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Abstract. We consider Morawetz estimates for weighted energy decay of so-
lutions to the wave equation on scattering manifolds (i.e., those with large
conic ends). We show that a Morawetz estimate persists for solutions that

are localized at low frequencies, independent of the geometry of the compact

part of the manifold. We further prove a new type of Morawetz estimate in
this context, with both hypotheses and conclusion localized inside the forward
light cone. This result allows us to gain a 1/2 power of t decay relative to

what would be dictated by energy estimates, in a small part of spacetime.

1. Introduction

In this paper, we show that the celebrated Morawetz estimate [14], expressing
dispersion of solutions to the wave equation, holds for low-frequency solutions on
a wide class of manifolds with asymptotically flat ends. We also generalize the
estimate to a local-in-spacetime estimate inside the forward light cone.

It is well known that the decay of energy of a solution to �u = 0 at high frequen-
cies is closely tied to the geometry of geodesic rays; in particular, the existence
of trapped geodesics is an obstruction to the uniform decay of local energy (see
Ralston [18]). Many subsequent results have demonstrated that the decay of high
frequency components of the solution persists in a wide variety of geometric settings
in which there is no trapping of rays (see e.g. [15], [20], [21]).

On the other hand, the low-frequency behavior of the solutions is both more
robust and less studied. Intuitively, long wavelengths should be sensitive only to
the crudest aspects of the geometric setting, and in particular, trapping should
not be an obstacle to decay. In this paper, we work in the setting of scattering
manifolds, i.e., we assume that the manifold1 X has ends resembling the large ends
of cones, with the metric taking the form

(1.1) g = dr2 + r2h(r−1, dy)
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where the noncompact ends are diffeomorphic to (1,∞)r × Y, with Y a smooth
manifold, and where h is a family (in r) of metrics on Y.2 Our two main theorems
demonstrate the insensitivity of the low-energy behavior of the wave equation to
geometry on all but the largest scales. We also allow long-range perturbations of
the metrics (1.1); see Section 2 for the precise definitions.

The results in this paper are as follows. To begin with, we state a result holding
for low frequency solutions in spatial dimension n ≥ 4 that generalizes the standard
Morawetz estimate. We fix a cutoff function ψ ∈ C∞

c ((0,∞)). Let ΨH denote the
frequency-localization operator

ΨH = ψ(H2(∆g + V )).

We assume that the function r, appearing in the end structure of the metric (1.1),
is extended to be a globally defined, smooth function on X, with min(r) ≥ 2 (so we
may take log r with impunity). Let χ0, χ1 be a partition of unity with χ1 supported
in r > R≫ 0, hence in the ends in which the product decomposition (1.1) applies.
Here and throughout the paper, ‖•‖ will refer to the norm in the space L2(X, dg).
When we employ spacetime norms in §4 we will employ distinct notation ‖•‖M
where M is (the compactification of) the spacetime R×X.

Theorem 1.1. Let X be a scattering manifold of dimension n ≥ 4 with a long-
range metric, as in (2.1)–(2.2), and let V ≥ 0 be a symbol of order −2− ν, ν > 0.
Let u be a solution to the inhomogeneous wave equation

(�+ V )u = f, f ∈ L1(R;L2(X))

on Rt ×X, with initial data

u|t=0 = u0 ∈ H1, ∂tu|t=0 = v0 ∈ L2.

Then for H sufficiently large,

(1.2)

∫ ∞

0

(
∥

∥

∥
r−3/2ΨHu

∥

∥

∥

2

+
∥

∥

∥
χ1(log r)

−1r−1/2∂rΨHu
∥

∥

∥

2

+
∥

∥

∥
χ1r

−3/2∇Y ΨHu
∥

∥

∥

2

+ ‖χ0∇gΨHu‖2
)

dt

. E(0) +
(

∫ ∞

0

‖f‖ dt
)2
,

where E(0) is the initial energy

E(0) = ‖ΨHu0‖2H1 + ‖ΨHv0‖2L2 .

Here H1 and L2 denote the appropriately defined spaces on X (and ‖•‖ denotes
the L2(X) norm): L2 is the space of functions square integrable with respect to
the metric, and H1, which will henceforth be written H1

sc (the “scattering” Sobolev
space, associated to the geometry of large conic ends) denotes the space of functions
satisfying

∫

|u|2 + |∇gu|2g dg <∞.

2We may a priori assume that h is in fact a smooth tensor including dr components; that we
may then change variables to remove these components is a result of Joshi-Sá Barreto [9], Section

2.
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The Laplacian ∆g is the nonnegative Laplacian, and ψ(H2∆g) is localizing at low
energies. The result thus shows that the dispersive effects of the large scale scat-
tering geometry always hold for low-frequency solutions, regardless of trapping or
other local features. We further remark that we could replace the L1(R;L2(X))
norm on f on the RHS of the estimate by

(1.3)

∫ ∞

0

∥

∥

∥
(r2 + t2)1/4 log(r2 + t2)f

∥

∥

∥

2

dt,

if desired, to obtain a weighted L2 spacetime norm instead.
Following the suggestion of an anonymous referee, we are in fact able to prove a

refined version of this result, with logarithmic losses replaced by estimates in ℓ1 and
ℓ∞ norms on energy in dyadic spatial shells. Let Υk denote a spatial decomposition
in radial dyadic shells (to be discussed further in §3, see (3.18)), so r ∼ 2k on Υk.

Theorem 1.1’. Let X be a scattering manifold of dimension n ≥ 4 with a long-
range metric, as in (2.1)–(2.2), and let V ≥ 0 be a symbol of order −2− ν, ν > 0.
Let u be a solution to the inhomogeneous wave equation

(�+ V )u = f, f ∈ L1(R;L2(X)) ∩ ℓ1(Nk;L
2(R×Υk))

on Rt ×X, with initial data

u|t=0 = u0 ∈ H1, ∂tu|t=0 = v0 ∈ L2.

Then for H sufficiently large,

(1.4)

∫ ∞

0

(∥

∥

∥
r−3/2ΨHu

∥

∥

∥

2

+
∥

∥

∥
χ1r

−3/2∇Y ΨHu
∥

∥

∥

2

+ ‖χ0∇gΨHu‖2
)

dt

+
∥

∥

∥
χ1r

−1/2∂rΨHu
∥

∥

∥

2

ℓ∞(Nk;L2([0,∞))×Υk))

. E(0) + ‖f‖2L1([0,∞);L2(X)) +
∥

∥

∥
r1/2f

∥

∥

∥

2

ℓ1(Nk;L2([0,∞)×Υk))

where E(0) is the initial energy

E(0) = ‖ΨHu0‖2H1 + ‖ΨHv0‖2L2 .

Here we could drop
∫∞

0

∥

∥χ1(log r)
−1r−1/2∂rΨHu

∥

∥

2
dt from the left hand side of

(1.4) as compared to (1.2) without any loss, since it can be estimated by
∫ ∞

0

∥

∥

∥
χ1(log r)

−1r−1/2∂rΨHu
∥

∥

∥

2

dt =
∑

k

∫ ∞

0

∫

Υk

χ2
1(log r)

−2r−1|∂rΨHu|2 dg dt

.
(

∑

k

k−2
)∥

∥

∥
χ1r

−1/2∂rΨHu
∥

∥

∥

2

ℓ∞(N;L2([0,∞))×Υk))
,

so the quantity we estimate on the left hand side in Theorem 1.1’ indeed stronger
than that in Theorem 1.1. A similar argument shows that (1.3) also dominates the
third term on the right hand side of (1.4).

Our second main result is a version of the Morawetz estimate that is localized
in spacetime, with both hypotheses and conclusion localized in a sub-cone of the
forward light cone. It holds in all dimensions n ≥ 3.

For δ > 0 let

(1.5) Ω = Ωδ = {t > 1/δ, r/t < δ} ⊂ R×X.

This is the (asymptotic) cone in which we will localize.
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In the statement of the following theorem, ∇ denotes the space-time gradient.

Theorem 1.2. Let X be a scattering manifold of dimension n ≥ 3 with a long-
range metric as in (2.1)–(2.2), V ≥ 0 a symbol of order −2− ν, ν > 0. Let

(�+ V )u = f.

Suppose that δ < 1 and

∇ΨHu ∈ tκL2(Ω), f ∈ r−1/2tκ−1/2L2(Ω), κ ∈ R.

Then for H sufficiently large,

∇ΨHu ∈ tκ(r/t)σL2(Ω), ΨHu ∈ tκr(r/t)σL2(Ω)

for 0 < σ < 1/2.
In particular, if K is compact in X◦, then on R × K, ΨHu,∇ΨHu are in

tκ−1/2+ǫL2(R×X) for every ǫ > 0 (for H sufficiently large).

This theorem gives almost half an order of decay as compared to the a priori
assumption, but only in a small part of space-time. Indeed, for any δ0 > 0, the
conclusion in r/t > δ0 is the same as hypothesis, so in particular δ in the statement
of the theorem can be taken arbitrarily small without losing the strength of the
conclusion. Thus, Theorem 1.2 really amounts to a regularity statement; it is a
close analogue of the statement for hyperbolic PDE that over compact sets, one
has extra regularity over a priori space-time Sobolev regularity (square integrability
can be replaced by continuity along the flow). Indeed, an analogous statement is
that locally L2 solutions of the wave equation in space time, near t = 0, are in tσL2

locally for σ ∈ (0, 1/2); this follows from continuity in time with values in L2 and
the fact that t−σ is in L2(R) locally.

One virtue of this version of the Morawetz estimate, and even more of the ap-
proach to obtaining this estimate, is that they hold the promise of applying quite
broadly, in non-product spacetimes. Even in the present inhomogeneous form they
can be used to study the wave equation for metrics which arise by perturbing the
Minkowski metric near infinity in the following way: pick pj , j = 1, . . . , N , on the

sphere at infinity, Sn = ∂Rn+1
t,z , in the radial compactification of Rn+1 = Rt × R

n
z

which lie in the interior of the forward light cone. Blow up the pj ; if one of the pj is
the “north pole,” corresponding to z = 0, t = +∞, a neighborhood of the front face
can be identified with a neighborhood of “temporal infinity” in the product asymp-
totically Euclidean space-time (see Section 4); the other pj can be transformed to
this via isometries of Minkowski space-time. Thus, if the Minkowski metric is per-
turbed in a way corresponding to the local product structure these transformations
induce, modulo decaying terms in time, the local Morawetz estimate is applicable
by treating the decaying terms as inhomogeneities. In future work, we plan to
address such non-product geometries more systematically.

