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Abstract. In this paper we develop a general, systematic, microlocal frame-

work for the Fredholm analysis of non-elliptic problems, including high energy

(or semiclassical) estimates, which is stable under perturbations. This frame-
work, described in Section 2, resides on a compact manifold without boundary,

hence in the standard setting of microlocal analysis.

Many natural applications arise in the setting of non-Riemannian b-metrics
in the context of Melrose’s b-structures. These include asymptotically de

Sitter-type metrics on a blow-up of the natural compactification, Kerr-de

Sitter-type metrics, as well as asymptotically Minkowski metrics.
The simplest application is a new approach to analysis on Riemannian or

Lorentzian (or indeed, possibly of other signature) conformally compact spaces
(such as asymptotically hyperbolic or de Sitter spaces), including a new con-

struction of the meromorphic extension of the resolvent of the Laplacian in the

Riemannian case, as well as high energy estimates for the spectral parameter
in strips of the complex plane. These results are also available in a follow-up

paper which is more expository in nature, [54].

The appendix written by Dyatlov relates his analysis of resonances on exact
Kerr-de Sitter space (which then was used to analyze the wave equation in that

setting) to the more general method described here.

1. Introduction

In this paper we develop a general microlocal framework which in particular
allows us to analyze the asymptotic behavior of solutions of the wave equation on
asymptotically Kerr-de Sitter and Minkowski space-times, as well as the behavior of
the analytic continuation of the resolvent of the Laplacian on so-called conformally
compact spaces. This framework is non-perturbative, and works, in particular, for
black holes, for relatively large angular momenta (the restrictions come purely from
dynamics, and not from methods of analysis of PDE), and also for perturbations
of Kerr-de Sitter space, where ‘perturbation’ is only relevant to the extent that it
guarantees that the relevant structures are preserved. In the context of analysis on
conformally compact spaces, our framework establishes a Riemannian-Lorentzian
duality; in this duality the spaces of different signature are smooth continuations of
each other across a boundary at which the differential operator we study has some
radial points in the sense of microlocal analysis.
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2 ANDRAS VASY

Since it is particularly easy to state, and only involves Riemannian geometry, we
start by giving a result on manifolds with even conformally compact metrics. These
are Riemannian metrics g0 on the interior of a compact manifold with boundary
X0 such that near the boundary Y , with a product decomposition nearby and a
defining function x, they are of the form

g0 =
dx2 + h

x2
,

where h is a family of metrics on ∂X0 depending on x in an even manner, i.e. only
even powers of x show up in the Taylor series. (There is a much more natural way
to phrase the evenness condition, see [28, Definition 1.2].) We also write X0,even

for the manifold X0 when the smooth structure has been changed so that x2 is a
boundary defining function; thus, a smooth function on X0 is even if and only if
it is smooth when regarded as a function on X0,even. The analytic continuation of
the resolvent in this category (but without the evenness condition) was obtained
by Mazzeo and Melrose [37], with possibly some essential singularities at pure
imaginary half-integers as noticed by Borthwick and Perry [6]. Using methods
of Graham and Zworski [26], Guillarmou [28] showed that for even metrics the
latter do not exist, but generically they do exist for non-even metrics. Further,
if the manifold is actually asymptotic to hyperbolic space (note that hyperbolic
space is of this form in view of the Poincaré model), Melrose, Sá Barreto and Vasy
[41] showed high energy resolvent estimates in strips around the real axis via a
parametrix construction; these are exactly the estimates that allow expansions for
solutions of the wave equation in terms of resonances. Estimates just on the real
axis were obtained by Cardoso and Vodev for more general conformal infinities
[7, 58]. One implication of our methods is a generalization of these results.

Below Ċ∞(X0) denotes ‘Schwartz functions’ on X0, i.e. C∞ functions vanishing
with all derivatives at ∂X0, and C−∞(X0) is the dual space of ‘tempered distribu-
tions’ (these spaces are naturally identified for X0 and X0,even), while Hs(X0,even)
is the standard Sobolev space on X0,even (corresponding to extension across the
boundary, see e.g. [32, Appendix B], where these are denoted by H̄s(X◦0,even)) and
Hs
h(X0,even) is the standard semiclassical Sobolev space, so for h > 0 fixed this is

the same as Hs(X0,even); see [17, 63].

Theorem. (See Theorem 4.3 for the full statement.) Suppose that X0 is an (n −
1)-dimensional manifold with boundary Y with an even Riemannian conformally
compact metric g0. Then the inverse of

∆g0 −
(
n− 2

2

)2

− σ2,

written as R(σ) : L2 → L2, has a meromorphic continuation from Imσ � 0 to C,

R(σ) : Ċ∞(X0)→ C−∞(X0),

with poles with finite rank residues. If, further, (X0, g0) is non-trapping, then non-
trapping estimates hold in every strip −C < Imσ < C+, |Reσ| � 0: for s > 1

2 +C,

(1.1) ‖x−(n−2)/2+ıσR(σ)f‖Hs
|σ|−1 (X0,even) ≤ C̃|σ|−1‖x−(n+2)/2+ıσf‖Hs−1

|σ|−1 (X0,even),

where |σ|−1 is the semiclassical parameter. If f has compact support in X◦0 , the
s− 1 norm on f can be replaced by the s− 2 norm.
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Further, as stated in Theorem 4.3, the resolvent is semiclassically outgoing with
a loss of h−1, in the sense of recent results of Datchev and Vasy [15] and [16]. This
means that for mild trapping (where, in a strip near the spectrum, one has polyno-
mially bounded resolvent for a compactly localized version of the trapped model)
one obtains resolvent bounds of the same kind as for the above-mentioned trapped
models, and lossless estimates microlocally away from the trapping. In particular,
one obtains logarithmic losses compared to non-trapping on the spectrum for hy-
perbolic trapping in the sense of [61, Section 1.2], and polynomial losses in strips,
since for the compactly localized model this was recently shown by Wunsch and
Zworski [61].

For conformally compact spaces, without using wave propagation as motivation,
our method is to change the smooth structure, replacing x by µ = x2, conjugate
the operator by an appropriate weight as well as remove a vanishing factor of µ,
and show that the new operator continues smoothly and non-degenerately (in an
appropriate sense) across µ = 0, i.e. Y , to a (non-elliptic) problem which we can
analyze using by now almost standard tools of microlocal analysis. These steps are
reflected in the form of the estimate (1.1); µ shows up in the evenness, conjugation
due to the presence of x−n/2+ıσ, and the two halves of the vanishing factor of µ
being removed in x±1 on the left and right hand sides. This approach is explained
in full detail in the more expository and self-contained follow-up article, [54].

However, it is useful to think of a wave equation motivation — then (n − 1)-
dimensional hyperbolic space shows up1 (essentially) as a model at infinity inside
a backward light cone from a fixed point q+ at future infinity on n-dimensional de

Sitter space M̂ , see [53, Section 7], where this was used to construct the Poisson
operator. More precisely, the light cone is singular at q+, so to desingularize it,

consider [M̂ ; {q+}]. After a Mellin transform in the defining function of the front
face; the model continues smoothly across the light cone Y inside the front face of
[M̂ ; {q+}]. The inside of the light cone corresponds to (n−1)-dimensional hyperbolic
space (after conjugation, etc.) while the exterior is (essentially) (n−1)-dimensional
de Sitter space; Y is the ‘boundary’ separating them. Here Y (or the whole light

cone in [M̂ ; {q+}]) should be thought of as the event horizon in black hole terms
(there is nothing more to event horizons in terms of local geometry!).

The resulting operator Pσ has radial points at the conormal bundle N∗Y \ o
of Y in the sense of microlocal analysis, i.e. the Hamilton vector field is radial
at these points, i.e. is a multiple of the generator of dilations of the fibers of the
cotangent bundle there. However, tools exist to deal with these, going back to
Melrose’s geometric treatment of scattering theory on asymptotically Euclidean
spaces [39]. Note that N∗Y \ o consists of two components, Λ+, resp. Λ−, and in
S∗X = (T ∗X \ o)/R+ the images, L+, resp. L−, of these are sinks, resp. sources,
for the Hamilton flow. At L± one has choices regarding the direction one wants to
propagate estimates (into or out of the radial points), which directly correspond to
working with strong or weak Sobolev spaces. For the present problem, the relevant
choice is propagating estimates away from the radial points, thus working with the
‘good’ Sobolev spaces (which can be taken to have as positive order as one wishes;

1General asymptotically hyperbolic spaces do not arise from a similar blow-up of a de Sitter-

type space, rather could be thought of as a generalization of the blown-up n-dimensional de Sitter
space, i.e. the generalization is after the blow-up. A different perspective, via an asymptotically

Minkowski space, is briefly discussed in Section 5, and in more detail in [55].
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there is a minimum amount of regularity imposed by our choice of propagation
direction, cf. the requirement s > 1

2 + C above (1.1)). All other points are either
elliptic, or real principal type. It remains to either deal with the non-compactness
of the ‘far end’ of the (n−1)-dimensional de Sitter space — or instead, as is indeed
more convenient when one wants to deal with more singular geometries, adding
complex absorbing ‘potentials’ (which are pseudodifferential operators here), in the
spirit of works of Nonnenmacher and Zworski [44] and Wunsch and Zworski [61],
and ‘capping off’ the manifold in the absorbing region to make it compact (e.g. by
doubling, making the problem on the double elliptic by complex absorption). In
fact, the complex absorption could be replaced by adding a space-like boundary,
see Remark 2.6, but for many microlocal purposes complex absorption is more
desirable, hence we follow the latter method. However, crucially, these complex
absorbing techniques (or the addition of a space-like boundary) already enter in
the non-semiclassical problem in our case, as we are in a non-elliptic setting.

One can reverse the direction of the argument and analyze the wave equation
on an (n − 1)-dimensional even asymptotically de Sitter space X ′0 by extending
it across the boundary, much like the the Riemannian conformally compact space
X0 is extended in this approach. Then, performing microlocal propagation in the
opposite direction, which amounts to working with the adjoint operators that we
already need in order to prove existence of solutions for the Riemannian spaces2,
we obtain existence, uniqueness and structure results for asymptotically de Sitter
spaces, recovering a large part3 of the results of [53]. Here we only briefly indicate
this method of analysis in Remark 4.6.

