as well as a forward bicharacteristic start-
ing at a point ρ ∈ Γ−.

that V being to tangent to bS∗XM (due to (3.1)) implies that V τ is a multiple of
τ ; we assume that, near Γ,

V τ = −c2∂τ, c∂ > 0; (3.2)

this is consistent with the stability of Γ−. By the tangency requirement, with

p̂0 = ρ̃mp0,

V φ− = α−φ− + ν−p̂0, α− smooth; notice that changing φ− by a smooth non-
zero multiple f gives V (fφ−) = α−fφ− + ν−fp̂0 + (V f)φ−, so α− depends on
the choice of φ−. On the other hand, the tangency requirement gives V φ+ =
α+φ++β+τ+ν+p̂0. For the sake of conciseness, rather than stating the assumptions
on the Hamilton flow as in [13], we assume directly that φ± satisfy

V φ− = c2−φ− + ν−p̂0, V φ+ = −c2+φ+ + β+τ + ν+p̂0, (3.3)

with c± > 0 smooth near Γ, β+, ν± smooth near Γ and

{φ+, φ−} > 0 (3.4)

near Γ. However, if we merely assume the normal hyperbolicity within bS∗XM as in
[13, Section 1.2], [13, Lemma 4.1], as corrected in [12], actually gives such defining
functions φ0

± within bS∗XM (i.e. letting τ = 0); taking an arbitrary extension in
case of φ+, and an extension which is a defining function in case of Γ−, all the
requirements above are satisfied. Let U0 ⊂ U0 ⊂ U1 be a neighborhood of Γ such
that the Poisson bracket in (3.4) as well as c± have positive lower bounds.

There is an asymmetry between the roles of φ± and τ , and thus we consider the
parabolic defining function

ρ+ = φ2
+ + Mτ
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for Γ+, M > 0, to be chosen. Then, near Γ,

ρ̂+ = V ρ+ = −2c2+φ
2
+ + 2β+φ+τ + 2ν+φ+p̂0 −Mc2∂τ

= −2c2+φ
2
+ − (Mc2∂ − 2β+φ+)τ + 2ν+φ+p̂0

≤ −c̃2+ρ+ + 2ν+φ+p̂0, c̃+ > 0,

(3.5)

if M > 0 is chosen sufficiently large, consistently with the forward trapped nature
of Γ−. (Here the term with p̂0 is considered harmless as one essentially restricts
to the characteristic set, p̂0 = 0.) Also, note that one can use10 the reciprocal
ρ̃ = |σ|−1 of the principal symbol σ of τDτ as the local defining function of bS∗M
as fiber-infinity in bT ∗M near Γ; then

V ρ̃ = α̃ρ̃τ (3.6)

for some α̃ smooth in view of (3.1).
Similar to the normally isotropic spaces in the semiclassical setting, we introduce

spaces which are normally isotropic at Γ.11 Concretely, let Q± ∈ Ψ0
b(M) have

principal symbol φ± as before, P̂0 ∈ Ψ0
b(M) have principal symbol p̂0 and let

Q0 ∈ Ψ0
b(M) be elliptic, with real principal symbol for convenience, on U c0 (and

thus nearby). Define the (global) b-normally isotropic spaces at Γ of order s, Hsb,Γ,
by the norm

‖u‖2Hsb,Γ = ‖Q0u‖2Hsb + ‖Q+u‖2Hsb + ‖Q−u‖2Hsb + ‖τ1/2u‖2Hsb + ‖P̂0u‖2Hsb + ‖u‖2
H
s−1/2
b

,

(3.7)

and let H∗,−sb,Γ be the dual space relative to L2, which is thus12

Q0H
−s
b +Q+H

−s
b +Q−H

−s
b + τ1/2H−sb + P̂0H

−s
b +H

−s+1/2
b .