By the standard energy estimate, if (�+ V )u = 0 and u is in the energy space,
then for φ ∈ C∞

c (R),

φ(r/t)∇u ∈ t1/2+δL2(R×X), δ > 0.

This observation immediately yields

Corollary 1.3. Let X, g, and V be as in Theorem 1.2. Suppose that �u = 0, with
initial conditions

u|t=0 = u0 ∈ H1, ∂tu|t=0 = v0 ∈ L2.
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There exists δ > 0 small such that

(1.6)

∫∫

Ωδ

∣

∣

∣
tσ−1/2−δr−1−σΨHu

∣

∣

∣

2

+
∣

∣

∣
tσ−1/2−δr−σ∇ΨHu

∣

∣

∣

2

dt dg . E(0)

whenever σ ∈ (0, 1/2), and H ≫ 0 is sufficiently large.

The result is of special interest in the case n = 3, where Theorem 1.1 does not
apply, but where Corollary 1.3 yields a spatially localized estimate. Let K ⊂ X◦

be compact. Then Corollary 1.3 specializes to show:

Corollary 1.4. For all ǫ > 0,
∫ ∞

0

∥

∥t−ǫΨHu
∥

∥

2
+
∥

∥t−ǫ∇ΨHu
∥

∥

2
dt . E(0).

for H sufficiently large.

Note, by contrast, that conservation of energy would give the same estimate with
t−ǫ replaced by t−1/2−ǫ, so this estimate represents an improvement of t−1/2 in
decay relative to energy estimates; by contrast, it loses t−ǫ relative to Theorem 1.2
(which of course only holds for n ≥ 4).

We emphasize that Theorem 1.2 and its corollaries can be proved without the
need for localization at low frequencies so long as we can find a Morawetz commu-
tant that works globally, and in particular this is the case on small perturbations
of Euclidean space.

The proof of Theorem 1.1 is, as with the usual Morawetz inequality, a “multi-
plier” argument based on the first order differential operator

A0 = (1/2)(∂r − ∂∗r ).

The subtlety is that the crucial commutator term

[∆, A0]

is positive for r ≫ 0, in the ends of the manifold, but certainly not in the interior
where there is indeed no natural definition of the radial function r or of ∂r. We
must thus introduce cutoffs, which in turn introduce terms in the commutator that
have to be treated as errors. At high frequency, these errors are disastrous, but at
low frequency, we may employ a Poincaré/Hardy inequality to control them. Fur-
ther technical subtleties arise in estimating remainder terms from the commutator,
applied to ΨHu. These estimates are among the principal technical innovations
here—see Proposition 2.1 below.

The proof of Theorem 1.2 uses a slightly different commutator argument (for-
mally a “commutator” rather than a “multiplier” in the usual parlance) that occurs
in space-time. The localizer in the cone Ω multiplies a Morawetz-like commutant
with a positive weight in r but decay in t; derivatives of the cutoff are controlled
by the a priori decay assumptions, namely ∇ΨHu|Ω ∈ tκL2(R ×X), which in the
corollaries are implied by energy estimates.

Related results have recently been pursued by a number of authors in the setting
of asymptotically Euclidean manifolds. Bony-Häfner [1] explored Mourre estimates
on asymptotically Euclidean spaces at low energy, while both Bouclet [3] and Bony-
Häfner [2] have recently obtain iterated resolvent estimates in the low frequency
regime sufficient to prove strong weighted decay estimates for asymptotically Eu-
clidean metrics. These results yield stronger decay than what is obtained here, but
in a narrower class of geometries and at the cost of a more intricate argument which
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involves first proving resolvent estimates; one of the virtues of the techniques used
here is the direct use of the hyperbolic equation, apart from the estimates neces-
sary to localize at low energy. More in the spirit of our approach, Metcalfe-Tataru
have proved an analogous theorem to our Theorem 1.1 for small perturbations of
Euclidean space, and Tataru [19] has also proved strong energy decay estimates in
a class of 3 + 1-dimensional Lorentz metrics that includes the Schwarzschild and
Kerr spacetimes; see also the more recent [13]. (There has been considerable work
on these specific Lorentzian examples motivated by problems in general relativity;
we will not review that literature here.) The only prior results on low energy esti-
mates in the setting of general scattering manifolds, in addition to the authors’ [22],
is the recent work of Guillarmou-Hassell-Sikora [6], which employs a sophisticated
low-energy parametrix construction to obtain strong decay estimates. Due to the
nature of the construction, the requirements on the metric in [6] are more stringent
than the long-range assumptions used here.

Many of the low-frequency estimates used in this paper were first developed by
the authors in [22] following the results of Bony-Häfner [1] in the asymptotically
Euclidean setting, using rather different methods.

We have discussed both low- and high-frequency estimates above; for complete-
ness, we remark that intermediate frequencies (i.e. frequencies in any compact sub-
set of (0,∞)) are always well-behaved in that the solution of the wave equation local-
ized to these frequencies decays rapidly inside the forward light cone, in r/t < c < 1.
This can be seen easily both by commutator methods (especially tools analogous
to unreduced 2-body type problems, i.e. Mourre estimates as in the work of Mourre
[16], Perry, Sigal and Simon [17]), Froese and Herbst [5], or directly using the re-
solvent of the Laplacian at the continuous spectrum, as described by Hassell and
the first author in [7, 8] and the stationary phase lemma.

2. Conjugated spectral cutoffs

2.1. Notation and setting. Before stating our results on conjugated spectral
cutoffs, we very briefly recall the basic definitions of the b- and scattering structures
on a compact n-dimensional manifolds with boundary, denoted X; we refer to [11]
for more detail. A boundary defining function x on X is a non-negative C∞ function
on X whose zero set is exactly ∂X, and whose differential does not vanish there; a
useful example to keep in mind is x = r−1 (modified to be smooth at the origin) in

the compactification of an asymptotically Euclidean space. We recall that Ċ∞(X),
which may also be called the set of Schwartz functions, is the subset of C∞(X)
consisting of functions vanishing at the boundary with all derivatives, the dual of
Ċ∞(X) is tempered distributional densities C−∞(X; ΩX); tempered distributions

C−∞(X) are elements of the dual of Schwartz densities, Ċ∞(X; ΩX).
Let V(X) be the Lie algebra of all C∞ vector fields on X; thus V(X) is the set

of all C∞ sections of TX. In local coordinates (x, y1, . . . , yn−1),

∂x, ∂y1
, . . . , ∂yn−1

form a local basis for V(X), i.e. restrictions of elements of V(X) to the coordinate
chart can be expressed uniquely as a linear combination of these vector fields with
C∞ coefficients. We next define Vb(X) to be the Lie algebra of C∞ vector fields
tangent to ∂X; in local coordinates

x∂x, ∂y1
, . . . , ∂yn−1
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form a local basis in the same sense. Thus, Vb(X) is the set of all C∞ sections of a
bundle, called the b-tangent bundle of X, denoted bTX. Finally, Vsc(X) = xVb(X)
is the Lie algebra of scattering vector fields;

x2∂x, x∂y1
, . . . , x∂yn−1

form a local basis now. Again, Vsc(X) is the set of all C∞ sections of a bundle,
called the scattering tangent bundle of X, denoted scTX. We write Diffb(X),
resp. Diffsc(X), for the algebra of differential operators generated by Vb(X), resp.
Vsc(X), over C∞(X); these are thus finite sums of finite products of vector fields
in Vb(X), resp. Vsc(X), with C∞(X) coefficients. The dual bundles of bTX, resp.
scTX are bT ∗X and scT ∗X, and are called the b- and the scattering cotangent
bundles, respectively; locally they are spanned by

dx

x
, dy1

, . . . , dyn−1, resp.
dx

x2
,
dy1

x
, . . . ,

dyn−1

x
.

We let Sk(X), the space of symbols of order k, consist of functions f such that

xkLf ∈ L∞(X) for all L ∈ Diffb(X).

We note, in particular, that

xρC∞(X) ⊂ S−ρ(X)

since Diffb(X) ⊂ Diff(X). As Diffb(X) (a priori acting, say, on tempered distribu-
tions) preserves Sk(X), and one can extend Diffb(X) and Diffsc(X) by “generalizing
the coefficients:”

SkDiffm
b (X) = {

∑

j

ajQj : aj ∈ Sk(X), Qj ∈ Diffm
b (X)},

with the sum being locally finite, and defining SkDiffm
sc(X) similarly. In particular,

xkDiffm
b (X) ⊂ S−kDiffm

b (X), xkDiffm
sc(X) ⊂ S−kDiffm

sc(X).

Then Q ∈ SkDiffm
sc(X), Q′ ∈ Sk′

Diffm′

sc (X) gives QQ′ ∈ Sk+k′

Diffm+m′

sc (X), and
the analogous statement for SkDiffm

b (X) also holds.
In this paper, we are concerned with scattering metrics, that is to say, smooth

metrics on X◦ that, near the boundary, take the form

(2.1) g =
dx2

x4
+

h

x2
+ g1

with h = h(x, y, dy) a family of metrics on ∂X, and

(2.2) g1 ∈ S−ν(X; scT ∗X ⊗ scT ∗X)

for some ν > 0 is symmetric. Thus, g is a positive definite inner product on
the fibers of scTX; long-range metrics like this were considered in [22]. We refer
to Section 2 and the beginning of Section 3 of [22] for more details. Note that
substituting r = x−1 gives form 1.1 described above when g1 = 0. We let L2(X)
denote the space of functions square integrable with respect to the metric density;
locally near a point in the boundary, this is equivalent to using the density

x−(n+1) dx dy1 . . . dyn−1.

Note that the vector fields in Vsc(X) are precisely those with bounded length with
respect to g. Correspondingly, a typical example of an element of Diff2

sc(X) is
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the Laplace-Beltrami operator, ∆g = d∗d. We also permit short range potential
perturbations of ∆g, namely

(2.3) V ∈ S−2−ν(X), ν > 0, V ≥ 0;

We assume that

V ≥ 0,

though the arguments also work for potentials with small negative parts; see [22,
Footnote 5].