In other words, we establish a Riemannian-Lorentzian duality, that will have
counterparts both in the pseudo-Riemannian setting of higher signature and in
higher rank symmetric spaces, though in the latter the analysis might become
more complicated. Note that asymptotically hyperbolic and de Sitter spaces are
not connected by a ‘complex rotation’ (in the sense of an actual deformation); they
are smooth continuations of each other in the sense we just discussed.

To emphasize the simplicity of our method, we list all of the microlocal techniques
(which are relevant both in the classical and in the semiclassical setting) that we
use on a compact manifold without boundary; in all cases only microlocal Sobolev
estimates matter (not parametrices, etc.):

(i) Microlocal elliptic regularity.
(ii) Real principal type propagation of singularities.
(iii) Rough analysis at a Lagrangian invariant under the Hamilton flow which

roughly behaves like a collection of radial points, though the internal struc-
ture does not matter, in the spirit of [39, Section 9].

(iv) Complex absorbing ‘potentials’ in the spirit of [44] and [61].

These are almost ‘off the shelf’ in terms of modern microlocal analysis, and thus
our approach, from a microlocal perspective, is quite simple. We use these to
show that on the continuation across the boundary of the conformally compact
space we have a Fredholm problem, on a perhaps slightly exotic function space,

2This adjoint analysis also shows up for Minkowski space-time as the ‘original’ problem.
3Though not the parametrix construction for the Poisson operator, or for the forward funda-

mental solution of Baskin [1]; for these we would need a parametrix construction in the present

compact boundaryless, but analytically non-trivial (for this purpose), setting.
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which however is (perhaps apart from the complex absorption) the simplest possi-
ble coisotropic function space based on a Sobolev space, with order dictated by the
radial points. Also, we propagate the estimates along bicharacteristics in different
directions depending on the component Σ± of the characteristic set under consider-
ation; correspondingly the sign of the complex absorbing ‘potential’ will vary with
Σ±, which is perhaps slightly unusual. However, this is completely parallel to solv-
ing the standard Cauchy, or forward, problem for the wave equation, where one
propagates estimates in opposite directions relative to the Hamilton vector field in
the two components.

The complex absorption we use modifies the operator Pσ outside X0,even. How-
ever, while (Pσ − ıQσ)−1 depends on Qσ, its behavior on X0,even, and even near
X0,even, is independent of this choice; see the proof of Proposition 4.2 for a detailed
explanation. In particular, although (Pσ− ıQσ)−1 may have resonances other than
those of R(σ), the (dual) resonant states of these additional resonances are sup-
ported outside X0,even, hence do not affect the singular behavior of the resolvent in
X0,even. In the setting of Kerr-de Sitter space an analogous role is played by semi-
classical versions of the standard energy estimate; this is stated in Subsection 3.3.

While the results are stated for the scalar equation, analogous results hold for
operators on natural vector bundles, such as the Laplacian on differential forms.
This is so because the results work if the principal symbol of the extended problem
is scalar with the demanded properties, and the imaginary part of the subprincipal
symbol is either scalar at the ‘radial sets’, or instead satisfies appropriate estimates
(as an endomorphism of the pull-back of the vector bundle to the cotangent bundle)
at this location; see Remark 2.1. The only change in terms of results on asymptot-
ically hyperbolic spaces is that the threshold (n− 2)2/4 is shifted; in terms of the
explicit conjugation of Subsection 4.9 this is so because of the change in the first
order term in (4.30).

While here we mostly consider conformally compact Riemannian or Lorentzian
spaces (such as hyperbolic space and de Sitter space) as appropriate boundary
values (Mellin transform) of a blow-up of de Sitter space of one higher dimension,
they also show up as a boundary value of Minkowski space. This is related to Wang’s
work on b-regularity [60], though Wang worked on a blown up version of Minkowski
space-time; she also obtained her results for the (non-linear) Einstein equation
there. It is also related to the work of Fefferman and Graham [22] on conformal
invariants by extending an asymptotically hyperbolic manifold to Minkowski-type
spaces of one higher dimension. We discuss asymptotically Minkowski spaces briefly
in Section 5.

Apart from trapping — which is well away from the event horizons for black holes
that do not rotate too fast — the microlocal structure on de Sitter space is exactly
the same as on Kerr-de Sitter space, or indeed Kerr space near the event horizon.
(Kerr space has a Minkowski-type end as well; although Minkowski space also fits
into our framework, it does so a different way than Kerr at the event horizon, so the
result there is not immediate; see the comments below.) This is to be understood
as follows: from the perspective we present here (as opposed to the perspective of
[53]), the tools that go into the analysis of de Sitter space-time suffice also for Kerr-
de Sitter space, and indeed a much wider class, apart from the need to deal with
trapping. The trapping itself was analyzed by Wunsch and Zworski [61]; their work
fits immediately with our microlocal methods. Phenomena such as the ergosphere
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are shadows of a barely changed dynamics in the phase space, whose projection
to the base space (physical space) undergoes serious changes. It is thus of great
value to work microlocally, although it is certainly possible that for some non-linear
purposes it is convenient to rely on physical space to the maximum possible extent,
as was done in the recent (linear) works of Dafermos and Rodnianski [13, 14].

Below we state theorems for Kerr-de Sitter space time. However, it is impor-
tant to note that all of these theorems have analogues in the general microlocal
framework discussed in Section 2. In particular, analogous theorems hold on conju-
gated, re-weighted, and even versions of Laplacians on conformally compact spaces
(of which one example was stated above as a theorem), and similar results apply
on ‘asymptotically Minkowski’ spaces, with the slight twist that it is adjoints of
operators considered here that play the direct role there.

We now turn to Kerr-de Sitter space-time and give some history. In exact Kerr-de
Sitter space and for small angular momentum, Dyatlov [20, 19] has shown exponen-
tial decay to constants, even across the event horizon. This followed earlier work of
Melrose, Sá Barreto and Vasy [40], where this was shown up to the event horizon
in de Sitter-Schwarzschild space-times or spaces strongly asymptotic to these (in
particular, no rotation of the black hole is allowed), and of Dafermos and Rodnian-
ski in [11] who had shown polynomial decay in this setting. These in turn followed
up pioneering work of Sá Barreto and Zworski [47] and Bony and Häfner [5] who
studied resonances and decay away from the event horizon in these settings. (One
can solve the wave equation explicitly on de Sitter space using special functions, see
[45] and [62]; on asymptotically de Sitter spaces the forward fundamental solution
was constructed as an appropriate Lagrangian distribution by Baskin [1].)

Also, polynomial decay on Kerr space was shown recently by Tataru and To-
haneanu [50, 49] and Dafermos and Rodnianski [13, 14], after pioneering work of
Kay and Wald in [33] and [59] in the Schwarzschild setting. (There was also recent
work by Marzuola, Metcalf, Tataru and Tohaneanu [36] on Strichartz estimates,
and by Donninger, Schlag and Soffer [18] on L∞ estimates on Schwarzschild black
holes, following L∞ estimates of Dafermos and Rodnianski [12, 10], of Blue and
Soffer [4] on non-rotating charged black holes giving L6 estimates, and Finster,
Kamran, Smoller and Yau [23, 24] on Dirac waves on Kerr.) While some of these
papers employ microlocal methods at the trapped set, they are mostly based on
physical space where the phenomena are less clear than in phase space (unstable
tools, such as separation of variables, are often used in phase space though). We
remark that Kerr space is less amenable to immediate microlocal analysis to attack
the decay of solutions of the wave equation due to the singular/degenerate behav-
ior at zero frequency, which will be explained below briefly. This is closely related
to the behavior of solutions of the wave equation on Minkowski space-times. Al-
though our methods also deal with Minkowski space-times, this holds in a slightly
different way than for de Sitter (or Kerr-de Sitter) type spaces at infinity, and
combining the two ingredients requires some additional work. On perturbations of
Minkowski space itself, the full non-linear analysis was done in the path-breaking
work of Christodoulou and Klainerman [9], and Lindblad and Rodnianski simplified
the analysis [34, 35], Bieri [2, 3] succeeded in relaxing the decay conditions, while
Wang [60] obtained additional, b-type, regularity as already mentioned. Here we
only give a linear result, but hopefully its simplicity will also shed new light on the
non-linear problem.
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As already mentioned, a microlocal study of the trapping in Kerr or Kerr-de
Sitter was performed by Wunsch and Zworski in [61]. This is particularly important
to us, as this is the only part of the phase space which does not fit directly into
a relatively simple microlocal framework. Our general method is to use microlocal
analysis to understand the rest of the phase space (with localization away from
trapping realized via a complex absorbing potential), then use the gluing result of
Datchev and Vasy [15] to obtain the full result.

Slightly more concretely, there is a partial compactification of space-time near the
boundary of which the space-time has the form Xδ × [0, τ0)τ , where Xδ denotes an
extension of the space-time across the event horizon. Thus, there is a manifold with
boundary X0, whose boundary Y is the event horizon, such that X0 is embedded
into Xδ, a (non-compact) manifold without boundary. We write X+ = X◦0 for ‘our
side’ of the event horizon and X− = Xδ \ X0 for the ‘far side’. Over compact

subsets of X+, τ behaves like e−t̃, where t̃ is the standard Kerr-de Sitter ‘time’;
see Section 6. Then the Kerr or Kerr-de Sitter d’Alembertians (or wave operators)
are b-operators in the sense of Melrose [43] that extend smoothly across the event
horizon Y . We further extend Xδ to a compact manifold without boundary (e.g.
by doubling Xδ over its boundary) and extend the d’Alembertian as well in a
somewhat arbitrary manner; the complex absorption we impose later serves to make
the problem elliptic in this region, and the the particular choices we make do not
affect the wave equation asymptotics in Xδ (we refer to Subsection 3.3 for details).
Recall that in the Riemannian setting, b-metrics (whose Laplacians are then b-
operators) are usually called ‘cylindrical ends’, see [43] for a general description;
here the form of the d’Alembertian at the boundary (i.e. ‘infinity’) is similar, modulo
ellipticity (which is lost). Our results hold for small smooth perturbations of Kerr-
de Sitter space in this b-sense. Here the role of ‘perturbations’ is simply to ensure
that the microlocal picture, in particular the dynamics, has not changed drastically.
Although b-analysis is the right conceptual framework, we mostly work with the
Mellin transform, hence on manifolds without boundary, so the reader need not
be concerned about the lack of familiarity with b-methods. However, we briefly
discuss the basics in Section 3.