Note that microlocally away from Γ, Hsb,Γ is just the standard Hs
b space while

H∗,−sb,Γ is H−sb since at least one of Q0, Q±, τ is elliptic. Moreover, Ψk
b(M) 3 A :

Hsb,Γ → H
s−k
b,Γ is continuous since [Q+, A] ∈ Ψk−1

b (M) etc.; the analogous statement

also holds for the dual spaces. Further, the last term in (3.7) can be replaced by

‖u‖2
Hs−1

b

as i[Q+, Q−] = B∗B + R, B ∈ Ψ
−1/2
b (M), R ∈ Ψ−2

b (M), using the same

argument as in the semiclassical setting (however, it cannot be dropped altogether
unlike in the semiclassical setting!).

Remark 3.1. The notation Hsb,Γ(M) is justified for the space is independent of the
particular defining functions φ± chosen; near Γ any other choice would replace φ±

10Indeed, in the semiclassical setting, after Mellin transforming this problem, |σ|−1 plays the

role of the semiclassical parameter h, which in that case commutes with the operator.
11Note that bT ∗M is not a symplectic manifold (in the natural way) since the symplectic

form on bT ∗M◦M does not extend smoothly to bT ∗M . Thus, the word ‘normally isotropic’ is not

completely justified; we use it since it reflects that in the analogous semiclassical setting, see [13],
the set Γ is symplectic, and the origin in the symplectic orthocomplement (TαΓ)⊥ of TαΓ, which
is also symplectic, is isotropic within (TαΓ)⊥.

12We refer to [7, Appendix A] for a general discussion of the underlying functional analysis.

In particular, Lemma A.3 there essentially gives the density of Ċ∞(M) in Hsb,Γ(M): one can

simply drop the subscript ‘e’ in the statement of that lemma to conclude that H∞b (M) (so in

particular H
s−1/2
b (M)) is dense in Hsb,Γ(M), and then the density of Ċ∞(M) in Hs′

b (M) for any

s′ completes the argument. The completeness of Hsb,Γ(M) follows from the continuity of Ψ0
b(M)

on H
s−1/2
b (M).
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by smooth non-degenerate linear combinations plus a multiple of τ and of p̂, denote
these by φ̃±, and thus the corresponding Q̃± can be expressed as

B+Q++B−Q−+B∂τ+B̂P̂+B0Q0+R, B±, B0, B∂ , B̂ ∈ Ψ0
b(M), R ∈ Ψ−1

b (M),

so the new norm can be controlled by the old norm, and conversely in view of the
non-degeneracy.

Our result is then:

Theorem 3.2. With P,Hsb,Γ,H
∗,s
b,Γ as above, for any neighborhood U of Γ and for

any N there exist B0 ∈ Ψ0
b(M) elliptic at Γ and B1, B2 ∈ Ψ0

b(M) with WF′b(Bj) ⊂
U , j = 0, 1, 2, WF′b(B2) ∩ Γ+ = ∅ and C > 0 such that

‖B0u‖Hsb,Γ ≤ ‖B1Pu‖H∗,s−m+1
b,Γ

+ ‖B2u‖Hsb + C‖u‖H−Nb
, (3.8)

i.e. if all the functions on the right hand side are in the indicated spaces: B1Pu ∈
H∗,s−m+1

b,Γ , etc., then B0u ∈ Hsb,Γ, and the inequality holds.

The same conclusion also holds if we assume WF′b(B2) ∩ Γ− = ∅ instead of
WF′b(B2) ∩ Γ+ = ∅.

Finally, if r < 0, then, with WF′b(B2) ∩ Γ+ = ∅, (3.8) becomes

‖B0u‖Hs,rb
≤ ‖B1Pu‖Hs−m+1,r

b
+ ‖B2u‖Hs,rb

+ C‖u‖H−N,rb
, (3.9)

while if r > 0, then, with WF′b(B2) ∩ Γ− = ∅,

‖B0u‖Hs,rb
≤ ‖B1Pu‖Hs−m+1,r

b
+ ‖B2u‖Hs,rb

+ C‖u‖H−N,rb
, (3.10)

Remark 3.3. Note that the weighted versions (3.9)-(3.10) use standard weighted
b-Sobolev spaces; this corresponds to non-trapping semiclassical estimates if the
subprincipal symbol has the correct, definite, sign at Γ.