2.2. Estimates. In this section we employ some of the results of [22] to obtain the
following. Let ψ ∈ C∞

c (R) and

ΨH = ψ(H2(∆g + V )), ∆ = ∆g.

Proposition 2.1. Suppose n ≥ 3, g and V as in (2.1), (2.2), (2.3). For 0 ≤ s,
0 ≤ ρ, s+ ρ < min(2, n/2), L ∈ Diff1

sc(X),

Lxs+ρΨHx
−s ≤ CH−ρ, H > 1.

While the spectral cutoff is in the “(anti-)semi-classical” operator H2(∆g + V )
with large parameter, we emphasize that the operator L in the above proposition
is simply a differential operator without parameter. As first-order scattering differ-
ential operators are spanned over C∞(X) by x2∂x, ∂y, and the constant function,
to prove the proposition, it suffices to check for these particular values of L. Equiv-
alently, we can simply use the vector-valued L = ∇g, the gradient with respect to
the scattering metric, as well as L = 1.

Note that for ρ = 0 and s = 0 Proposition 2.1 follows automatically from the
functional calculus and elliptic regularity; for ρ = 0 and s = 1 this is proved in [22],
hence it follows by interpolation for ρ = 0, 0 ≤ s ≤ 1. Thus, if ρ = 0, we need to
deal with 1 < s < 2 if n ≥ 4, and 1 < s < 3/2 if n = 3.

Now, with ψ̃ ∈ C∞
c (C) an almost analytic extension of ψ, and

R(z) = (H2(∆g + V )− z)−1

we have

Lxs+ρΨHx
−s =

1

2π

∫

∂ψ̃(z)Lxs+ρR(z)x−s dz dz̄.(2.4)

Thus, we only need to obtain uniform bounds on Lxs+ρR(z)x−s to prove the propo-
sition.

We begin with a preliminary lemma, which is an analogue of [22, Proposition 4.3],
where it was proved in the range 0 ≤ s < 1/2 for n ≥ 3.

Lemma 2.2. For 0 ≤ s < min(1, (n− 2)/2),

‖xs∇gu‖ ≤ C‖(∆g + V )u‖(1+s)/2‖u‖(1−s)/2

Proof. By [22, Proposition 4.3], we may assume n ≥ 4; then the range in the lemma
is 0 ≤ s < 1. By [22, Equation (A.5)], we have for 0 ≤ s < (n− 2)/2,

(2.5) ‖xs∇gu‖ ≤ C‖(∆g + V )u‖1/2‖x2su‖1/2.
Moreover, by [22, Corollary 3.5], we have for 0 < s < (n− 2)/2, 0 ≤ θ ≤ 1,

(2.6) ‖xs+θu‖ ≤ C‖xs∇u‖θ‖xsu‖1−θ.
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Applying this with 0 < θ = s < 1, we obtain that

‖x2su‖ ≤ C‖xs∇gu‖s‖xsu‖1−s.

Substituting into (2.5) yields

(2.7) ‖xs∇gu‖1−s/2 ≤ C‖(∆g + V )u‖1/2‖xsu‖(1−s)/2.

Now using (2.6) with 0 in place of s and s in place of θ yields

‖xsu‖ ≤ C‖∇gu‖s‖u‖1−s ≤ C‖(∆g + V )u‖s/2‖u‖1−s/2,

with the second inequality arising from

‖∇gu‖2 ≤ ‖(∆g + V )u‖ ‖u‖,
which is (2.5) with s = 0. Substitution into (2.7) yields

(2.8) ‖xs∇gu‖1−s/2 ≤ C‖(∆g + V )u‖1/2+s(1−s)/4‖u‖(1−s)(1−s/2)/2.

Since 1/2+s(1−s)/4 = (1−s/2)(1+s)/2, raising both sides to the power (1−s/2)−1

yields

‖xs∇gu‖ ≤ C‖(∆g + V )u‖(1+s)/2‖u‖(1−s)/2.

This finishes the proof. �

Now, letting u = R(z)f , and writing

(∆g + V )u = H−2(H2(∆g + V )− z)u+H−2zu,

we deduce from Lemma 2.2 that for 0 ≤ s < min(2, (n− 2)/2),

‖xs∇gR(z)f‖ ≤ C‖H−2(f + zR(z)f)‖(1+s)/2‖R(z)f‖(1−s)/2.

Since ‖R(z)f‖ ≤ | Im z|−1‖f‖, this gives
‖xs∇gR(z)f‖ ≤ CH−(1+s)(1 + |z|/| Im z|)(1+s)/2| Im z|−(1−s)/2‖f‖(2.9)

≤ CH−(1+s)|z|(1+s)/2| Im z|−1‖f‖.(2.10)

Using the Hardy/Poincaré inequality [22, Proposition 3.4], we deduce the following
extension of [22, Proposition 4.5] (where it was proved for 0 ≤ s < 1/2, i.e. the
result below is only an improvement if n ≥ 4):

Corollary 2.3. Suppose 0 ≤ s < min(1, (n− 2)/2), L ∈ S−1−sDiff1
b(X). Then

‖LR(z)f‖ ≤ CH−(1+s)|z|(1+s)/2| Im z|−1‖f‖.
We can extend the range of s when L is zero’th order by interpolating the case

s = 0 above, namely

‖xR(z)f‖ ≤ CH−1|z|1/2| Im z|−1‖f‖,
with the estimate ‖R(z)f‖ ≤ | Im z|−1‖f‖ to obtain the following result (in which
the range 1 ≤ s < min(2, n/2) is a special case of Corollary 2.3, and it is the range
0 ≤ s ≤ 1 that follows from the interpolation).

Corollary 2.4. Suppose 0 ≤ s < min(2, n/2). Then

‖xsR(z)f‖ ≤ CH−s|z|s/2| Im z|−1‖f‖.
As we are interested in the functional calculus for compactly supported func-

tions, we suppress the large z behavior, and work with z in a compact set. As a
consequence of the preceding two corollaries we conclude:



10 ANDRAS VASY AND JARED WUNSCH

Corollary 2.5. For 0 ≤ s < min(2, n/2), L ∈ S−sDiff1
sc(X), z in a compact set,

(2.11) ‖LR(z)f‖ ≤ CH−s| Im z|−1‖f‖,
uniformly in z and H ≥ 1.

Proof. If 1 ≤ s, then L ∈ S−sDiff1
sc(X) ⊂ S−sDiff1

b(X) and Corollary 2.3 proves
the result.

On the other hand, if 0 ≤ s < 1, one can write L = aV + b, a, b ∈ S−s(X),
V ∈ Vsc(X) = xVb(X), so aV ∈ S−1−sDiff1

b(X), so Corollary 2.3 gives

‖aV R(z)f‖ ≤ CH−1−s| Im z|−1‖f‖.
Furthermore, Corollary 2.4 yields

‖bR(z)f‖ ≤ CH−s| Im z|−1‖f‖.
Combining these two estimates proves the corollary. �

Now we consider conjugates of R(z). Below sometimes n = 3 and n ≥ 4 are
treated separately because of the stronger limitations n = 3 imposes in the preced-
ing results: min(2, n/2) = 3/2, rather than 2, in that case. First we prove a result
for conjugation by small powers of x (namely, xs, 0 ≤ s ≤ 1); then in Proposi-
tion 2.7 we increase the range. Roughly speaking, the argument of Proposition 2.7
reduces the weight by 1 (and could be done inductively if Corollaries 2.3 and 2.5 had
been proved for an extended range of weights); Lemma 2.6 deals with the fractional
part of the weight (and thus would be the base case in the inductive argument).

Lemma 2.6. Suppose n ≥ 3. Suppose 0 ≤ s ≤ 1, 0 ≤ ρ, s+ ρ < min(2, n/2), and
if n = 3 then in addition ρ < 1. For L ∈ Diff1

sc(X), and z in a compact set,

(2.12) ‖Lxρ+sR(z)x−s‖ ≤ CH−ρ| Im z|−2

uniformly as H → +∞.

Proof. The case s = 0 follows from Corollary 2.5. Note that the conditions imply
0 ≤ ρ < 2 if n ≥ 4.

If n = 3, assume that 1/2 < s ≤ 1; if n ≥ 4 no additional assumption is made.
Then

Lxs+ρR(z)x−s = LxρR(z) + Lxs+ρ[R(z), x−s]

= LxρR(z)− Lxs+ρR(z)[H2(∆ + V ), x−s]R(z).

For L ∈ Diff1
sc(X), by Corollary 2.5, as 0 ≤ ρ < min(2, n/2),

‖LxρR(z)‖ ≤ CH−ρ| Im z|−1

As for the second term on the right hand side, we note that [∆ + V, x−s] ∈
x2−sDiff1

b(X). Consequently, we may employ Corollary 2.3, using 0 < s ≤ 1 (so
1 ≤ 2− s < 2) if n ≥ 4, resp. 1/2 < s ≤ 1 (so 1 ≤ 2− s < 3/2) if n = 3. This yields

‖[∆ + V, x−s]R(z)‖ ≤ CH−(2−s)| Im z|−1.

On the other hand, as 0 ≤ s+ ρ < min(2, n/2), by Corollary 2.5,

‖Lxs+ρR(z)‖ ≤ CH−(s+ρ)| Im z|−1,

so

‖Lxs+ρR(z)[H2(∆ + V ), x−s]R(z)‖ ≤ CH−ρ| Im z|−2.
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Combining these results proves (2.12) if 0 < s ≤ 1 and n ≥ 4, and also if 1/2 < s ≤ 1
and n = 3, and completes the proof in these cases.

It remains to deal with n = 3, and 0 < s ≤ 1/2. This follows by interpolation
between s = 0 and s > 1/2, noting that given 0 ≤ ρ < 1 we can take s′ ∈ (1/2, 1)
such that ρ + s′ < 3/2; we then interpolate between 0 and this value s′. This last
step is the reason for the restriction ρ < 1; if ρ ≥ 1, the desired s′ does not exist.
This completes the proof of the Lemma. �

We now extend the range of allowable exponents s by an inductive argument:

Proposition 2.7. Suppose n ≥ 3. Suppose ρ ≥ 0, L ∈ Diff1
sc(X). For 0 ≤ s ≤

s+ ρ < min(2, n/2),

(2.13) ‖Lxs+ρR(z)x−s‖ ≤ CH−ρ| Im z|−4.