We immediately Mellin transform in the defining function of the boundary (which
is temporal infinity, though is not space-like everywhere) — in Kerr and Kerr-
de Sitter spaces this is operation is ‘exact’, corresponding to τ∂τ being a Killing
vector field, i.e. is not merely at the level of normal operators, but this makes little
difference (i.e. the general case is similarly treatable). After this transform we get
a family of operators that e.g. in de Sitter space is elliptic on X+, but in Kerr-de
Sitter space (as well as in Kerr space in the analogous region) ellipticity is lost there.
We consider the event horizon as a completely artificial boundary even in the de
Sitter setting, i.e. work on a manifold that includes a neighborhood of X0 = X+,
hence a neighborhood of the event horizon Y .

As already mentioned, one feature of these space-times is some relatively mild
trapping in X+; this only plays a role in high energy (in the Mellin parameter, σ),
or equivalently semiclassical (in h = |σ|−1) estimates. We ignore a (semiclassical)
microlocal neighborhood of the trapping for a moment; we place an absorbing ‘po-
tential’ there. Another important feature of the space-times is that they are not
naturally compact on the ‘far side’ of the event horizon (inside the black hole), i.e.
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X−, and bicharacteristics from the event horizon (classical or semiclassical) prop-
agate into this region. However, we place an absorbing ‘potential’ (a second order
operator) there to annihilate such phenomena which do not affect what happens
on ‘our side’ of the event horizon, X+, in view of the characteristic nature of the
latter. This absorbing ‘potential’ could easily be replaced by a space-like boundary,
in the spirit of introducing a boundary t = t1, where t1 > t0, when one solves the
Cauchy problem from t0 for the standard wave equation; note that such a boundary
does not affect the solution of the equation in [t0, t1]t. Alternatively, if X− has a
well-behaved infinity, such as in de Sitter space, the analysis could be carried out
more globally. However, as we wish to emphasize the microlocal simplicity of the
problem, we do not touch on these issues.

All of our results are in a general setting of microlocal analysis explained in Sec-
tion 2, with the Mellin transform and Lorentzian connection explained in Section 3.
However, for the convenience of the reader here we state the results for perturba-
tions of Kerr-de Sitter spaces. We refer to Section 6 for details. First, the general
assumption is that

Pσ, σ ∈ C, is either the Mellin transform of the d’Alembertian
�g for a Kerr-de Sitter spacetime, or more generally the Mellin
transform of the normal operator of the d’Alembertian �g for a
small perturbation, in the sense of b-metrics, of such a Kerr-de
Sitter space-time;

see Section 3 for an explanation of these concepts. Note that for such perturbations
the usual ‘time’ Killing vector field (denoted by ∂t̃ in Section 6; this is indeed time-
like in X+ × [0, ε)t̃ sufficiently far from ∂X+) is no longer Killing. Our results
on these space-times are proved by showing that the hypotheses of Section 2 are
satisfied. We show this in general (under the conditions (6.2), which corresponds
to 0 < 9

4Λr2
s < 1 in de Sitter-Schwarzschild spaces, and (6.13), which corresponds

to the lack of classical trapping in X+; see Section 6), except where semiclassical
dynamics matters. As in the analysis of Riemannian conformally compact spaces,
we use a complex absorbing operator Qσ; this means that its principal symbol in the
relevant (classical, or semiclassical) sense has the correct sign on the characteristic
set; see Section 2.

When semiclassical dynamics does matter, the non-trapping assumption with an
absorbing operator Qσ, σ = h−1z, is

in both the forward and backward directions, the bicharacteristics
from any point in the semiclassical characteristic set of Pσ either
enter the semiclassical elliptic set of Qσ at some finite time, or tend
to L±;

see Definition 2.12. Here, as in the discussion above, L± are two components
of the image of N∗Y \ o in S∗X. (As L+ is a sink while L− is a source, even
semiclassically, outside L± the ‘tending’ can only happen in the forward, resp.
backward, directions.) Note that the semiclassical non-trapping assumption (in
the precise sense used below) implies a classical non-trapping assumption, i.e. the
analogous statement for classical bicharacteristics, i.e. those in S∗X. It is important
to keep in mind that the classical non-trapping assumption can always be satisfied
with Qσ supported in X−, far from Y .

In our first result in the Kerr-de Sitter type setting, to keep things simple,
we ignore semiclassical trapping via the use of Qσ; this means that Qσ will have
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support in X+. However, in X+, Qσ only matters in the semiclassical, or high
energy, regime, and only for σ with bounded imaginary part. If the black hole
is rotating relatively slowly, e.g. a satisfies the bound (6.27), the (semiclassical)
trapping is always far from the event horizon, and one can make Qσ supported
away from there. Also, the Klein-Gordon parameter λ below is ‘free’ in the sense
that it does not affect any of the relevant information in the analysis4 (principal
and subprincipal symbol; see below). Thus, we drop it in the following theorems
for simplicity.

Theorem 1.1. Let Qσ be an absorbing operator such that the semiclassical non-
trapping assumption holds. Let σ0 ∈ C, and

X s = {u ∈ Hs : (Pσ0
− ıQσ0

)u ∈ Hs−1}, Ys = Hs−1,

‖u‖2X s = ‖u‖2Hs + ‖(Pσ0 − ıQσ0)u‖2Hs−1 .

Let β± > 0 be given by the geometry at conormal bundle of the black hole (−),
resp. de Sitter (+) event horizons, see Subsection 6.1, and in particular (6.10).
For s ∈ R, let5 β = max(β+, β−) if s ≥ 1/2, β = min(β+, β−) if s < 1/2. Then,
for λ ∈ C,

Pσ − ıQσ − λ : X s → Ys
is an analytic family of Fredholm operators on

(1.2) Cs =
{
σ ∈ C : Imσ > β−1

(1

2
− s
)}

and has a meromorphic inverse,

R(σ) = (Pσ − ıQσ − λ)−1,

which is holomorphic in an upper half plane, Imσ > C. Moreover, given any
C ′ > 0, there are only finitely many poles in Imσ > −C ′, and the resolvent satisfies
non-trapping estimates there, which e.g. with s = 1 (which might need a reduction
in C ′ > 0) take the form

‖R(σ)f‖2L2 + |σ|−2‖dR(σ)f‖2L2 ≤ C ′′|σ|−2‖f‖2L2 .

The analogous result also holds on Kerr space-time if we suppress the Euclidean
end by a complex absorption.

Dropping the semiclassical absorption in X+, i.e. if we make Qσ supported only
in X−, we have6

Theorem 1.2. Let Pσ, β, Cs be as in Theorem 1.1, and let Qσ be an absorbing
operator supported in X− which is classically non-trapping. Let σ0 ∈ C, X s and Ys
as in Theorem 1.1. Then, Pσ − ıQσ : X s → Ys is an analytic family of Fredholm
operators on Cs, and has a meromorphic inverse,

R(σ) = (Pσ − ıQσ)−1,

4It does affect the location of the poles and corresponding resonant states of (Pσ − ıQσ)−1,

hence the constant in Theorem 1.4 has to be replaced by the appropriate resonant state and
exponential growth/decay, as in the second part of that theorem.

5This means that we require the stronger of Imσ > β−1
± (1/2−s) to hold in (1.2). If we perturb

Kerr-de Sitter space time, we need to increase the requirement on Imσ slightly, i.e. the size of the
half space has to be slightly reduced.

6Since we are not making a statement for almost real σ, semiclassical trapping, discussed in
the previous paragraph, does not matter.
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which for any ε > 0 is holomorphic in a translated sector in the upper half plane,
Imσ > C + ε|Reσ|. The poles of the resolvent are called resonances. In addition,
R(σ) satisfies non-trapping estimates, e.g. with s = 1,

‖R(σ)f‖2L2 + |σ|−2‖dR(σ)f‖2L2 ≤ C ′|σ|−2‖f‖2L2

in such a translated sector.

It is in this setting that Qσ could be replaced by working on a manifold with
boundary, with the boundary being space-like, essentially as a time level set men-
tioned above, since it is supported in X−.

Now we make the assumption that the only semiclassical trapping is due to
hyperbolic trapping with trapped set Γz, σ = h−1z, with hyperbolicity understood
as in the ‘Dynamical Hypotheses’ part of [61, Section 1.2], i.e.

in both the forward and backward directions, the bicharacteristics
from any point in the semiclassical characteristic set of Pσ either
enter the semiclassical elliptic set of Qσ at some finite time, or tend
to L± ∪ Γz.

We remark that just hyperbolicity of the trapped set suffices for the results of [61],
see Section 1.2 of that paper; however, if one wants stability of the results under
perturbations, one needs to assume that Γz is normally hyperbolic. We refer to [61,
Section 1.2] for a discussion of these concepts. We show in Section 6 that for black
holes satisfying (6.27) (so the angular momentum can be comparable to the mass)
the operators Qσ can be chosen so that they are supported in X− (even quite far
from Y ) and the hyperbolicity requirement is satisfied. Further, we also show that
for slowly rotating black holes the trapping is normally hyperbolic. Moreover, the
statement of (normally) hyperbolic trapping is purely a statement in Hamiltonian
dynamics, i.e. it is separate from the core subject of this paper (though of course
it has implications for the subject of this paper). It might be known for an even
larger range of rotation speeds, but the author is not aware of this.