Proof. We may assume that U ⊂ U0 is disjoint from a neighborhood of WF′b(Q0),
and thus ignore Q0 in the definition of Hsb,Γ below.

We first prove that there exist B0, B1, B2 as above and B3 ∈ Ψ0
b(M) with

WF′b(B3) ⊂ U such that

‖B0u‖Hsb,Γ ≤ ‖B1Pu‖H∗,s−m+1
b,Γ

+ ‖B2u‖Hsb + ‖B3u‖Hs−1
b

+ C‖u‖H−Nb
. (3.11)

An iterative argument will then prove the theorem.
The proof is a straightforward modification of the construction in the semiclas-

sical setting above, replacing φ2
+ by φ2

+ + Mτ , M > 0 large, in accordance with
(3.5).

We start by pointing out that for any B̃0 ∈ Ψ0
b(M) and any B̃3 ∈ Ψ0

b(M)

elliptic on WF′b(B̃0), ‖P̂0B̃0u‖Hsb ≤ C‖B̃0Pu‖Hs−mb
+ C ′‖B̃3u‖Hs−1

b
, by simply

using that P̂0 is an elliptic multiple of P modulo Ψ−1
b (M). Since ‖B̃0Pu‖Hs−mb

≤
C‖B̃0Pu‖H∗,s−mb,Γ

, the P̂0 contribution to ‖B̃0u‖Hsb,Γ in (3.11) is thus automatically

controlled.
So let χ0(t) = e−z/t for t > 0, χ0(t) = 0 for t ≤ 0, with z > 0 (large) to be

specified, χ ∈ C∞c ([0,∞)) be identically 1 near 0 with χ′ ≤ 0, and indeed with
χ′χ = −χ2

1, χ1 ≥ 0, χ1 ∈ C∞c ([0,∞)), and let ψ ∈ C∞c (R) be identically 1 near
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0. As we use the Weyl quantization,13 we write P as the Weyl quantization of
p = p0 + ρ̃p1, with ρ̃p1 of order m− 1. Let

a = ρ̃−s+(m−1)/2χ0(ρ+ − φ2
− + κ)χ(ρ+)ψ(ρ̃mp), (3.12)

κ > 0 small. Notice that on supp a, if χ is supported in [0, R],

ρ+ ≤ R, φ2
− ≤ ρ+ + κ = R+ κ,

so a is localized near Γ if R and κ are taken sufficiently small. In particular, the
argument of χ0 is bounded above by R+κ, so given any M0 > 0 one can take z > 0
large so that

χ′0χ0 −M0χ
2
0 = b2χ′0χ0,

with b ≥ 1/2, C∞, on the range of the argument of χ0.
In fact, we also need to regularize, namely introduce

aε = (1 + ερ̃−1)−2a, ε ∈ [0, 1], (3.13)

which is a symbol of order s − (m − 1)/2 − 2 for ε > 0, and is uniformly bounded
in symbols of order s − (m − 1)/2 as ε varies in [0, 1]. In order to avoid more
cumbersome notation below, we ignore the regularizer and work directly with a;
since the regularizer gives the same kind of contributions to the commutator as the
weight ρ̃−s+(m−1)/2, these contributions can be dominated in exactly the same way.

Then, with p = p0 + ρ̃p1 as above, W = ρ̃m−2Hρ̃p1 , which is a smooth vector
field near bS∗M as ρ̃p1 is order m − 1, noting Wρ̃ = α̃1τ ρ̃ similarly to (3.6), and
Wτ = α∂,1τ by the tangency of W to τ = 0,

1

4
Hp(a

2) =− (−ρ̂+/2 + c2−φ
2
− + ν−φ−p̂0 − ρ̃φ+(Wφ+)− ρ̃Mα∂,1τ + ρ̃φ−(Wφ−))

× ρ̃−2s(χ0χ
′
0)(ρ+ − φ2

− + κ)χ(ρ+)2ψ(ρ̃mp)2

+
1

4
(−2s+m− 1)ρ̃−2s(α̃+ ρ̃α̃1)τχ0(ρ+ − φ2

− + κ)2χ(ρ+)2ψ(ρ̃mp)2

+
1

2
ρ̃−2s(ρ̂+ + ρ̃Wρ+)(χ′χ)(ρ+)χ0(ρ+ − φ2

− + κ)2ψ(ρ̃mp)2

+
m

2
(α̃+ ρ̃α̃1)ρ̃−2s(ρ̃mp)τχ0(ρ+ − φ2

− + κ)2χ(ρ+)2(ψψ′)(ρ̃mp).