Proof. If s = 0, the result follows from Corollary 2.5. If n ≥ 4, 0 < s < 1, it follows
from Lemma 2.6.

Assume now that 1 ≤ s < min(2, n/2). If n = 3, let ρ′ = s/2; if n ≥ 4, let
ρ′ = s− 1. In either case, 0 ≤ ρ′ < 1; if n = 3 then in addition ρ′ > 1/2. Let

L′ = Lxρ ∈ xρDiff1
sc(X).

Write

L′xsR(z)x−s = L′R(z) + L′xs[R(z), x−s]

= L′R(z)−
(

L′xsR(z)x−ρ′

)(

xρ
′

[H2(∆ + V ), x−s]R(z)
)

.

First, by Corollary 2.5 since ρ′ < min(n/2, 2),

‖L′R(z)‖ ≤ CH−ρ′ | Im z|−2.

Next, we apply (2.12), with s = ρ′ and ρ replaced by ρ + s − ρ′. The hypotheses
are satisfied as ρ′ + (ρ+ s− ρ′) = ρ+ s < min(n/2, 2) and as 0 ≤ ρ+ s− ρ′ < 1 if
n = 3 since ρ+ s < 3/2, ρ′ = s/2 and s ≥ 1, resp. 0 ≤ ρ+ s− ρ′ = ρ+ 1 if n ≥ 4,

‖L′xsR(z)x−ρ′‖ ≤ CH−s−ρ+ρ′ | Im z|−2.

On the other hand, xρ
′

[∆+ V, x−s] ∈ x2−s+ρ′

Diff1
b(X), so by Corollary 2.3 (taking

into account that if n ≥ 4, 2− s+ ρ′ = 1, and if n = 3 then 1 ≤ 2− s+ ρ′ < 3/2),

‖xρ′

[(∆ + V ), x−s]R(z)‖ ≤ CH−2+s−ρ′ | Im z|−2.

Combining these results, we have shown that

‖L′xsR(z)x−s‖ ≤ CH−ρ| Im z|−4,

completing the proof if 1 ≤ s < min(2, n/2). If n ≥ 4, we already covered the case
of s < 1 in Lemma 2.6, hence if n ≥ 4, the proof is complete.

So suppose that n = 3. If 0 < s < 1, and 0 ≤ ρ < 1/2, then one can interpo-
late between s = 0 and s = 1 with the same (fixed) value of ρ to obtain (2.13),
completing the proof if 0 ≤ ρ < 1/2 in the full range of s, 0 ≤ s < 3/2 (subject to
s + ρ′ < 3/2). Finally, with 0 ≤ s + ρ′ < 3/2 fixed, one can interpolate between
s = 0 and ρ = 0 to obtain the full result. �

In view of (2.4), Proposition 2.7 proves Proposition 2.1.
We need a second, much less delicate, property of spectral cutoffs. Note that

here we do not need to work with low energies: the cutoff ψ is fixed, and there is



12 ANDRAS VASY AND JARED WUNSCH

no H in the statement of the proposition. (If we worked with ψ(H2(∆ + V )), H
could be traced through the argument given below to yield polynomially growing
bounds in H, i.e. one can gain decay in t at the cost of losing powers of H.)

Proposition 2.8. Suppose that φ, χ ∈ C∞
c (R) and supp(1 − χ) ∩ suppφ = ∅,

ψ ∈ C∞
c (R). Also let r = x−1. Then for L ∈ Diff1

sc(X), N ∈ N,

‖Lφ(r/t)ψ(∆ + V )(1− χ(r/t))‖L(L2,L2) ≤ CN t
−N , t ≥ 1.

Proof. We first remark that

[x2∂x, φ(1/(xt))] = −t−1φ′(1/(xt)),

while xDyj
and elements of C∞(X) commute with the multiplication operator by

φ(1/(xt)). Thus, by an inductive argument, for Q ∈ Diffm
sc(X), we have

(2.14) [Q,φ(1/(xt))] =
∑

|α|+j≤m−1

∑

k

fj,α,k(t)φj,α,k(1/(xt))aj,α,k(x
2Dx)

j(xDy)
α

where the sum over k is finite, fj,α,k ∈ S−1([1,∞)) (i.e. is C∞ and is a symbol of
order −1 at infinity), aj,α,k ∈ C∞(X), φj,α,k ∈ C∞

c (R) and suppφj,α,k ⊂ supp dφ.
Equivalently, we may put all of the factors φj,α(1/(xt)) on the right (at the cost of
changing these factors as well as the other coefficients), so

(2.15) [Q,φ(1/(xt))] =
∑

|α|+j≤m−1

∑

k

f̃j,α,k(t)ãj,α,k(x
2Dx)

j(xDy)
αφ̃j,α,k(1/(xt)),

with the tilded objects having the same properties as the untilded ones above.
For each t ≥ 1 we may write, Lφ(r/t) = φ(r/t)L + [L, φ(r/t)] and use that for

any Q ∈ Diffm
sc(X), Qψ(∆ + V ) is bounded on L2 (by elliptic regularity), so an

immediate consequence of (2.14) is that Lφ(r/t)ψ(∆+V )(1−χ(r/t)) is a bounded
operator on L2 which is uniformly bounded in t ≥ 1; we now must obtain improved
(decaying) bounds in t.

To do so, we work with the resolvent R(z) = (∆+ V − z)−1, Im z 6= 0, and note
that if ρ ∈ C∞

c (R) and 1−χ have disjoint support, so ρ(1−χ) = 0, then commuting
ρ through the resolvent,

ρ(1/(xt))R(z)(1− χ(1/(xt))) = −[R(z), ρ(1/(xt))](1− χ(1/(xt)))

= R(z)[∆ + V, ρ(1/(xt))]R(z)(1− χ(1/(xt))).

(2.16)

By (2.15), this has the form
(2.17)

∑

|α|+j≤1

∑

k

fj,α,k(t)R(z)aj,α,k(x
2Dx)

j(xDy)
αρj,α,k(1/(xt))R(z)(1− χ(1/(xt))),

with supp ρj,α,k ⊂ supp dρ. Thus, ρj,α,k(1/(xt))R(z)(1− χ(1/(xt))) is of the same
form as the left hand side of (2.16), so (2.16) can be further expanded by expanding
these last three factors in (2.17) as in (2.16). Note that as we expand, each time
we obtain a factor like fj,α,k ∈ S−1([1,∞)); these commute with all other factors,
and after N iterations, the product of these is in S−N ([1,∞)). Inductively, doing
N iterations, we deduce that φ(1/(xt))R(z)(1−χ(1/(xt))) is a sum of terms of the
form

(2.18) f(t)R(z)A1R(z)A2 . . . R(z)AN φ̃(1/(xt))R(z)(1− χ(1/(xt))),
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with Aj ∈ Diff1
sc(X), φ̃ ∈ C∞

c (R) with supp φ̃ ⊂ supp dφ, and f ∈ S−N ([1,∞)), and

one can also interchange AN and φ̃(1/(xt)) if convenient (at the cost of obtaining
different operators in the same class).

But ‖AjR(z)‖ ≤ C| Im z|−1 for z in a compact set, and similarly for LR(z)

when L ∈ Diff1
sc(X) (see Corollary 2.5 with H fixed) so using that φ̃ and 1 − χ

are uniformly bounded in sup norm, hence as bounded operators on L2, we deduce
that for L ∈ Diff1

sc(X),

‖Lφ(1/(xt))R(z)(1− χ(1/(xt)))‖ ≤ Ct−N | Im z|−N−1.

The Cauchy-Stokes formula, with ψ̃ ∈ C∞
c (C) an almost analytic extension of ψ,

Lφ(1/(xt))ψ(∆ + V )(1− χ(1/(xt)))

=
1

2π

∫

∂ψ̃(z)Lφ(1/(xt))R(z)(1− χ(1/(xt))) dz dz̄,
(2.19)

now immediately proves the proposition. �

In fact, it is useful to add a weight in x as well:

Proposition 2.9. Suppose that φ, χ ∈ C∞
c (R) and supp(1 − χ) ∩ suppφ = ∅,

ψ ∈ C∞
c (R). Also let r = x−1. Then for L ∈ Diff1

sc(X), N ∈ N, m ∈ N

‖Lrmφ(r/t)ψ(∆ + V )(1− χ(r/t))rm‖L(L2,L2) ≤ CN t
−N , t ≥ 1.

Proof. First, the rm = x−m in front of ψ(∆ + V ) is harmless since on the support
of φ it is bounded by tm, so it can be absorbed into t−N on the right hand side
if we increase N. Moreover, for each t, Qxmψ(∆ + V )x−m is bounded for Q ∈
Diff1

sc(X), as is immediate from the scattering calculus of Melrose as ψ(∆ + V )
is a pseudodifferential operator of order −∞. However, there is a simple direct
argument: via the Cauchy-Stokes formula this reduces to a boundedness statement
for QxmR(z)x−m. This in turn is shown by commuting x−m through R(z), much
as we commuted φ(r/t) above, in this case gaining a power of x (instead of t−1)
each time we do a commutation, so in m steps we reduce to a product of m + 1
resolvents and bounded functions, giving a bound

(2.20) ‖QxmR(z)x−m‖ ≤ C| Im z|−m−1.

Thus, as in the previous proposition, we only need to prove the decaying uni-
form estimate in t. (Strictly speaking, one has to regularize, replacing x−m by
(1 + ǫx−1)−mx−m, which is bounded for ǫ > 0, and let ǫ → 0, in which case the
commutator argument presented above gives uniform control of the terms.)