Under this assumption, one can combine Theorem 1.1 with the results of Wunsch
and Zworski [61] about hyperbolic trapping and the gluing results of Datchev and
Vasy [15] to obtain a better result for the merely spatially localized (in the sense that
Qσ does not have support in X+, unlike in Theorem 1.1) problem, Theorem 1.2:

Theorem 1.3. Let Pσ, Qσ, β, Cs, X s and Ys be as in Theorem 1.2, and assume
that the only semiclassical trapping is due to hyperbolic trapping. Then,

Pσ − ıQσ : X s → Ys

is an analytic family of Fredholm operators on Cs, and has a meromorphic inverse,

R(σ) = (Pσ − ıQσ)−1,

which is holomorphic in an upper half plane, Imσ > C. Moreover, there exists
C ′ > 0 such that there are only finitely many poles in Imσ > −C ′, and the resolvent
satisfies polynomial estimates there as |σ| → ∞, |σ|κ, for some κ > 0, compared to
the non-trapping case, with merely a logarithmic loss compared to non-trapping for
real σ, e.g. with s = 1:

‖R(σ)f‖2L2 + |σ|−2‖dR(σ)f‖2L2 ≤ C ′′|σ|−2(log |σ|)2‖f‖2L2 .

Farther, there are approximate lattices of poles generated by the trapping, as
studied by Sá Barreto and Zworski in [47], and further by Bony and Häfner in [5],
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in the exact De Sitter-Schwarzschild and Schwarzschild settings, and in ongoing
work7 by Dyatlov in the exact Kerr-de Sitter setting.

Theorem 1.3 immediately and directly gives the asymptotic behavior of solutions
of the wave equation across the event horizon. Namely, the asymptotics of the
wave equation depends on the finite number of resonances; their precise behavior
depends on specifics of the space-time, i.e. on these resonances. This is true even
in arbitrarily regular b-Sobolev spaces – in fact, the more decay we want to show,
the higher Sobolev spaces we need to work in. Thus, a forteriori, this gives L∞

estimates. We state this formally as a theorem in the simplest case of slow rotation;
in the general case one needs to analyze the (finite!) set of resonances along the
reals to obtain such a conclusion, and for the perturbation part also to show normal
hyperbolicity (which we only show for slow rotation):

Theorem 1.4. Let Mδ be the partial compactification of Kerr-de Sitter space as

in Section 6, with τ the boundary defining function; thus, τ behaves like e−t̃ over
compact subsets of X+, where t̃ is the standard Kerr-de Sitter ‘time’ variable. Sup-
pose that g is either a slowly rotating Kerr-de Sitter metric, or a small perturbation
as a symmetric bilinear form on bTMδ. Then there exist C ′ > 0, κ > 0 such that
for 0 < ε < C ′ and s > 1/2 + βε solutions of �gu = f with f ∈ τ εHs−1+κ

b (Mδ)
vanishing in τ > τ0, and with u vanishing in τ > τ0, satisfy that for some constant
c0,

u− c0 ∈ τ εHs
b,loc(Mδ).

Here the norms of both c0 in C and u − c0 in τ εHs
b,loc(Mδ′) are bounded by those

of f in τ εHs−1+κ
b (Mδ) for δ′ < δ.

More generally, if g is a Kerr-de Sitter metric with hyperbolic trapping8, then
there exist C ′ > 0, κ > 0 such that for 0 < ` < C ′ and s > 1/2 + β` solutions of
�gu = f with f ∈ τ `Hs−1+κ

b (Mδ) vanishing in τ > τ0, and with u vanishing in
τ > τ0, satisfy that for some ajκ ∈ C∞(Xδ) (which are resonant states) and σj ∈ C
(which are the resonances),

u′ = u−
∑
j

∑
κ≤mj

τ ıσj (log |τ |)κajκ ∈ τ `Hs
b,loc(Mδ).

Here the (semi)norms of both ajκ in C∞(Xδ′) and u′ in τ `Hs
b,loc(Mδ′) are bounded

by that of f in τ `Hs−1+κ
b (Mδ) for δ′ < δ. The same conclusion holds for sufficiently

small perturbations of the metric as a symmetric bilinear form on bTMδ provided
the trapping is normally hyperbolic.

In special geometries (without the ability to add perturbations) such decay has
been described by delicate separation of variables techniques, again see Bony-Häfner
[5] in the De Sitter-Schwarzschild and Schwarzschild settings, but only away from
the event horizons, and by Dyatlov [20, 19] in the Kerr-de Sitter setting. Thus,
in these settings, we recover in a direct manner Dyatlov’s result across the event
horizon [19], modulo a knowledge of resonances near the origin contained in [20]. In
fact, for small angular momenta one can use the results from de Sitter-Schwarzschild
space directly to describe these finitely many resonances, as exposed in the works
of Sá Barreto and Zworski [47], Bony and Häfner [5] and Melrose, Sá Barreto and
Vasy [40], since 0 is an isolated resonance with multiplicity 1 and eigenfunction

7This has been completed after the original version of this manuscript, see [21].
8This is shown in Section 6 when (6.27) is satisfied.
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1; this persists under small deformations, i.e. for small angular momenta. Thus,
exponential decay to constants, Theorem 1.4, follows immediately.

One can also work with Kerr space-time, apart from issues of analytic continu-
ation. By using weighted spaces and Melrose’s results from [39] as well as those of
Vasy and Zworski in the semiclassical setting [57], one easily gets an analogue of
Theorem 1.2 in Imσ > 0, with smoothness and the almost non-trapping estimates
corresponding to those of Wunsch and Zworski [61] down to Imσ = 0 for |Reσ|
large. Since a proper treatment of this would exceed the bounds of this paper, we
refrain from this here. Unfortunately, even if this analysis were carried out, low
energy problems would still remain, so the result is not strong enough to deduce
the wave expansion. As already alluded to, Kerr space-time has features of both
Minkowski and de Sitter space-times; though both of these fit into our framework,
they do so in different ways, so a better way of dealing with the Kerr space-time,
namely adapting our methods to it, requires additional work.

While de Sitter-Schwarzschild space (the special case of Kerr-de Sitter space
with vanishing rotation), via the same methods as those on de Sitter space which
give rise to the hyperbolic Laplacian and its continuation across infinity, gives rise
essentially to the Laplacian of a conformally compact metric, with similar structure
but different curvature at the two ends (this was used by Melrose, Sá Barreto and
Vasy [40] to do analysis up to the event horizon there), the analogous problem for
Kerr-de Sitter is of edge-type in the sense of Mazzeo’s edge calculus [38] apart from
a degeneracy at the poles corresponding to the axis of rotation, though it is not
Riemannian. Note that edge operators have global properties in the fibers; in this
case these fibers are the orbits of rotation. A reasonable interpretation of the ap-
pearance of this class of operators is that the global properties in the fibers capture
non-constant (or non-radial) bicharacteristics (in the classical sense) in the conor-
mal bundle of the event horizon, and also possibly the (classical) bicharacteristics
entering X+. This suggests that the methods of Melrose, Sá Barreto and Vasy [40]
would be much harder to apply in the presence of rotation.

It is important to point out that the results of this paper are stable under small
C∞ perturbations9 of the Lorentzian metric on the b-cotangent bundle at the cost of
changing the function spaces slightly; this follows from the estimates being stable in
these circumstances. Note that the function spaces depend on the principal symbol
of the operator under consideration, and the range of σ depends on the subprincipal
symbol at the conormal bundle of the event horizon; under general small smooth
perturbations, defining the spaces exactly as before, the results remain valid if the
range of σ is slightly restricted.

In addition, the method is stable under gluing: already Kerr-de Sitter space be-
haves as two separate black holes (the Kerr and the de Sitter end), connected by
semiclassical dynamics; since only one component (say Σ~,+) of the semiclassical
characteristic set moves far into X+, one can easily add as many Kerr black holes
as one wishes by gluing beyond the reach of the other component, Σ~,−. Theo-
rems 1.1 and 1.2 automatically remain valid (for the semiclassical characteristic set
is then irrelevant), while Theorem 1.3 remains valid provided that the resulting
dynamics only exhibits mild trapping (so that compactly localized models have at

9Certain kinds of perturbations conormal to the boundary, in particular polyhomogeneous
ones, would only change the analysis and the conclusions slightly.
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most polynomial resolvent growth), such as normal hyperbolicity, found in Kerr-de
Sitter space.

Since the specifics of Kerr-de Sitter space-time are, as already mentioned, irrel-
evant in the microlocal approach we take, we start with the abstract microlocal
discussion in Section 2, which is translated into the setting of the wave equation on
manifolds with a Lorentzian b-metric in Section 3, followed by the description of de
Sitter, Minkowski and Kerr-de Sitter space-times in Sections 4, 5 and 6. In order
to streamline the arguments, we present results for C− < Imσ < C+ in Sections 2
and 3; then in the final Section 7 we describe what happens when the upper bound
is dropped on Imσ. The more general result allowing Imσ large is convenient, and
results in easier to state and somewhat stronger main theorems (though arguably
the main point of all our results is what happens for Imσ in a bounded interval),
but in order to minimize the additional complications it causes, it is is moved to
its own separate section at the end of the paper. Theorems 1.1-1.4 are proved in
Section 6 by showing that they fit into the abstract framework of Section 2; the
approach is completely analogous to de Sitter and Minkowski spaces, where the fact
that they fit into the abstract framework is shown in Sections 4 and 5. As another
option, we encourage the reader to read the discussion of de Sitter space first, which
also includes the discussion of conformally compact spaces, presented in Section 4,
as well as Minkowski space-time presented in the section afterwards, to gain some
geometric insight, then the general microlocal machinery, and finally the Kerr dis-
cussion to see how that space-time fits into our setting. Finally, if the reader is
interested how conformally compact metrics fit into the framework and wants to
jump to the relevant calculation, a reasonable place to start is Subsection 4.9. We
emphasize that for the conformally compact Riemannian results, only Section 2
and Section 4.4-4.9, starting with the paragraph of (4.9), are strictly needed.

2. Microlocal framework

We now develop a setting which includes the geometry of the ‘spatial’ model of de
Sitter space near its ‘event horizon’, as well as the model of Kerr and Kerr-de Sitter
settings near the event horizon, and the model at infinity for Minkowski space-time
near the light cone (corresponding to the adjoint of the problem described below in
the last case). As a general reference for microlocal analysis, we refer to [32], while
for semiclassical analysis, we refer to [17, 63]; see also [48] for the high-energy (or
large parameter) point of view.