(3.14)

A key point is that the second term on the right hand side, given by the weight
ρ̃−2s+m−1 being differentiated, can be absorbed into the first by making z > 0
large so that ρ̂+χ

′
0(ρ+ − φ2

− + κ) dominates

| − 2s+m− 1||α̃|τχ0(ρ+ − φ2
− + κ)

on supp a, which can be arranged as |− 2s+m− 1||α̃|τ is bounded by a sufficiently
large multiple of ρ̂+ there. Thus,

1

4
Hp(a

2) = −c2+a2
+−c2−a2

−−a2
∂+2g+a+ +2g−a−+e+ ẽ+2a+j+p+2a−j−p (3.15)

with

a± = ρ̃−sφ±

√
(χ0χ′0)(ρ+ − φ2

− + κ)χ(ρ+)ψ(ρ̃mp),

13Again, the Weyl quantization is irrelevant: If A ∈ Ψmb (X) and the principal symbol of A
is real then the real part of the subprincipal symbol is defined independently of choices, which

suffices below.
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a∂ = ρ̃−sτ1/2
(

(M(c2∂/2)− β+φ+ − ρ̃Ma∂,1)(χ0χ
′
0)(ρ+ − φ2

− + κ)

− 1

4
(−2s+m− 1)(α̃+ ρ̃α̃1)χ0(ρ+ − φ2

− + κ)2
)1/2

χ(ρ+)ψ(ρ̃mp),

g± = ±1

2
ρ̃−s+1((Wφ±)− ν±ρ̃m−1p1)

√
(χ0χ′0)(ρ+ − φ2

− + κ)χ(ρ+)ψ(ρ̃mp),

e = −1

2
ρ̃−2s(ρ̂+ + ρ̂Wρ+)χ1(ρ+)2χ0(ρ+ − φ2

− + κ)2ψ(ρ̃mp)2,

ẽ =
m

2
ρ̃−2s(ρ̃mp)(α̃+ ρ̃α̃1)τχ0(ρ+ − φ2

− + κ)2χ(ρ+)2(ψψ′)(ρ̃mp),

j± = ±1

2
ν±ρ̃

−s+m
√

(χ0χ′0)(ρ+ − φ2
− + κ)χ(ρ+)ψ(ρ̃mp),

the square root in a∂ is that of a non-negative quantity and is C∞ for M large (so
that β+φ+ can be absorbed into M(c2∂/2)) and z large (so that a small multiple of
χ′0 can be used to dominate χ0), as discussed earlier, and

supp e ⊂ supp a, supp e ∩ Γ+ = ∅,
supp ẽ ⊂ supp a, supp ẽ ∩ Σ = ∅.

This gives, with the various operators being Weyl quantizations of the correspond-
ing lower case symbols,

i

4
[P, A∗A] =− (C+A+)∗(C+A+)− (C−A−)∗(C−A−)−A∗∂A∂

+G∗+A+ +A∗+G+ +G∗−A− +A∗−G−

+ E + Ẽ +A∗+J+P + P∗J∗+A+ +A∗−J−P + P∗J∗−A− + F

(3.16)

where now A ∈ Ψ
s−(m−1)/2
b (M), A±, A∂ ∈ Ψs

b(M), G± ∈ Ψs−1
b (M), E ∈ Ψ2s

b (M),

Ẽ ∈ Ψ2s
b (M), J± ∈ Ψs−m

b (M), F ∈ Ψ2s−2
b (M) with WF′b(F ) ⊂ supp a.