We thus proceed as above, so by (2.18) we only need to prove that

AN φ̃(1/(xt))R(z)(1− χ(1/(xt)))x−m

is L2 bounded. As in the fixed t setting, it is convenient to insert a factor of xm on
the left, using that x−m . tm on the support of φ̃, and thus, commuting φ̃ through

AN , and using the uniform boundedness of φ̃ and 1 − χ in the sup norm, we are
reduced to showing that A′

Nx
mR(z)x−m is bounded (with a polynomial bound in

| Im z|−1). But this is exactly the content of (2.20), completing the proof. �
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3. Global Morawetz estimate

In this section, we return to the notation r = 1/x to facilitate comparisons with
the usual method of Morawetz estimates. To simplify the computation, we assume
g1 = 0 with the notation of (2.1)–(2.2). Then, in the paragraph of (3.7) we reinstate
arbitrary g1 (with ν > 0). Thus in the present notation, we have

(3.1) g = g0 = dr2 + r2h(1/r, y, dy)

with r ∈ (r0,∞). Then we compute

(3.2) ∂∗r = −∂r − ∂r(log(r
n−1

√
h)) = −∂r −

n− 1

r
− 1

2
∂r log h(1/r)

= −∂r −
n− 1

r
+ e ∈ r−1Diff1

b(X)

with e ∈ S−2(X).
We as usual may write, in the ends of X where r ≫ 0,

∆g = ∂∗r∂r + r−2∆Y ∈ r−2Diff2
b(X)

where ∆Y is the family of Laplacians on the boundary at infinity defined by the
family of metrics h(1/r, •).

Now in general, for F (r) ∈ C∞([0,∞)) we let

(3.3) AF = (1/2)(F (r)∂r − ∂∗rF (r)),

which is thus skew-adjoint. The principal symbol of the commutator of ∆g with
AF is straightforward to compute, and one deduces that [∆, AF ] and 2∂∗rF

′(r)∂r +
2r−3F (r)∆Y have the same principal symbol, so their difference is first order. Since
they are both formally self-adjoint and real, the same holds for the difference, which
is thus zero’th order, and can be computed by applying it to the constant function
1:

(

[∆, AF ]− (2∂∗rF
′(r)∂r + 2r−3F (r)∆Y )

)

1 = ∆gAF 1

= −1

2
∆g∂

∗
r (F (r))

We note some particular instances of this computation. Let ϑ(r) be a function
on R such that

ϑ(r) =

{

0 r ≤ 1/2

1 r ≥ 4,

and

ϑ′ ≥ 0, ϑ′(r) ≥ 1/4 for 1 ≤ r ≤ 2.

Let Λ ≫ 0 and κ be a small constant. We compute the following as zero’th order
terms for these various cases:

F (r) = rs =⇒ −1

2
∆g∂

∗
r (F (r)) =

n− 1

2
(s− 1)(n+ s− 3)rs−3 +O(rs−4),

F (r) = (1− 1/ log r) =⇒ −1

2
∆g∂

∗
r (F (r)) = (1 +O(1/ log r))

(n− 1)(n− 3)

2r3

F (r) = κ ϑ(r/Λ) =⇒ −1

2
∆g∂

∗
r (F (r)) = κO(r−3)

(with the “big-Oh” term in the last case being uniformly bounded as Λ → ∞).
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Thus in particular, we may let F (r) = rs and (abusing notation) denote AF by
As in this case. Then
(3.4)

[∆g +V,As] = 2s∂∗r r
s−1∂r +2rs−3∆Y − n− 1

2
(s− 1)(n+ s− 3)rs−3+ rs−4QY + f,

where QY denotes an operator of second order involving only derivatives in Y with
coefficients in S0(X) and f ∈ Ss−3−ν(X). The two principal terms have the same
(non-negative!) sign if s ≥ 0, with the sign being definite if s > 0; if n ≥ 3, the
zero’th order term has the same sign if in addition s ≤ 1; the sign is definite if
s < 1, and in case n = 3, s > 0.

On the other hand, in dealing with radial derivatives we will employ AF with
F (r) = (1− 1/ log r). We let A′ denote the operator in this case, and compute

A′ = (1/2)

(

(

1− 1

log r

)

A+A
(

1− 1

log r

)

)

,

where

A ≡ A0 =
1

2

(

∂r − ∂∗r
)

.

Then we have
(3.5)

[∆g +V,A
′] = 2∂∗r

1

r(log r)2
∂r +(1+ e1)2r

−3∆Y +(1+ e2)
(n− 1)(n− 3)

2r3
+ r−4QY ,

with ei = O((log r)−1) a symbol in S0(X). (We have recycled the notation QY to
denote different operators of the same form.)

Finally, in obtaining ℓ∞–ℓ1 bounds, we will employ

F (r) = 1− 1

log r
+ κ ϑ

( r

Λ

)

;

with κ a (small) positive constant. Let A′′ denote the corresponding operator.
Thus

[∆g + V,A′′] =2∂∗r
(κ

Λ
ϑ′(r/Λ) +

1

r(log r)2
)

∂r

+ (1 + e1)2r
−3∆Y + (1 + e2)

(n− 1)(n− 3)

2r3
+ r−4QY ,

(3.6)

with e1 = O((log r)−1) a symbol in S0(X) and e2 = O((log r)−1)+κO(1) a symbol
in S0(X), bounded by 1/2 when r ≫ 0 and κ ≪ 1.

We now return to arbitrary metric g = g0 + g1, with g0 of the warped product
form (3.1). We write ∆g0 for the Laplacian of g0 and B∗,0 for the adjoint of an
operator B with respect to g0, while B

∗ is written for the adjoint with respect to
g. Thus, in (3.2)–(3.5), all adjoints are of the ∗,0 type, and all Laplacians are that
of g0. Since As and A′ depend on the metric via the adjoints, we write As,0 and
A′

0 for the g0 versions. Now, as

(3.7) g1 ∈ S−ν(X; scT ∗X ⊗ scT ∗X) = S2−ν(X; bT ∗X ⊗ bT ∗X),

we have √
g =

√
g0(1 + g̃), g̃ ∈ S−ν(X),

and thus

∂∗r − ∂∗,0r ∈ S−1−ν(X),
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i.e. the effect on (3.2) is that e is replaced by a slightly less decaying symbol.
Correspondingly,

As−As,0 ∈ Ss−1−νDiff1
b(X), A′−A′

0 ∈ S−1−νDiff1
b(X), A′′−A′′

0 ∈ S−1−νDiff1
b(X).

Also,

∆g −∆g0 ∈ S−2−νDiff2
b(X).

Combining these, and expanding the commutators,

(3.8)

[∆g + V,As]− [∆g0 + V,As,0] ∈ S−3+s−νDiff2
b(X),

[∆g + V,A′]− [∆g0 + V,A′
0] ∈ S−3−νDiff2

b(X)

[∆g + V,A′′]− [∆g0 + V,A′′
0 ] ∈ S−3−νDiff2

b(X),

as always with uniform estimates as Λ → ∞ in the A′′ case.
In order to make the foregoing into a global computation, we need to add a cutoff

that localizes near infinity. So let χ0(r) be a cutoff function equal to 0 for r < 1
and 1 for r > 2. Let χ(r) = χ0(r/R) with R≫ 0. Then
(3.9)

[∆g + V, χ(r)As] = 2s∂∗rχ(r)r
s−1∂r + 2rs−3χ(r)∆Y +

n− 1

2
(1− s)(n+ s− 3)rs−3

+∇∗
X(1− χ(r))∇X + rs−4Es + rs−3−νẼs,

where Es ∈ Diff2
sc(X), Ẽs ∈ Diff2

b(X), and
(3.10)

[∆g + V, χ(r)A′] = 2∂∗r
χ(r)

r(log r)2
∂r + (1 + e3)2r

−3χ(r)∆Y + (1 + e4)
(n− 1)(n− 3)

2r3

+∇∗
X(1− χ(r))∇X + r−4E0 + r−3−νẼ0

where E0 ∈ Diff2
sc(X), Ẽ0 ∈ Diff2

b(X) (and are different from the Es, Ẽs in (3.9)),
and ei = O((log r)−1) satisfy symbol estimates. Since on any compact set, the
terms with ei can be absorbed into Es, we may assume here that |ei| < 1/2 so that

1 + ei > 1/2.

For the same reason, by shifting a large compactly supported part of the Ẽs term
in (3.9) into the faster-decaying Es we may assume that Ẽs can be absorbed into
the first three terms of (3.9) without compromising their positivity: for any δ > 0
we may assume

|〈rs−3−νẼsv, v〉|

≤ δ
(

2s‖
√

χ(r)r(s−1)/2∂rv‖2 + 2‖r(s−3)/2
√

χ(r)∇Y v‖2

+
n− 1

2
(1− s)(n+ s− 3)‖r(s−3)/2v‖2

)

(3.11)

for all v ∈ Ċ∞(X) (hence by density whenever the right hand side is finite), with.
We will take δ = 1/2. Likewise, we may assume that the terms in (3.10) satisfy:

|〈r−3−νẼ0v, v〉|

≤ δ
(

2‖
√

χ(r)

r1/2(log r)
∂rv‖2 + 2‖r−3/2

√

χ(r)∇Y v‖2 +
(n− 1)(n− 3)

2
‖r−3/2v‖2

)

.

(3.12)
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We will take δ = 1/4 here.
Exactly the same computation applies in the case of A′′, but with the addition

of an extra ∂2r term:

(3.13)

[∆g + V, χ(r)A′′] =2∂∗r
( χ(r)

r(log r)2
+

κ

Λ
ϑ′(r/Λ)

)

∂r + (1 + e3)2r
−3χ(r)∆Y

+ (1 + e4)
(n− 1)(n− 3)

2r3

+∇∗
X(1− χ(r))∇X + r−4E0 + r−3−νẼ0,

with error terms estimated as above (provided κ is taken sufficiently small).
We now consider the pairing

(3.14)

∫ T

0

〈χ(r)A′(�+ V )u, u〉 dt.

While we will manipulate this expression for an arbitrary solution u, we remark
that the calculations in the following paragraph are unchanged if we replace u by

ΨHu ≡ ψ(H2(∆g + V ))u,

which indeed we will do below.
We first remark that moving χ(r) and A′ to the right slot of the pairing (3.14)

and inserting the weight r1/2(log r), resp. its reciprocal, in the two slots, we obtain,
for γ > 0,

∣

∣

∣

∣

∣

∫ T

0

〈χ(r)A′(�+ V )u, u〉 dt
∣

∣

∣

∣

∣

≤
(

∫ T

0

‖r1/2(log r)(�+ V )u‖2 dt
)1/2(

∫ T

0

‖r−1/2(log r)−1(A′)∗χ(r)u‖2 dt
)1/2

≤ γ−1

∫ T

0

‖r1/2(log r)(�+ V )u‖2 dt+ γ

∫ T

0

‖r−1/2(log r)−1(A′)∗χ(r)u‖2 dt,

(3.15)

where 〈·, ·〉 denotes the spatial inner product. On the other hand, integrating (3.14)
twice by parts yields

(3.16) −〈χ(r)A′ut, u〉|T0 + 〈χ(r)A′u, ut〉T0 −
∫ T

0

〈[χ(r)A′,∆g + V ]u, u〉 dt.