2.1. Notation. We recall the basic conversion between these frameworks. First,
Sk(Rp;R`) is the set of C∞ functions on Rpz × R`ζ satisfying uniform bounds

|Dα
zD

β
ζ a| ≤ Cαβ〈ζ〉k−|β|, α ∈ Np, β ∈ N`.

If O ⊂ Rp and Γ ⊂ R`ζ are open, we define Sk(O; Γ) by requiring10 these estimates

to hold only for z ∈ O and ζ ∈ Γ. We also let S−∞ = ∩kSk; this is the same as a
uniformly bounded (with all derivatives) z-dependent family of Schwartz functions
in ζ (in the cone Γ). The class of classical (or one-step polyhomogeneous) symbols is

10Another possibility would be to require uniform estimates on compact subsets; this makes
no difference here.
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the subset Skcl(Rp;R`) of Sk(Rp;R`) consisting of symbols possessing an asymptotic
expansion

a(z, rω) ∼
∑

aj(z, ω)rk−j ,

where aj ∈ C∞(Rp × S`−1). Then on Rnz , pseudodifferential operators A ∈ Ψk(Rn)
are of the form

A = Op(a); Op(a)u(z) = (2π)−n
∫
Rn
ei(z−z

′)·ζa(z, ζ)u(z′) dζ dz′,

u ∈ S(Rn), a ∈ Sk(Rn;Rn);

understood as an oscillatory integral. Classical pseudodifferential operators, A ∈
Ψk

cl(Rn), form the subset where a is a classical symbol. The principal symbol σk(A)
of A ∈ Ψk(Rn) is the equivalence class [a] of a in Sk(Rn;Rn)/Sk−1(Rn;Rn). For
classical a, one can instead consider a0(z, ω)rk as the principal symbol; it is a C∞
function on Rn × (Rn \ {0}), which is homogeneous of degree k with respect to the
R+-action given by dilations in the second factor, Rn\{0}. An operator A ∈ Ψk(Rn)
is elliptic at (z, ζ) ∈ Rn×(Rn\{0}) if (z, ζ) has a conic (i.e. invariant under dilations
in the second factor) neighborhood O×Γ such that ((1−χ)a−1)|O×Γ ∈ S−k where
χ has compact support, or equivalently a is invertible for large ζ in this cone with
symbolic bounds in S−k for this inverse there. This notion is unchanged if a symbol
in Sk−1 is added to a, i.e. is a property of the principal symbol. The set of elliptic
points is denoted ellk(A), or just ell(A) if the order is understood. For classical
symbols a, this simply means a0(z, ω) 6= 0 where ζ = rω, r > 0. The wave front set
WF′(A) is a closed conic (i.e. invariant under dilations in the second factor) subset
of Rn × (Rn \ {0}); a point (z, ζ) is not in WF′(A) if it has a conic neighborhood
O× Γ, restricted to which a is in S−∞ (i.e. Schwartz). For classical symbols a this
means that all the aj (not merely a0) vanish on such a neighborhood.

Differential operators on Rn form the subset of Ψ(Rn) in which a is polynomial
in the second factor, Rnζ , so locally

A =
∑
|α|≤k

aα(z)Dα
z , σk(A) =

∑
|α|=k

aα(z)ζα.

If X is a manifold, one can transfer these definitions to X by localization and
requiring that the Schwartz kernels are C∞ right densities (i.e. densities in the
right, or second, factor of X × X) away from the diagonal in X2 = X × X; then
σk(A) is in Sk(T ∗X)/Sk−1(T ∗X), resp. Skhom(T ∗X \ o) when A ∈ Ψk(X), resp.
A ∈ Ψk

cl(X); here o is the zero section, and hom stands for symbols homogeneous
with respect to the R+ action, while WF′(A) is a conic subset of T ∗X \ o, or
equivalently a subset of S∗X = (T ∗X \ o)/R+. If A is a differential operator, then
the classical (or homogeneous) version of the principal symbol is a homogeneous
polynomial in the fibers of the cotangent bundle of degree k. We can also work
with operators depending on a parameter λ ∈ O by replacing a ∈ Sk(Rn;Rn) by
a ∈ Sk(Rn × O;Rn), with Op(aλ) ∈ Ψk(Rn) smoothly dependent on λ ∈ O. For
differential operators, aα would simply depend smoothly on the parameter λ.

It is often convenient to work with the fiber-radial compactification T
∗
X of T ∗X,

in particular when discussing semiclassical analysis; see for instance [39, Sections 1
and 5]. This is a ball-bundle over X, with fiber being the radial compactification
of the vector space T ∗zX as a closed ball. Thus, S∗X should be considered as the

boundary of T
∗
X. When one is working with homogeneous objects, as is the case
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in classical microlocal analysis, one can think of S∗X as (T
∗
X \ o)/R+, but this is

not a useful point of view in semiclassical analysis11. Thus, if ρ̃ is a non-vanishing
homogeneous degree −1 function on T ∗X \ o, it is a defining function of S∗X in

T
∗
X \o; if the homogeneity requirement is dropped it can be modified near the zero

section to make it a defining function of S∗X in T
∗
X. The principal symbol a of

A ∈ Ψk
cl(X) is a homogeneous degree k function on T ∗X \o, so ρ̃ka is homogeneous

degree 0 there, thus are smooth functions12 on T
∗
X near its boundary, S∗X, and

in particular on S∗X. Moreover, Ha is homogeneous degree k− 1 on T ∗X \ o, thus

ρ̃k−1Ha a smooth vector field tangent to the boundary on T
∗
X (defined near the

boundary), and in particular induces a smooth vector field on S∗X.
The large parameter, or high energy, version of Ψk(Rn), with the large parameter

denoted by σ, is that

A(σ) = Op(σ)(a), Op(σ)(a)u(z) = (2π)−n
∫
Rn
ei(z−z

′)·ζa(z, ζ, σ)u(z′) dζ dz′,

u ∈ S(Rn), a ∈ Sk(Rn;Rnζ × Ωσ),

where Ω ⊂ C, with C identified with R2; thus there are joint symbol estimates in ζ
and σ. The high energy principal symbol now should be thought of as an equivalence
class of functions on Rnz×Rnζ ×Ωσ, or invariantly on T ∗X×Ω. Differential operators
with polynomial dependence on σ now take the form

(2.1) A(σ) =
∑

|α|+j≤k

aα,j(z)σ
jDα

z , σ
(σ)
k (A) =

∑
|α|+j=k

aα,j(z)σ
jζα.

Note that the principal symbol includes terms that would be subprincipal with A(σ)

considered as a differential operator for a fixed value of σ.
The semiclassical operator algebra13, Ψ~(Rn), is given by

Ah = Op~(a); Op~(a)u(z) = (2πh)−n
∫
Rn
ei(z−z

′)·ζ/ha(z, ζ, h)u(z′) dζ dz′,

u ∈ S(Rn), a ∈ C∞([0, 1)h;Sk(Rnz ;Rnζ ));

its classical subalgebra, Ψ~,cl(Rn) corresponds to a ∈ C∞([0, 1)h;Skcl(Rn;Rnζ )). The

semiclassical principal symbol is now σ~,k(A) = a|h=0 ∈ Sk(T ∗X); the ‘standard’
principal symbol is still the equivalence class of a in C∞([0, 1)h;Sk/Sk−1), or an
element of C∞([0, 1)h;Skhom) in the classical setting. There are natural extensions
to manifolds X.

11In fact, even in classical microlocal analysis it is better to keep at least a ‘shadow’ of the
interior of S∗X by working with T ∗X \ o considered as a half-line bundle over S∗X with homoge-

neous objects on it; this keeps the action of the Hamilton vector field on the fiber-radial variable,

i.e. the defining function of S∗X in T
∗
X, non-trivial, which is important at radial points, which

in turn play a central role below.
12This depends on choices unless k = 0; they are naturally sections of a line bundle that

encodes the differential of the boundary defining function at S∗X. However, the only relevant
notion here is ellipticity, and later the Hamilton vector field up to multiplication by a positive
function, which is independent of choices. In fact, we emphasize that all the requirements in

Subsection 2.2 listed for p, q and later p~,z and q~,z , except possibly (2.5)-(2.6), are also fulfilled
if Pσ − ıQσ is replaced by any smooth positive multiple, so one may factor out positive factors at

will. This is useful in the Kerr-de Sitter space discussion. For (2.5)-(2.6), see Footnote 19.
13We adopt the convention that ~ denotes semiclassical objects, while h is the actual semiclas-

sical parameter.
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Here it is particularly instructive to consider the compactified point of view.
Thus, for A ∈ Ψ0

~,cl(X), the corresponding a is a smooth function on [0, 1)h ×
T
∗
X. The two principal symbols are just the restrictions of this function to the

two boundary hypersurfaces, namely {0} × T ∗X and [0, 1)h × ∂T
∗
X = [0, 1)h ×

S∗X; note the compatibility at the corner {0} × S∗X. Ellipticity as well as the
wave front set are then naturally defined on this fiber-compactified space, namely

ell~(A) and WF′~(A) are subsets of ∂([0, 1)h × T
∗
X) = {0} × T ∗X ∪ [0, 1)h × S∗X,

in the case of ell~(A) given by the non-vanishing of a|∂([0,1)h×T
∗
X), while in the

case of the complement of WF′~(A), there being a neighborhood in [0, 1)h × T
∗
X

restricted to which a vanishes to infinite order at both boundary hypersurfaces
(away from the corner, only one of the hypersurfaces would intersect sufficiently
small neighborhoods, so this is the only relevant information). If A ∈ Ψk

~,cl(X),

then with ρ̃ as above one can replace a by ρ̃ka for this discussion, see Footnote 12.