After this point the calculations repeat the semiclassical argument: First using
P − P∗ ∈ Ψm−2

b (M),

‖C+A+u‖2 + ‖C−A−u‖2 + ‖A∂u‖2

≤ |〈Eu, u〉|+ |〈Ẽu, u〉|+ |〈APu,Au〉|+ 2‖A+u‖‖G+u‖+ 2‖A−u‖‖G−u‖

+ 2|〈J+Pu,A+u〉|+ 2|〈J−Pu,A−u〉|+ C1‖F̃1u‖2Hs−1
b

+ C1‖u‖2H−Nb

,

(3.17)

where we took F̃1 ∈ Ψ0
b(M) elliptic on WF′b(F ) and with WF′b(F̃1) near Γ. Noting

that WF′b(Ẽ) ∩ Σ = ∅, the elliptic estimates give

|〈Ẽu, u〉| ≤ C‖B1Pu‖2Hs−mb

+ C‖u‖2
H−Nb

if B1 ∈ Ψ0
b(M) is elliptic on supp ẽ. Let Λ ∈ Ψ

(m−1)/2
b (M) be elliptic with real

principal symbol λ, and let Λ− ∈ Ψ
−(m−1)/2
b (M) be a parametrix for it so that

ΛΛ− − Id = R0 ∈ Ψ−∞b (M). Then

|〈APu,Au〉| ≤ |〈Λ−APu,Λ∗Au〉‖+ |〈R0APu,Au〉|

≤ 1

2ε
‖Λ−APu‖2H∗,0b,Γ

+
ε

2
‖Λ∗Au‖2H0

b,Γ
+ C ′‖u‖2

H−Nb
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As Λ∗A ∈ Ψs
b(M), for sufficiently small ε > 0, ε

2‖Λ
∗Au‖2H0

b,Γ
can be absorbed

into14 ‖C+A+u‖2 +‖C−A−u‖2 +‖A∂u‖2 plus ‖B̃0P̂0u‖2Hsb , and as discussed above,

the latter already has the control required for (3.11). On the other hand, taking
B1 ∈ Ψ0

b(M) elliptic on WF′b(A), as Λ−A ∈ Ψs−m+1
b (M),

‖Λ−APu‖2H∗,0b,Γ

≤ C ′′‖B1Pu‖2H∗,s−m+1
b,Γ

+ C ′′‖u‖2
H−Nb

.

Similarly, to deal with the J± terms on the right hand side of (3.17), one writes

|〈J±Pu,A±u〉| ≤
1

2ε

(
‖B1Pu‖2Hs−mb

+ C ′′‖u‖2
H−Nb

)
+
ε

2
‖A±u‖2L2

≤ 1

2ε

(
‖B1Pu‖2H∗,s−mb,Γ

+ C ′′‖u‖2
H−Nb

)
+
ε

2
‖A±u‖2L2 ,

while the G± terms can be estimated by

ε‖A+u‖2 + ε−1‖G+u‖2 + ε‖A−u‖2 + ε−1‖G−u‖2,
and for ε > 0 sufficiently small, the ‖A±u‖2 terms in both cases can be absorbed
into the left hand side of (3.17) while the G± into the error term. This gives, with

F̃2 having properties as F̃1,

‖C+A+u‖2 + ‖C−A−u‖2 + ‖A∂u‖2

≤ |〈Eu, u〉|+ C‖B1Pu‖2H∗,s−m+1
b,Γ

+ C2‖F̃2u‖2Hs−1
b

+ C2‖u‖2H−Nb

.