Let

E(s) =
(

‖∇gu‖2 + ‖∂tu‖2 +
∥

∥

∥

√
V u
∥

∥

∥

2
)

|t=s

denote the energy norm at fixed time. By the Hardy/Poincaré inequality, we have

‖χA′u(t)‖2 . E(t).

We further compute, as usual, that

E ′(t) = 2Re 〈ut, (�+ V )u〉 ≤ 2E(t)1/2‖(�+ V )u‖.
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Hence

E(T )1/2 ≤ E(0)1/2 +
∫ T

0

‖(�+ V )u‖ dt

. E(0)1/2 +
∫ T

0

‖(�+ V )u‖ dt

Consequently, the first two terms in (3.16) are bounded by a multiple of

E(0) +
(

∫ T

0

‖(�+ V )u‖ dt
)2

uniformly in t.3

Thus, (3.10), (3.12) and (3.15) now allow us to estimate (absorbing lower-order
terms into positive ones, and choosing γ small so that the second term on the right
hand side of (3.15) can be absorbed into the left hand side below):

(3.17)

∫ T

0

〈

∂∗r r
−1χ(r) log(r)−2∂ru, u

〉

+
〈

r−3u, u
〉

+
〈

r−3χ(r)∆Y u, u
〉

+ 〈∇∗
Xχ(r)∇Xu, u〉 dt

.

∫ T

0

〈

r−4E0u, u
〉

dt+ E(0) +
(

∫ T

0

‖(�+ V )u‖ dt
)2
.

We apply this estimate to spectrally localized data, i.e. replace u by ΨHu, as
indicated at the beginning of the previous paragraph. We state the following lemma
more generally than is immediately necessary, in the n ≥ 3 setting.

Lemma 3.1. Suppose n ≥ 3. If E ∈ Diff2
sc(X) and u is as above, then for 0 ≤ ρ,

0 ≤ s, 0 ≤ ρ+ s < min(2, n/2),
∣

∣

∣

〈

r−2(s+ρ)EΨHu,ΨHu
〉∣

∣

∣
. H−2ρ

∥

∥r−sΨHu
∥

∥

2
.

Proof. It suffices, by rearranging the LHS (as commutator terms require the same
form of estimates) to show that for L ∈ Diff1

sc(X),
∥

∥

∥
r−(s+ρ)LΨHu

∥

∥

∥
. H−ρ

∥

∥r−sΨHu
∥

∥.

Let φ ∈ C∞
c (R) be identically 1 on suppψ. By Proposition 2.1,

Hρr−(s+ρ)Lφ(H2(∆g + V ))rs

is uniformly bounded in H, so for all v,
∥

∥

∥
Hρr−(s+ρ)Lφ(H2(∆ + V ))v

∥

∥

∥
.
∥

∥r−sv
∥

∥.

Applying this with v = ΨHu completes the proof of the lemma. �

Taking s = 3/2, ρ = (1− ǫ)/2, 0 < ǫ < 1, which we may if n ≥ 4, we deduce:

3If preferred, we could of course replace the norm on the inhomogeneity by the weighted L2

spacetime norm
∫ T

0

∥

∥

∥
(2 + t2)1/4 log(2 + t2)(�+ V )u

∥

∥

∥

2

dt.
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Lemma 3.2. If n ≥ 4, E ∈ Diff2
sc(X) and u is as above, then for 0 < ǫ < 1,

∣

∣

〈

r−4+ǫEΨHu,ΨHu
〉∣

∣ . H−1+ǫ
∥

∥

∥
r−3/2ΨHu

∥

∥

∥

2

.

As a consequence, we can estimate, a fortiori,

〈

r−4E0ΨHu,ΨHu
〉

. H−1+ǫ
∥

∥

∥
r−3/2ΨHu

∥

∥

∥

2

so that for H sufficiently large, this term may be absorbed in the main term on the
left of (3.17). Thus, for H sufficiently large,

∫ T

0

∥

∥

∥
r−1/2(log r)−1√χ(r)∂rΨHu

∥

∥

∥

2

+
∥

∥

∥
r−3/2ΨHu

∥

∥

∥

2

+
∥

∥

∥
r−3/2√χ(r)∇Y ΨHu

∥

∥

∥

2

+
∥

∥

∥

√

1− χ∇XΨHu
∥

∥

∥

2

dt

. E(0) +
(

∫ T

0

‖(�+ V )u‖ dt
)2
,

with constants independent of T. This concludes the proof of Theorem 1.1. �

To prove Theorem 1.1’ we proceed similarly, but with A′′ replacing A′. We now
let

(3.18) Υk = {r ∈ [2k, 2k+1]}

denote a dyadic decomposition in radial shells. Then we obtain by the same argu-
ment
(3.19)
∣

∣

∣

∣

∣

∫ T

0

〈χ(r)A′′(�+ V )u, u〉 dt
∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ T

0

〈

r1/2(�+ V )u, r−1/2(A′′)∗χ(r)u
〉

dt

∣

∣

∣

∣

∣

≤
∫ T

0

∑

k

∫

Υk

∣

∣

∣
r1/2(�+ V )u

∣

∣

∣
·
∣

∣

∣
r−1/2(A′′)∗χ(r)u

∣

∣

∣
dg dt

≤
∑

k

∥

∥

∥
r1/2(�+ V )u

∥

∥

∥

L2([0,T ]×Υk)

∥

∥

∥
r−1/2(A′′)∗χ(r)u

∥

∥

∥

L2([0,T ]×Υk)

≤
∥

∥

∥
r1/2(�+ V )u

∥

∥

∥

ℓ1(N;L2([0,T ]×Υk))

∥

∥

∥
r−1/2(A′′)∗χ(r)u

∥

∥

∥

ℓ∞(N;L2([0,T ]×Υk))

≤ γ−1
∥

∥

∥
r1/2(�+ V )u

∥

∥

∥

2

ℓ1(N;L2([0,T ]×Υk))
+ γ
∥

∥

∥
r−1/2(A′′)∗χ(r)u

∥

∥

∥

2

ℓ∞(N;L2([0,T ]×Υk))
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Thus, for γ > 0 we have

(3.20)

∫ T

0

(

〈

∂∗r r
−1χ(r) log(r)−2∂ru, u

〉

+
〈

∂∗r
κ

Λ
ϑ′(r/Λ)χ(r)∂ru, u

〉

+
〈

r−3u, u
〉

+
〈

r−3χ(r)∆Y u, u
〉

+ 〈∇∗
Xχ(r)∇Xu, u〉

)

dt

.

∫ T

0

〈

r−4E0u, u
〉

dt+ E(0) +
(

∫ T

0

‖(�+ V )u‖ dt
)2

+ γ−1
∥

∥

∥
r1/2(�+ V )u

∥

∥

∥

2

ℓ1(N;L2([0,T ]×Υk))

+ γ
∥

∥

∥
r−1/2(A′′)∗χ(r)u

∥

∥

∥

2

ℓ∞(N;L2([0,T ]×Υk))
.

Now we take the supremum of the LHS over Λ ∈ {2k, k ∈ N} to obtain

(3.21)

∫ T

0

(

〈

∂∗r r
−1χ(r) log(r)−2∂ru, u

〉

+
〈

r−3u, u
〉

+
〈

r−3χ(r)∆Y u, u
〉

+ 〈∇∗
Xχ(r)∇Xu, u〉

)

dt

+
∥

∥

∥
χ(r)r−1/2∂ru

∥

∥

∥

2

ℓ∞(N;L2([0,T ]×Υk))

.

∫ T

0

〈

r−4E0u, u
〉

dt+ E(0) +
(

∫ T

0

‖(�+ V )u‖ dt
)2

+ γ−1
∥

∥

∥
r1/2(�+ V )u

∥

∥

∥

2

ℓ1(N;L2([0,T ]×Υk))

+ γ
∥

∥

∥
r−1/2(A′′)∗χ(r)u

∥

∥

∥

2

ℓ∞(N;L2([0,T ]×Υk))
.

where we have of course used the fact that r ∼ Λ on suppϑ′(r/Λ). Taking γ suffi-
ciently small to absorb the last term in the LHS yields and applying the resulting
estimate to spectrally localized data as above yields Theorem 1.1’. �

4. A local Morawetz estimate

In this section, we prove Theorem 1.2. We fix some ψ̃ ∈ C∞
c (R) which is identi-

cally 1 on suppψ. We write u simply in place of

ΨHu = ψ(H2(∆ + V ))u

throughout this section to simplify the notation.
As our estimates will be in spacetime, we also define the manifold with corners

given by its compactification,

M = R×X,

with R denoting the compactification of R to an interval and X our scattering
manifold, regarded as usual as a manifold with boundary endowed with the singular
metric (2.1). In this section we will employ the notation ‖•‖M to denote the
spacetime L2 norm, and for the sake of emphasis, we will use ‖•‖X for the spatial
norm, previously denoted simply ‖•‖. We will likewise let ∇X denote the gradient
in the spatial directions only, previous denoted ∇g, while letting ∇ denote the
spacetime gradient.



MORAWETZ ESTIMATES FOR THE WAVE EQUATION AT LOW FREQUENCY 21

We may assume that the δ in (1.5) is sufficiently small for convenience (as the
result is stronger then); e.g. take δ < 1/4. Let φ0 ∈ C∞

c (R), supported in [−2, 2],
identically 1 in [−1, 1]. With 0 < c < 3δ < 1 to be fixed, let φ(µ) = φ0(µ/c), and

let φ̃(µ) = φ(µ/(3δ)). Also, we let χ be as in Section 3, see the definition just above
(3.9), so χ ≡ 1 near infinity. Now, with

k = 2κ− 1, s = 1− 2σ,

let

Bk,s =
1

2

(

φ(r/t)2φ̃(t)2(r/t)st−kχ(r)∂r − ∂∗rφ(r/t)
2φ̃(t)2(r/t)st−kχ(r)

)

,

so on the complement of supp(1− φφ̃) (where φφ̃ ≡ 1) we actually have

Bk,s = t−k−sAs

with As given by (3.3). Note that supp dφ̃∩suppφ is a compact subset ofM◦, so we

can effectively ignore terms in which φ̃ is commuted through differential operators
below.