Even if A is non-classical, restriction of a to U \ [0, 1)h × ∂T
∗
X ⊂ [0, 1)h × T ∗X,

U a neighborhood of a point in question in ∂([0, 1)h × T
∗
X), can be used to define

ell~(A) and WF′~(A) in a completely analogous manner. One can also define the
semiclassical wavefront set of a distribution relative to a Sobolev space hrHs

~(X),

namely a point α ∈ ∂([0, 1)h×T
∗
X) is not in WFs,rh (uh) of a polynomially bounded

family {uh}h∈(0,1) (i.e. hNuh ∈ H−N~ (X) for some N) if there exists A ∈ Ψ0
~(X)

elliptic at α with {Ahuh}h∈(0,1) ∈ hrHs
~(X).

We can again add an extra parameter λ ∈ O, so a ∈ C∞([0, 1)h;Sk(Rn×O;Rnζ ));

then in the invariant setting the principal symbol is a|h=0 ∈ Sk(T ∗X × O). Note

that if A(σ) = Op(σ)(a) is a classical operator with a large parameter, then for
λ ∈ O ⊂ C, O compact, 0 /∈ O,

hk Op(h−1λ)(a) = Op~(ã), ã(z, ζ, h) = hka(z, h−1ζ, h−1λ),

and ã ∈ C∞([0, 1)h;Skcl(Rn × Oλ;Rnζ )). The converse is not quite true: roughly

speaking, the semiclassical algebra is a blow-up14 of the large parameter algebra;
to obtain an equivalence, we would need to demand in the definition of the large
parameter algebra merely that a ∈ Sk(Rn; [Rnζ × Ωσ; ∂Rnζ × {0}]), so in particular

for bounded σ, a is merely a family of symbols depending smoothly on σ (not
jointly symbolic); we do not discuss this here further. Note, however, that it is
the (smaller, i.e. stronger) large parameter algebra that arises naturally when one
Mellin transforms in the b-setting, see Subsection 3.1.

14If X is a manifold with corners and Z is a product-type, or p-, submanifold, i.e. there are

local coordinates x1, . . . , xl, y1, . . . , yn−l near p ∈ Z in which X is given by x1 ≥ 0, . . . , xl ≥ 0,
and Z is given by the vanishing of some of the xj and some of the yi, then one can blow up

Z in X to obtain a new manifold with corners, [X;Z]. This is a space that is identical to X

away from Z and in which Z is replaced by the front face ff of the blow up, namely the inward
pointing spherical normal bundle, S+NZ, of Z in X. The space comes with a C∞ blow-down map

β : [X;Z] → X which is thus a diffeomorphism away from ff. Roughly, the blow-up amounts to
introducing cylindrical coordinates around Z: directions tangent to Z are unaffected, but those

normal to Z are, and one is distinguishing directions of approach to Z modulo TZ; recall that

NpZ = TpX/TpZ. One can easily write down projective local coordinates on this space. We refer
to the Appendix of [39] for a concise but more detailed description, and to [43, Section 4] for a

more leasurely discussion in a special case.
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Differential operators now take the form

(2.2) Ah,λ =
∑
|α|≤k

aα(z, λ;h)(hDz)
α.

Such a family has two principal symbols, the standard one (but taking into account
the semiclassical degeneration, i.e. based on (hDz)

α rather thanDα
z ), which depends

on h and is homogeneous, and the semiclassical one, which is at h = 0, and is not
homogeneous:

σk(Ah,λ) =
∑
|α|=k

aα(z, λ;h)ζα,

σ~(Ah,λ) =
∑
|α|≤k

aα(z, λ; 0)ζα.

However, the restriction of σk(Ah,λ) to h = 0 is the principal part of σ~(Ah,λ).
In the special case in which σk(Ah,λ) is independent of h (which is true in the
setting considered below), one can simply regard the usual principal symbol as the
principal part of the semiclassical symbol. Note that for A(σ) as in (2.1),

hkA(h−1λ) =
∑

|α|+j≤k

hk−j−|α|aα,j(z)λ
j(hDz)

α,

which is indeed of the form (2.2), with polynomial dependence on both h and λ.
Note that in this case the standard principal symbol is independent of h and λ.

2.2. General assumptions. Let X be a compact manifold and ν a smooth non-
vanishing density on it; thus L2(X) is well-defined as a Hilbert space (and not
only up to equivalence). We consider operators Pσ ∈ Ψk

cl(X) on X depending
on a complex parameter σ, with the dependence being analytic (thus, if Pσ is a
differential operator, the coefficients depend analytically on σ). We also consider
a complex absorbing ‘potential’, Qσ ∈ Ψk

cl(X), defined for σ ∈ Ω, Ω ⊂ C is open.
It can be convenient to take Qσ formally self-adjoint, which is possible when Qσ
is independent of σ, but this is inconvenient when one wants to study the large σ
(i.e. semiclassical) behavior. The operators we study are Pσ − ıQσ and P ∗σ + ıQ∗σ;
P ∗σ depends on the choice of the density ν.

Typically we shall be interested in Pσ on an open subset U of X, and have Qσ
supported in the complement of U , such that over some subset K of X \ U , Qσ is
elliptic on the characteristic set of Pσ. In the Kerr-de Sitter setting, we would have
X+ ⊂ U . However, this is not part of the general set-up.

Since there are a number of ingredients we need to describe, we start by giving
an example for the reader to keep in mind; we state this in a slightly simpler form
which means that it is only a valid example in strips | Imσ| < C. This is a slight
simplification of the model in the case of the extension of the ‘conjugated’ Laplacian
on hyperbolic space across its boundary, see (4.9); indeed, it is essentially a special
case of the generalization described in (4.24) up to changing σ by a constant factor,
and removing σ2, as one can do by an appropriate (smooth) conjugation in the
strip | Imσ| < C. Thus, on the space (−1, 1)µ × Tn−2

y (so the total dimension is
n− 1) consider

Pσ = DµµDµ − σDµ +

n−2∑
j=1

D2
yj ,
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which is formally self-adjoint relative to the density |dµ dy| when σ is real. Thus,

pfull = µξ2 − σξ + |η|2y.
Here (−1, 1) is non-compact, but may be replaced by a circle, and then adding
complex absorption Qσ near µ = ±1 to make the problem elliptic there would
place it in our framework completely. Notice that the σDµ term does not affect
the standard principal symbol, as it is subprincipal, but nonetheless plays a major
role in the solvability of the PDE, in particular in the function spaces that must be
used. Indeed, the distributions (µ± ı0)ıσ are annihilated by Pσ on (−1, 1)µ×Tn−2

y ,

and the Sobolev space H1/2−Imσ which barely fails to contain these distributions
is borderline for solvability properties. This is a point we explain in Subsection 2.4,
where the microlocal estimates at radial points are shown, and in Subsection 2.6,
where these are used to obtain actual solvability results. Note that this operator
is rather different from the Tricomi operator D2

µ + µD2
y. Tricomi operators do not

have radial points, as is easily verified.
We now return to discussing the general setup. We assume that the principal

symbol p, resp. q, of Pσ, resp. Qσ, are real, are independent of σ, p = 0 implies
dp 6= 0. We assume that the characteristic set of Pσ is of the form

Σ = Σ+ ∪ Σ−, Σ+ ∩ Σ− = ∅,
Σ± are15 relatively open16 in Σ, and

∓q ≥ 0 near Σ±.

We assume that there are conic submanifolds Λ± ⊂ Σ± of T ∗X \ o, outside which
the Hamilton vector field Hp is not radial, and to which the Hamilton vector field
Hp is tangent, and

WF′(Qσ) ∩ Λ± = ∅.
Here Λ± are typically Lagrangian, but this is not needed17. The properties we want
at Λ± are (probably) not stable under general smooth perturbations; the perturba-
tions need to have certain properties at Λ±. However, the estimates we then derive
are stable under such perturbations. First, we want that for a homogeneous degree
−1 defining function ρ̃ of S∗X near L±, the image of Λ± in S∗X,

(2.3) ρ̃k−2Hpρ̃|L± = ∓β0, β0 ∈ C∞(L±), β0 > 0.

Next, we require the existence of a non-negative homogeneous degree zero qua-
dratic defining function ρ0 of Λ± within Σ (i.e. the restriction of ρ0 to Σ vanishes
quadratically at Λ±, and is non-degenerate) and β1 > 0 such that, restricted to Σ,

(2.4) ∓ρ̃k−1Hpρ0 − β1ρ0

is ≥ 0 modulo18 cubic vanishing terms at Λ±. Under these assumptions, L− is a
source and L+ is a sink for the Hp-dynamics within Σ in the sense that nearby
bicharacteristics tend to L± as the parameter along the bicharacteristic goes to

15Unfortunately the sign convention here is the opposite of that adopted in the more expository
paper, [54].

16Thus, they are connected components in the extended sense that they may be empty.
17An extreme example would be Λ± = Σ±. Another extreme is if one or both are empty.
18The precise behavior of ∓ρ̃k−1Hpρ0, or of linear defining functions, is irrelevant, because

we only need a relatively weak estimate. It would be relevant if one wanted to prove Lagrangian

regularity.
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±∞. Finally, we assume that the imaginary part of the subprincipal symbol at Λ±,
which is the symbol of 1

2ı (Pσ − P ∗σ ) ∈ Ψk−1
cl (X) as p is real, is19

(2.5) ±β̃β0(Imσ)ρ̃−k+1, β̃ ∈ C∞(L±),

β̃ is positive along L±, and write

(2.6) βsup = sup β̃, βinf = inf β̃ > 0.

If β̃ is a constant, we may write

(2.7) β = βinf = βsup.

The results take a little nicer form in this case since depending on various signs,
sometimes βinf and sometimes βsup is the relevant quantity.
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Figure 1. The components Σ± of the characteristic set in the
cosphere bundle S∗X. The submanifolds L± are points here, with
L− a source, L+ a sink. The thin lined parabolic regions near the
edges show the absorbing region, i.e. the support of q. For Pσ −
ıQσ,the estimates are always propagated away from L± towards
the support of q, so in the direction of the Hamilton flow in Σ−, and
in the direction opposite of the Hamilton flow in Σ+; for P ∗σ + ıQ∗σ,
the directions are reversed. See also Footnote 15.