By the remark before the statement of the theorem, if B0 ∈ Ψ0
b(M) is such that

χ0(ρ+ − φ2
− + κ)χ(ρ+)ψ(p) > 0 on WF′b(B0), ‖B0u‖2

H
s−1/2
b

can be added to the

left hand side at the cost of changing the constant in front of ‖F̃2u‖2Hs−1
b

+ ‖u‖2
H−Nb

on the right hand side. Taking such B0 ∈ Ψ0
b(M), and B1 elliptic on WF′b(A) as

before, B2 ∈ Ψ0
b(M) elliptic on WF′b(E) but with WF′b(B2) disjoint from Γ+, we

conclude that

‖B0u‖2Hsb,Γ ≤ C‖B1Pu‖2H∗,s−m+1
b,Γ

+ C‖B2u‖2Hsb + C‖F̃2u‖2Hs−1
b

+ C‖u‖2
H−Nb

,

proving (3.11), up to redefining Bj by multiplication by a positive constant. Recall
that unless one makes sufficient a priori assumptions on the regularity of u, one
actually needs to regularize, but as mentioned after (3.13), the regularizer is handled
in exactly the same manner as the weight.

Now in general, with χ as before, but supported in [0, 1] instead of [0, R], writing
χR = χ(./R), letting a = aR,κ to emphasize its dependence on these quantities,
when R and κ are decreased, supp aR,κ also decreases in Σ in the strong sense that
0 < R < R′, 0 < κ < κ′ implies that aR′,κ′ is elliptic on supp aR,κ within Σ, and

indeed globally if the cutoff ψ is suitably adjusted as well. Thus, if u ∈ H−Nb , say,
one uses first (3.11) with s = −N + 1, and with Bj given by the proof above, so
the B3u term is a priori bounded, to conclude that B0u ∈ Hsb,Γ and the estimate

holds, so in particular, u is in H
−N+1/2
b microlocally near Γ (concretely, on the

elliptic set of B0). Now one decreases κ and R by an arbitrarily small amount and

14The point being that A∗+C
∗
+C+A+−εA∗ΛQ∗+Q+Λ∗A has principal symbol c2+a

2
+−εa2φ2

+λ
2

which can be written as the square of a real symbol for ε > 0 small in view of the main difference
in vanishing factors in the two terms being that χ′0 in a2

+ is replaced by χ0 in a, and thus the

corresponding operator can be expressed as C̃∗C̃ for suitable C̃, modulo an element of Ψ2s−2
b (M),

with the latter contributing to the Hs−1
b error term on the right hand side of (3.11).
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applies (3.11) with s = −N + 3/2; the B3u term is now a priori bounded by the

microlocal membership of u in H
−N+1/2
b , and one concludes that B0u ∈ H−N+3/2

b,Γ ,

so in particular u is microlocally in H−N+1
b . Proceeding inductively, one deduces

the first statement of the theorem, (3.8).
If one reverses the role of Γ+ and Γ− in the statement of the theorem, one simply

reverses the roles of ρ+ = φ2
+ + Mτ and φ2

− in the definition of a in (3.12). This
reverses the signs of all terms on the right hand side of (3.14) whose sign mattered
below, and thus the signs of the first three terms on the right hand side of (3.16),
which then does not affect the rest of the argument.

In order to prove (3.9), one simply adds a factor τ−2r to the definition of a in
(3.12). This adds a factor τ−2r to every term on the right hand side of (3.16), as
well as an additional term

r

2
τ−2rρ̃−2sc2∂χ0(ρ+ − φ2

− + κ)2χ(ρ+)2ψ(p)2,

which for r < 0 has the same sign as the terms whose sign was used above, and
indeed can be written as the negative of a square. Thus (3.15) becomes

1

4
Hp(a

2) =− c2+a2
+ − c2−a2

− − a2
∂ − a2

r

+ 2g+a+ + 2g−a− + e+ ẽ+ 2j+a+p+ 2j−a−p
(3.18)

with

ar =

√
−r
2
τ−rρ̃−sc∂χ0(ρ+ − φ2

− + κ)χ(ρ+)ψ(p),

and all other terms as above apart from the additional factor of τ−r in the definition
of a±, etc. Since ar is actually elliptic at Γ when r 6= 0, this proves the desired
estimate (and one does not need to use the improved properties given by the Weyl
calculus!).

When the role of Γ+ and Γ− is reversed, there is an overall sign change, and
thus r > 0 gives the advantageous sign; the rest of the argument is unchanged. �
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