Before proceeding, we recall that in {r > r0, t > 1} ⊂M , Vb(M) is spanned by
r∂r, t∂t and vector fields on Y , over C∞(M). We now blow up the corner ∂2M ,
where both x = 0 and t−1 = 0, to obtain the manifold

M̃ = [M ; ∂2M ].

The blowup procedure (cf. [11, Appendix]; the simple setting of [10, Section 4.1]
where a codimension 2 corner is blown up is analogous to the present case, with
our t−1 taking the place of x′ in [10]) serves to replace the corner t−1 = r−1 = 0 of
M by its inward-pointing spherical normal bundle, in this case diffeomorphic to Y
times an interval. This new boundary hypersurface will be denoted4 mf. We let tf
denote the “temporal infinity” face given by the lift of the set t−1 = 0 in M to M̃.
The main consequence of the blowup procedure is that it introduces r/t as a smooth
function where it is bounded, and its differential is non-vanishing on the interior of
mf (where it is thus one of the standard coordinates, namely the variable along the
interval referred to above; others being t−1 and y, coordinates on Y = ∂X; we use
t−1 as a boundary defining function for mf). However, Vb(M̃) is still spanned by
the lift of the same vector fields, except that the smooth structure is replaced by
C∞(M̃). Correspondingly, the symbol spaces are unaffected by the blow-up. Now,

the support of dφ only intersects the front face of M̃ among all boundary faces,
and r/t is bounded from both above and below by positive constants there. Thus,

on the support of dφ, t−1Vb(M̃) is locally generated by ∂r, ∂t and r−1∂Y , i.e. by
vector fields corresponding to the energy space. Thus, on supp dφ, ∇v ∈ tκL2(M)
implies v ∈ tκ+1L2(M), k < (n − 1)/2, by a Hardy inequality, and so we obtain
more generally:

4The notation is short for “main face,” as for X Euclidean (diffeomorphically, not metrically),
this can be identified with an open dense subset of the boundary of the radial compactification of

Minkowski space. Note that the light cone, r/t = 1, hits the boundary in the interior of mf. If

r/t = 1 in mf were blown up inside M̃ , the resulting front face is where Friedlander’s radiation
field [4] can be defined by rescaling a solution to the wave equation. Indeed, in the interior of this
front face (in t > 0) r− t = (r/t− 1)/t−1 becomes a smooth variable along the fibers of the front

face.
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M̃

tf

mf

spf
y

r/t

t−1

r−1

t−1

M

Figure 1. The compactified spacetime M and the blown-up
spacetime M̃.

Lemma 4.1. Let Υ be an open set in M̃ with Υ ∩ ∂M̃ ⊂ mf◦. If supp v ⊂ Υ,

∇v ∈ tκL2(M) =⇒ v ∈ tκ+1H1
b(M̃).

Here the Sobolev space is still relative to the metric density (so L2(M) and

L2(M̃) are the same, as only the smooth structure at infinity changed).
Before proceeding, we caution the reader that near temporal infinity, tf, i.e. the

lift of t = +∞ on M to M̃ , weighted versions of Vb(M̃) do not give rise to the
finite length vector fields relative to dt2 + g (i.e. the energy space). Indeed, in the

interior of tf, one is in a compact set of the spatial slice X, and Vb(M̃) is spanned
by t∂t and smooth vector fields on X, while the energy space corresponds to ∂t and
smooth vector fields on X. In order to emphasize the structure when we stay away
from tf and also from spatial infinity spf, i.e. the lift of ∂X × R, we write

M̃ ′ = M̃◦ ∪mf◦ = M̃ \ (tf ∪ spf).

Our convention below is that inner products and norms are on M unless other-
wise specified by a subscript X (in which case they are on X). The inner product on
M on functions is given by integration against the density of dt2−g, or equivalently
that of dt2 + g. The inner product on vectors on M uses the positive definite inner
product, based on dt2 + g, unless otherwise specified. The one case where we take
advantage of the “otherwise specified” disclaimer is when we consider the indefinite
Dirichlet form in (4.4), where we use the indefinite form induced by dt2 − g (so the
density is positive definite, but not the pointwise pairing between vectors) in order
to use the PDE.

Now,
(4.1)
[∂2t , t

−k−s] = −2(k + s)t−k−s−1∂t + (k + s)(k + s+ 1)t−k−s−2 ∈ t−k−s−2Diff1
b(Rt).

Moreover, on M̃ ′ (hence on supp dφ),

Bk,s ∈ t−k−1Diff1
b(M̃

′), � ∈ t−2Diff2
b(M̃

′) =⇒ [�, Bk,s] ∈ t−k−3Diff2
b(M̃

′).
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In particular, from (3.9),

[∂2t +∆g + V,Bk,s]

= t−k−sφ(r/t)2φ̃(t)2
(

∑

i

Q∗
i r

st−1Ri

+ (2s∂∗r r
s−1χ(r)∂r + 2rs−3χ(r)∆Y +

n− 1

2
(1− s)(n+ s− 3)rs−3

+∇∗
X(1− χ(r))∇X + rs−4Es + rs−3−νẼs)

)

+ Fk,s,

(4.2)

where Qi ∈ t−1Diff1
b(Rt), Ri ∈ r−1Diff1

b(X) contains no y-derivatives and is sup-

ported on suppχ, Es ∈ Diff2
sc(X), Ẽs ∈ Diff2

b(X), Fk,s ∈ t−k−3Diff2
b(M̃) and Fk,s is

supported on supp dφ. Note that the term with ∇X has spatially compact support,
and could be absorbed into Es, but writing the commutator in the stated manner is
convenient for it gives a positive definite result modulo Es, which we later control
separately, by low energy techniques. Moreover, for 0 < s < 1 (which is the case if

0 < σ < 1/2), we may assume that the Ẽs term can be absorbed into the first three
terms on the right hand side by (3.11). Thus, for 0 < s < 1 the spatial term, arising
from (3.9), is positive modulo the Es term, while the terms Q∗

i r
st−1Ri arising from

the commutator with ∂2t , are indefinite. However, we can estimate

‖t−(k+s)/2r(s−1)/2φ̃φRiu‖M
≤ C0(‖t−(k+s)/2r(s−1)/2φ̃φ∂ru‖M + ‖t−(k+s)/2φ̃φr(s−3)/2u‖M ),

with C0 independent of c in the definition of φ. We also have a similar estimate for
the time derivatives, using the PDE and the fact that t−1 . r−1 on suppφ :

‖t−(k+s)/2r(s−1)/2φ̃φQiu‖M
≤ C1

(

‖t−(k+s)/2r(s−1)/2φ̃φ∂tu‖M + ‖t−(k+s)/2r(s−3)/2φ̃φu‖M
)

≤ C2

(

‖t−(k+s)/2r(s−1)/2φ̃φ∇Xu‖M + ‖t−(k+s)/2r(s−3)/2φ̃φu‖M
+ ‖t−(k+s)/2r(s+1)/2φ̃φ(�+ V )u‖M
+ ‖t−(k+s)/2r(s−1)/2∇Xu‖supp d(φφ̃) + ‖t−(k+s)/2r(s−3)/2φ̃φu‖supp d(φφ̃)

)

.

(4.3)

To show the validity of the last step, consider the (indefinite!) Dirichlet form relative
to dt2 − g, and use that

〈tαrβφ̃φ∇u, tαrβφ̃φ∇u〉M,dt2−g − 〈tαrβ+1φ̃φ�u, tαrβ−1φ̃φu〉M
= 〈f0tα−1rβφ̃φu, tαrβφ̃φ∂tu〉M + 〈ftαrβ−1φ̃φu, tαrβφ̃φ∇Xu〉M

+
∑

j

〈tα−1rβQ′
ju, t

αrβR′
ju〉M ,

(4.4)

where f0, f and Q′
j are zero’th order symbols on M̃ , R′

j ∈ t−1Vb(M̃), and Q′
j is

supported on supp d(φφ̃) (so R′
j can be taken supported nearby). Indeed, the terms

on the right hand side can be controlled: the second term directly by the positive
spatial term via Cauchy-Schwarz,

(4.5) |〈ftαrβ−1φ̃φu, tαrβφ̃φ∇Xu〉M | . ‖tαrβ−1φ̃φu‖2M + ‖tαrβφ̃φ∇Xu‖2M ,
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while the first can be Cauchy-Schwarzed with a small constant in front of the ∂t
factor in the pairing, which then can be reabsorbed in the Dirichlet form, while the
other factor can be controlled directly from the spatial positive term using that r/t
is bounded, and indeed small:

(4.6) |〈f0tα−1rβφ̃φu, tαrβφ̃φ∂tu〉M | . ǫ‖tαrβφ̃φ∂tu‖2M + ǫ−1‖tα−1rβφ̃φu‖2M .
In addition, the �u term can be controlled using Cauchy-Schwarz:

(4.7) 〈tαrβ+1φ̃φ�u, tαrβ−1φ̃φu〉M ≤ ‖tαrβ−1φ̃φu‖2M + ‖tαrβ+1φ̃φ�u‖2M .
Finally, we change from � to �+ V using that V ∈ S−2(X), so

(4.8) ‖tαrβ+1φ̃φV u‖M . ‖tαrβ−1φ̃φu‖M .
Combining (4.4)–(4.8),

(1− C̃ǫ)‖tαrβφ̃φ∂tu‖2M
. ‖tαrβφ̃φ∇Xu‖2M + ǫ−1‖tα−1rβφ̃φu‖2M +

(

‖tαrβ−1φ̃φu‖2M + ‖tαrβφ̃φ∇Xu‖2M
)

+
(

‖tα−1rβu‖2
supp d(φφ̃)

+ ‖tαrβφ̃φ∇Xu‖2supp d(φφ̃)

)

+ ‖tαrβ+1φ̃φ(�+ V )u‖2M ,

(4.9)

where ǫ > 0 can be arbitrarily chosen without affecting C̃, so in particular we may
assume C̃ǫ < 1/2. This proves the second inequality in (4.3).