We make the following non-trapping assumption. For α ∈ S∗X, let γ+(α), resp.
γ−(α) denote the image of the forward, resp. backward, half-bicharacteristic from
α. We write γ±(α)→ L± (and say γ±(α) tends to L±) if given any neighborhood
O of L±, γ±(α) ∩ O 6= ∅; by the source/sink property this implies that the points
on the curve are in O for sufficiently large (in absolute value) parameter values. We

19If Hp is radial at L±, this is independent of the choice of the density ν. Indeed, with respect

to fν, the adjoint of Pσ is f−1P ∗σf , with P ∗σ denoting the adjoint with respect to ν. This is

P ∗σ + f−1[P ∗σ , f ], and the principal symbol of f−1[P ∗σ , f ] ∈ Ψk−1
cl (X) vanishes at L± as Hpf = 0.

In general, we can only change the density by factors f with Hpf |L± = 0, which in Kerr-de Sitter

space-times would mean factors independent of φ at the event horizon. A similar argument shows
the independence of the condition from the choice of f when one replaces Pσ by fPσ , under the

same conditions: either radiality, or just Hpf |L± = 0.
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assume that, with ell(Qσ) denoting the elliptic set of Qσ,

(2.8)

α ∈ Σ− \ L− ⇒
(
γ−(α)→ L− or γ−(α) ∩ ell(Qσ) 6= ∅

)
and γ+(α) ∩ ell(Qσ) 6= ∅,

α ∈ Σ+ \ L+ ⇒
(
γ+(α)→ L+ or γ+(α) ∩ ell(Qσ) 6= ∅

)
and γ−(α) ∩ ell(Qσ) 6= ∅.

That is, all forward and backward half-(null)bicharacteristics of Pσ either enter the
elliptic set of Qσ, or go to Λ±, i.e. L± in S∗X. The point of the assumptions
regarding Qσ and the flow is that we are able to propagate estimates forward near
where q ≥ 0, backward near where q ≤ 0, so by our hypotheses we can always
propagate estimates for Pσ − ıQσ from Λ± towards the elliptic set of Qσ, and also
if both ends of a bicharacteristic go to the elliptic set of Qσ then we can propagate
the estimates from one of the directions. On the other hand, for P ∗σ + ıQ∗σ, we can
propagate estimates from the elliptic set of Qσ towards Λ±, and again if both ends
of a bicharacteristic go to the elliptic set of Qσ then we can propagate the estimates
from one of the directions. This behavior of Pσ − ıQσ vs. P ∗σ + ıQ∗σ is important
for duality reasons.

Remark 2.1. For simplicity of notation we have not considered vector bundles on
X. However, if E is a vector bundle on X with a positive definite inner product on
the fibers and Pσ, Qσ ∈ Ψk

cl(X;E) with scalar principal symbol p and q, and in case

of Pσ the imaginary part of the subprincipal symbol is of the form (2.5) with β̃ a
bundle-endomorphism satisfying an inequality in (2.6) as a bundle endomorphism,
the arguments we present go through.

2.3. Elliptic and real principal type points. We now turn to analysis. First,
by the usual elliptic theory, on the elliptic set of Pσ − ıQσ, so both on the elliptic
set of Pσ and on the elliptic set of Qσ, one has elliptic estimates20: for all s and N ,
and for all B,G ∈ Ψ0(X) with G elliptic on WF′(B), Pσ − ıQσ elliptic on WF′(B),

(2.9) ‖Bu‖Hs ≤ C(‖G(Pσ − ıQσ)u‖Hs−k + ‖u‖H−N ),

with the estimate also holding21 for P ∗σ + ıQ∗σ. By propagation of singularities22, in
Σ\ (WF′(Qσ)∪L+∪L−), one can propagate regularity estimates either forward or

20Our convention in estimates such as (2.9) and (2.10) is that if one assumes that all the

quantities on the right hand side are in the function spaces indicated by the norms then so is the

quantity on the left hand side, and the estimate holds. As we see below, at Λ± not all relevant
function space statements appear in the estimate, so we need to be more explicit there.

21These estimates follow immediately from the microlocal elliptic parametrix construction.
Alternatively, they follow from microlocal elliptic regularity plus the closed graph theorem, as
used below in the real principal type setting.

22See e.g. [32, Theorem 26.1.4] for the standard statement, and see the proof of [32, The-
orem 26.1.6] for turning this into an estimate. Concretely, with the notation below, we may

assume −N < s, and one has by the standard form of the theorem that if u ∈ H−N , Au ∈ Hs,
GPσu ∈ Hs−k+1, then Bu ∈ Hs. Let Z be the Hilbert space of distributions u ∈ H−N

with Au ∈ Hs, GPσu ∈ Hs−k+1 with norm ‖u‖2Z = ‖u‖2
H−N

+ ‖Au‖2Hs + ‖GPσu‖2. Then

B : Z → H−N is continuous, since it is already continuous H−N → H−N , and it takes values in

Hs by the standard version of the propagation of singularities. Thus, if uj → u in Z and Buj → v

in Hs, then Buj → Bu in H−N , so v = Bu and thus v ∈ RanB, so the graph of B : Z → Hs is
closed, so it is continuous, giving (2.10) below. However, this is a rather round about argument,
since propagation of singularities is typically proved by positive commutator estimates (cf. the

proofs of Propositions 2.3-2.4 below); these are microlocal so would need to pieced together to



MICROLOCAL ASYMPTOTICALLY HYPERBOLIC AND KERR-DE SITTER 21

backward along bicharacteristics, i.e. for all s and N , and for all A,B,G ∈ Ψ0(X)
such that WF′(G) ∩WF′(Qσ) = ∅, and forward (or backward) bicharacteristics
from WF′(B) reach the elliptic set of A, while remaining in the elliptic set of G,
one has estimates

(2.10) ‖Bu‖Hs ≤ C(‖GPσu‖Hs−k+1 + ‖Au‖Hs + ‖u‖H−N ).

Here Pσ can be replaced by Pσ − ıQσ or P ∗σ + ıQ∗σ by the condition on WF′(G);
namely GQσ ∈ Ψ−∞(X), and can thus be absorbed into the ‖u‖H−N term. As
usual, there is a loss of one derivative compared to the elliptic estimate, i.e. the
assumption on Pσu is Hs−k+1, not Hs−k, and one needs to make Hs assumptions
on Au, i.e. regularity propagates.

Remark 2.2. We remark here that in the various estimates in Subsections 2.3-2.5,
though the error terms are stated globally as ‖u‖H−N , in fact can be localized to
any neighborhood U of a set K ⊂ X if suppG ⊂ K ×K, with a similar property
for the other pseudodifferential operators other than Pσ, Qσ in the statement, while
Pσ, Qσ are supported sufficiently close to the diagonal (depending on U), or if, say,
Qσ is supported in (X \U)× (X \U). This observation is mostly of interest in the
setting of the localized wave equation behavior discussed in Subsection 3.3.

2.4. Analysis near Λ±. At Λ±, for s ≥ m > (k − 1)/2 − β Imσ, β given by the
subprincipal symbol at Λ±, we can propagate estimates away from Λ±:

Proposition 2.3. For Imσ ≥ 0, let23 β = βinf , for Imσ < 0, let β = βsup. For
all N , for s ≥ m > (k− 1)/2− β Imσ, and for all A,B,G ∈ Ψ0(X) such that A,G
are elliptic at Λ±, and forward (or backward) bicharacteristics from WF′(B) tend
to Λ±, with closure in the elliptic set of G, one has estimates

(2.11) ‖Bu‖Hs ≤ C(‖GPσu‖Hs−k+1 + ‖Au‖Hm + ‖u‖H−N ),

in the sense that if u ∈ H−N , Au ∈ Hm and GPσu ∈ Hs−k+1, then Bu ∈ Hs, and
(2.11) holds. In fact, Au can be dropped from the right hand side (but one must
assume Au ∈ Hm):

(2.12) Au ∈ Hm ⇒ ‖Bu‖Hs ≤ C(‖GPσu‖Hs−k+1 + ‖u‖H−N ),

where u ∈ H−N and GPσu ∈ Hs−k+1 is considered implied by the right hand side.
Note that Au does not appear on the right hand side, hence the display before the
estimate.

This is completely analogous to Melrose’s estimates in asymptotically Euclidean
scattering theory at the radial sets [39, Section 9]. Note that the Hs regularity
of Bu is ‘free’ in the sense that we do not need to impose Hs assumptions on u
anywhere; merely Hm at Λ± does the job; of course, on Pσu one must make the
Hs−k+1 assumption, i.e. the loss of one derivative compared to the elliptic setting.

At the cost of changing regularity, one can propagate estimate towards Λ±.
Keeping in mind that for P ∗σ the subprincipal symbol becomes βσ, we have the
following:

prove (2.10); using the standard propagation of singularities avoids the explicit ‘piecing together’

at the cost of invoking, somewhat superfluously, the closed graph theorem.
23Note that this is consistent with (2.7).
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Proposition 2.4. For Imσ > 0, let24 β = βsup, for Imσ ≤ 0, let β = βinf . For
s < (k − 1)/2 + β Imσ, for all N , and for all A,B,G ∈ Ψ0(X) such that B,G are
elliptic at Λ±, and forward (or backward) bicharacteristics from WF′(B)\Λ± reach
ell(A), while remaining in the elliptic set of G, one has estimates

(2.13) ‖Bu‖Hs ≤ C(‖GP ∗σu‖Hs−k+1 + ‖Au‖Hs + ‖u‖H−N ).

Both of Propositions 2.3-2.4 are stated globally in Λ± in view of the ellipticity
requirements. In fact, after the original version of this paper became available, the
work of Haber and Vasy [29] showed that one can localize even within Λ± if the
latter is a Lagrangian manifold of radial points; we do not need this in the present
paper. The paper [29, Section 3] treats the proof in great detail, and the arguments
presented there are directly applicable in the current more general setting, with the
microlocalizers used here, so it can be used as an additional reference.