Since

|〈Q∗
i φ̃φr

st−1t−(k+s)Riu, u〉M |
≤ 2c‖t−(k+s)/2r(s−1)/2φ̃φRiu‖M‖t−(k+s)/2r(s−1)/2φ̃φQiu‖M
≤ c‖t−(k+s)/2r(s−1)/2φ̃φRiu‖2M + c‖t−(k+s)/2r(s−1)/2φ̃φQiu‖2M ,

(4.10)

with c arising from the extra factor of r/t, which is ≤ 2c on suppφ, in the pairing
over what is included in the two factors on the right, for sufficiently small c > 0
these can be absorbed in the positive definite spatial term in (4.2), modulo terms

supported on supp d(φφ̃) and modulo terms involving (�+ V )u.
It remains to check that the “quantum” term (in that we need global estimates

on tf to control it), Es, in (4.2) can be controlled. With ρ0 ∈ C∞
c (R) identically 1

on a neighborhood of suppφ0, supported in (−3, 3), and let ρ(µ) = ρ0(µ/c), c as
above, and consider ρ = ρ(r/t). We write

|〈rs−4φ(r/t)Esφ(r/t)u, u〉X | . ‖r(s−4)/2φ(r/t)∇Xu‖2X + ‖r(s−4)/2φ(r/t)u‖2X .
We remark that the left hand side rearranges the factors from (4.2) by commuting a
factor of φ through Es; the difference is supported in supp dφ, and when multiplied
by t−k−s, it is in t−k−5Diff2

b(M̃), i.e. can be controlled the same way Fk,s was (and
is indeed better behaved). Now write

u = ψ̃(H2(∆ + V ))ρ(r/t)u+ ψ̃(H2(∆ + V ))(1− ρ(r/t))u,

and estimate the summands (and their X-gradients) individually.

First, to deal with the ψ̃(H2(∆ + V ))(1− ρ(r/t))u term, note that by Proposi-
tion 2.9, for any N ,

‖φ(r/t)ψ̃(H2(∆ + V ))(1− ρ(r/t))rN‖L(L2(X),L2(X))

+ ‖∇Xφ(r/t)ψ̃(H
2(∆ + V ))(1− ρ(r/t))rN‖L(L2(X),L2(X)) ≤ CH,N t

−N ,
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where the constant CH,N depends on H (and N). Since u is tempered, for suf-
ficiently large N , the space-time norm of r−N t−Nu is bounded (with the bound
depending on H), controlling this term.

Next, to deal with the

ũ = ψ̃(H2(∆ + V ))ρ(r/t)u

term, we use the low energy localization, i.e. we takeH large. First, for ǫ′ ∈ (0, 1/2),

‖r(s−4)/2φ(r/t)ũ‖2X ≤ ‖r(s−4)/2ũ‖2X ≤ ‖r(s−3)/2−ǫ′ ũ‖2X ,
‖r(s−4)/2φ(r/t)∇X ũ‖2X ≤ ‖r(s−3)/2−ǫ′∇X ũ‖2X .

By the Hardy/Poincaré lemma, Lemma 3.1, using 0 < s < 1, and choosing ǫ′ ∈
(0, 1/2) such that −(s− 3)/2 + ǫ′ < 3/2,

‖r(s−3)/2−ǫ′ ũ‖2X + ‖r(s−3)/2−ǫ′∇X ũ‖2X
. H−2ǫ′‖r(s−3)/2ρ(r/t)u‖2X
= H−2ǫ′

(

‖φ(r/t)r(s−3)/2u‖2X + ‖(ρ(r/t)− φ(r/t))r(s−3)/2u‖2X
)

.

(4.11)

For H sufficiently large, the first term on the right hand side of (4.11) can be
absorbed into the zero’th order positive definite spatial term,
(4.12)
〈

φ(r/t)2
(

2s∂∗r r
s−1χ(r)∂r + 2rs−3χ(r)∆Y +

n− 1

2
(1− s)(n+ s− 3)rs−3

)

u, u
〉

X
,

modulo errors supported on supp d(φ̃φ), which are of the same kind as those in Fk,s

in (4.2). On the other hand, the second term on the right hand side of (4.11) is
supported on supp(ρ−φ), and is thus similar to the Fk,s terms, with slightly larger
support (but still within the region where this proposition gives no improvement
upon the a priori assumption). Explicitly, when also integrated in t, on supp(ρ−φ)
we have ∇u ∈ tκL2(M) (with (k + 1)/2 = κ), and since on supp(ρ− φ), r ∼ t,

∫

t−k−sφ̃(t)2‖(ρ(r/t)− φ(r/t))r(s−3)/2u‖2X dt

.

∫

t−k−sφ̃(t)2‖t(s−3)/2(ρ(r/t)− φ(r/t))u‖2X dt

. ‖t−(k+1)/2φ̃(t)2(ρ(r/t)− φ(r/t))u‖2M .

(4.13)

Now, for γ > 0,

|〈Bk,su, (�+ V )u〉M | = |〈Bk,su, ρ(r/t)(�+ V )u〉M |
≤ ‖r(s+1)/2t−(k+s)/2ρ(r/t)(�+ V )u‖M‖r−(s+1)/2t(k+s)/2Bk,su‖M
≤ γ−1‖r(s+1)/2t−(k+s)/2ρ(r/t)(�+ V )u‖2M + γ‖r−(s+1)/2t(k+s)/2Bk,su‖2M
≤ γ−1‖r(s+1)/2t−(k+s)/2ρ(r/t)(�+ V )u‖2M + γ

(

‖r(s−1)/2t−(k+s)/2ρ(r/t)χ(r)∂ru‖2M

+ ‖r(s−3)/2t−(k+s)/2ρ(r/t)u‖2M + ‖t−(k+s)/2(1− χ(r))ρ(r/t)∇Xu‖2M
)

.

Taking γ > 0 sufficiently small, the second term on the right hand side can be
absorbed into the positive spatial terms in (4.2), modulo terms that are supported
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outside supp(1 − φφ̃), but in that region we have a priori control of these terms.
We thus deduce from (4.2) that

‖t−(k+s)/2r(s−1)/2φ̃φ∇Xu‖M + ‖t−(k+s)/2r(s−3)/2φ̃φu‖M
. ‖r(s+1)/2t−(k+s)/2(�+ V )u‖L2(Ω) + ‖u‖t(k+3)/2H1

b(Υ),
(4.14)

where Υ = supp dφ ∪ supp(ρ − φ) and with the last space being H1
b(M̃) on Υ,

provided 0 < s < 1 and provided the right hand side is finite. Recall that Lemma 4.1
means that the second term on the right hand side may be replaced by

‖∇u‖t(k+1)/2L2(Υ).

In view of the Dirichlet form estimate, (4.9), we also get the bound for the time
derivative which is analogous to (4.14). Noting that

‖t−(k+s)/2r(s−1)/2φ̃φ∇u‖M + ‖t−(k+s)/2r(s−3)/2φ̃φu‖M
= ‖t−(k+1)/2(t/r)(1−s)/2φ̃φ∇u‖M + ‖t−(k+1)/2(t/r)(1−s)/2r−1φ̃φu‖M ,

and 0 < s < 1, so 0 < (1− s)/2 < 1/2, while (using r/t < 1 on Ω and s > 0)

‖r(s+1)/2t−(k+s)/2(�+ V )u‖L2(Ω) . ‖r1/2t−k/2(�+ V )u‖L2(Ω),

this proves the estimate of the theorem, provided the formal pairings employed
above are finite and hence the computation justified.

In order to employ the above argument without a priori assumptions on u, we
need to introduce a weight, (1+αt)−1, α > 0, in Bk,s to justify the arguments, and
let α→ 0. Roughly speaking, such a weight does not cause problems since we could
deal with arbitrary weights t−k already (i.e. k did not need to have a sign). More
precisely, the contribution of this weight to the commutator of (1 + αt)−1Bk,s and

� is similar to (4.1), namely [∂2t , t
−k−s(1 + αt)−1] ∈ t−k−s−3Diff1

b(Rt) for α > 0,
and it is uniformly bounded in the larger space t−k−s−2Diff1

b(Rt) for α ∈ [0, 1).
Thus, its role is analogous to that of the Q∗

iRi terms of (4.2), which in turn arose
from (4.1); these are estimated in (4.10), and can be controlled by making c small.
Letting α → 0, and using standard functional analytic arguments, completes the
proof of the theorem. �

We finally remark that a version of this argument also works for solutions of
the wave equation at intermediate frequencies, via Mourre estimate techniques (see
especially [5]). While this is not interesting for the homogeneous wave equation,
whose middle-frequency solutions will have rapid decay inside the light cone, for the
inhomogeneous equation it may be of some interest. The key point then is that one
works with ψ(∆+V ), and ψ̃(∆+V ), supported near a fixed energy λ0 > 0, and one
controls the analogue of the Es term (that arose above) by shrinking the support

of ψ̃, using that ψ̃(∆ + V )Es converges to 0 in norm as the support is shrunk to
{λ0} by the relative compactness of Es (which follows from elliptic estimates and

its decay at spatial infinity). This holds since ψ̃(∆+ V ) converges to 0 strongly as
the support is shrunk to {λ0}, since λ0 is not an L2 eigenvalue of ∆ + V .
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[2] J.-F. Bony and D. Häfner, Local energy decay for several evolution equations on asymptoti-

cally euclidean manifolds , arXiv:1008.2357.



MORAWETZ ESTIMATES FOR THE WAVE EQUATION AT LOW FREQUENCY 27

[3] J.-M. Bouclet, Low frequency estimates and local energy decay for asymptotically euclidean

Laplacians, arXiv:1003.6016.

[4] F. G. Friedlander, Notes on the wave equation on asymptotically Euclidean manifolds, J.
Funct. Anal. 184 (2001), no. 1, 1–18.

[5] R. G. Froese and I. Herbst. A new proof of the Mourre estimate. Duke Math. J., 49:1075–1085,
1982.

[6] C. Guillarmou, A. Hassell, A. Sikora, Resolvent at low energy III: the spectral measure,

arXiv:1009.3084.
[7] A. Hassell and A. Vasy. The spectral projections and the resolvent for scattering metrics. J.

d’Analyse Math., 79:241–298, 1999.

[8] A. Hassell and A. Vasy. The resolvent on Laplace-type operators on asymptotically conic
spaces. Ann. Inst. Fourier, 51:1299–1346, 2001.
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