Proof of Propositions 2.3-2.4. It suffices to prove that there exist Oj open with
L± ⊂ Oj+1 ⊂ Oj , ∩∞j=1Oj = L±, and Aj , Bj , Gj with WF′ in Oj , Bj elliptic on

L±, and in case of Proposition 2.4 such that WF′(Aj) ∩ Λ± = ∅, such that the
statements of the propositions hold. Indeed, in case of Proposition 2.3 the general
case follows by taking j such that A,G are elliptic on Oj , use the estimate for
Aj , Bj , Gj , where the right hand side then can be estimated by A and G, and then
use microlocal ellipticity, propagation of singularities and a covering argument to
prove the proposition. In case of Proposition 2.4, the general case follows by taking j
such that G,B are elliptic on Oj , so all forward (or backward) bicharacteristics from
Oj \ Λ± reach ell(A), thus microlocal ellipticity, propagation of singularities and a
covering argument proves ‖Aju‖Hs ≤ C(‖GP ∗σu‖Hs−k+1 +‖Au‖Hs +‖u‖H−N ), and
then the special case of the proposition for this Oj gives an estimate for ‖Bju‖Hs
in terms of the same quantities. The full estimate for ‖Bu‖Hs is then again a
straightforward consequence of microlocal ellipticity, propagation of singularities
and a covering argument.

We now consider commutants C∗εCε with Cε ∈ Ψs−(k−1)/2−δ(X) for ε > 0,
uniformly bounded in Ψs−(k−1)/2(X) as ε → 0; with the ε-dependence used to
regularize the argument25. More precisely, let26

c = φ(ρ0)φ0(p0)ρ̃−s+(k−1)/2, cε = c(1 + ερ̃−1)−δ, p0 = ρ̃kp,

where φ0 ∈ C∞c (R) identically 1 near 0, φ ∈ C∞c (R) is identically 1 near 0, φ′ ≤ 0
on [0,∞) and φ is supported sufficiently close to 0 so that

(2.14) α ∈ supp d(φ ◦ ρ0) ∩ Σ⇒ ∓(ρ̃k−1Hpρ0)(α) > 0;

such φ exists by (2.4). Note that the sign of Hpρ̃
−s+(k−1)/2 depends on the sign of

−s+(k−1)/2 which explains the difference between s > (k−1)/2 and s < (k−1)/2

24Note the switch compared to Proposition 2.3! Also, β does not matter when Imσ = 0; we
define it here so that the two Propositions are consistent via dualization, which reverses the sign

of the imaginary part.
25In particular that Cε is not a continuous family with values in classical operators in

Ψs−(k−1)/2(X), so principal symbols for the family should be considered as representatives of

equivalence classes modulo lower order symbols, Ss−(k−1)/2−1. The same applies to the commu-
tators computed below.

26Strictly speaking, with the definitions we have adopted, one should multiply c by 1 − ψ,
where ψ has compact support, identically 1 near the zero section. As this does not affect the

behavior of c near fiber-infinity we do not do this explicitly here.
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in Propositions 2.3-2.4 when there are no other contributions to the threshold value
of s. The contribution of the subprincipal symbol, however, shifts the critical value
(k − 1)/2.

Now let C ∈ Ψs−(k−1)/2(X) have principal symbol c, and have WF′(C) ⊂
suppφ ◦ ρ0, and let Cε = CSε, Sε ∈ Ψ−δ(X) uniformly bounded in Ψ0(X) for

ε > 0, converging to Id in Ψδ′(X) for δ′ > 0 as ε → 0, with principal symbol
(1 + ερ̃−1)−δ. Thus, the principal symbol of Cε is cε.

First, consider (2.11). Then

σ2s(ı(P
∗
σC
∗
εCε − C∗εCεPσ)) = σk−1(ı(P ∗σ − Pσ))c2ε + 2cεHpcε

= ∓2
(
− β̃ Imσβ0φφ0 + β0

(
− s+

k − 1

2

)
φφ0 ∓ (ρ̃k−1Hpρ0)φ′φ0

+ δβ0
ε

ρ̃+ ε
φφ0 + kβ0p0φφ

′
0

)
φφ0ρ̃

−2s(1 + ερ̃−1)−2δ,

(2.15)

so

∓σ2s(ı(P
∗
σC
∗
εCε − C∗εCεPσ))

≤ −2β0

(
s− k − 1

2
+ β̃ Imσ − δ

)
ρ̃−2s(1 + ερ̃−1)−2δφ2φ2

0

+ 2(∓ρ̃k−1Hpρ0)ρ̃−2s(1 + ερ̃−1)−2δφ′φφ2
0 + kβ0p0ρ̃

−2s(1 + ερ̃−1)−2δφ2φ′0φ0.

(2.16)

Here the first term on the right hand side is negative if s−(k−1)/2+β Imσ−δ > 0

(since β̃ Imσ ≥ β Imσ by our definition of β), and this is the same sign as that
of φ′ term; the presence of δ (needed for the regularization) is the reason for the
appearance of m in the estimate. One can either use the sharp G̊arding inequality,
or instead, as we do, choose φ so that

√−φφ′ is C∞, and then

∓ı(P ∗σC∗εCε − C∗εCεPσ) = −S∗ε (B∗B +B∗1B1 +B∗2,εB2,ε)Sε +HεPσ + Fε,

with B,B1, B2,ε ∈ Ψs(X), B2,ε uniformly bounded in Ψs(X) as ε→ 0, Hε uniformly
bounded in Ψ2s−k(X) (arising from the last term on the right hand side of (2.16)
as well as from ∓ρ̃k−1Hpρ0 having the non-negative lower bound on Σ only), Fε
uniformly bounded in Ψ2s−1(X) (arising from the fact that the principal symbol of
the sum of the remaining terms on the right hand side is the same as that of the left
hand side by (2.16)), and σs(B) an elliptic multiple of φ0(p0)φ(ρ0)ρ̃−s. Computing
the pairing, using an extra regularization (insert a regularizer Λr ∈ Ψ−1(X), uni-
formly bounded in Ψ0(X), converging to Id in Ψδ(X) to justify integration by parts,
and use that [Λr, P

∗
σ ] is uniformly bounded in Ψ1(X), converging to 0 strongly, cf.

[52, Lemma 17.1] and its use in [52, Lemma 17.2]) yields

(2.17) 〈ı(P ∗σC∗εCε − C∗εCεPσ)u, u〉 = 〈ıC∗εCεu, Pσu〉 − 〈ıPσu,C∗εCεu〉.
We use Cauchy-Schwartz on the right hand side, more precisely choosing an elliptic
T ∈ Ψ(k−1)/2(X) with principal symbol ρ̃−(k−1)/2, with parametrix R so RT =
Id + E, with E ∈ Ψ−∞(X), we write

〈Cεu,CεPσu〉 = 〈TCεu,R∗CεPσu〉+ 〈ECε, CεPσu〉,
and write 2|〈TCεu,R∗CεPσu〉| ≤ z−1‖TCεu‖2 + z‖R∗CεPσu‖2, where we take
z > 0 large. We can then absorb z−1‖TCεu‖2 in 1

2‖BSεu‖2; this is possible since
TCε is an elliptic 0th order multiple of B (modulo lower order operators). All
remaining terms on the right hand side of (2.17) are uniformly bounded as ε → 0
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by the a priori assumptions provided u is microlocally in Hs−δ on WF′(C) (and
δ ≤ 1/2). A standard functional analytic argument using the weak-* compactness
of the unit ball in L2 (see, for instance, Melrose [39, Proof of Proposition 7 and
Section 9]) gives an estimate for Bu, showing u is in Hs on the elliptic set of B,
provided u is microlocally in Hs−δ on WF′(B). A standard inductive argument,
starting with s − δ = m and improving regularity by ≤ 1/2 in each step proves
(2.11).

For (2.13), the argument is similar, but we want to change the sign of the term
in (2.15) corresponding to the first term on the right hand side of (2.16), i.e. we
want it to be positive. Note that the regularization (the δ-term) now contributes
a term of the right sign, so is not an issue. The desired positivity is thus obtained
if s − (k − 1)/2 + β Imσ < 0 (since β̃ Imσ ≤ β Imσ by our definition of β in
Proposition 2.4). On the other hand, φ′ now has the wrong sign, so one needs to
make an assumption on supp dφ, which is the Au term in (2.13). From this point
on the argument is similar to that of (2.11). We again refer to [39, Section 9] and
[29] for more detailed treatments in somewhat different settings. �

Remark 2.5. Fixing a φ, it follows from the proof that the same φ works for (small)
smooth perturbations of Pσ with real principal symbol27, even if those perturba-
tions do not preserve the event horizon, namely even if (2.4) does not hold any
more: only its implication, (2.14), on supp dφ matters, which is stable under per-
turbations. Moreover, as the rescaled Hamilton vector field ρ̃k−1Hp is a smooth
vector field tangent to the boundary of the fiber-compactified cotangent bundle,
i.e. a b-vector field, and as such depends smoothly on the principal symbol, and it
is non-degenerate radially by (2.3), the weight, which provides the positivity at the
radial points in the proof above, still gives a positive Hamilton derivative for small
perturbations. Since this proposition thus holds for C∞ perturbations of Pσ with
real principal symbol, and this proposition is the only delicate estimate we use, and
it is only marginally so, we deduce that all the other results below also hold in this
generality.

2.5. Complex absorption. Finally, one has propagation estimates for complex
absorbing operators, requiring a sign condition. We refer to, for instance, [44] and
[15, Lemma 5.1] in the semiclassical setting; the changes are minor in the ‘classical’
setting. We also give a sketch of the main ‘commutator’ calculation below.

First, one can propagate regularity to WF′(Qσ) (of course, in the elliptic set of
Qσ one has a priori regularity). Namely, for all s and N , and for all A,B,G ∈
Ψ0(X) such that q ≤ 0, resp. q ≥ 0, on WF′(G), and forward, resp. backward,
bicharacteristics of Pσ from WF′(B) reach the elliptic set of A, while remaining in
the elliptic set of G, one has the usual propagation estimates

‖Bu‖Hs ≤ C(‖G(Pσ − ıQσ)u‖Hs−k+1 + ‖Au‖Hs + ‖u‖H−N ).

Thus, for q ≥ 0 one can propagate regularity in the forward direction along the
Hamilton flow, while for q ≤ 0 one can do so in the backward direction.

On the other hand, one can propagate regularity away from the elliptic set of Qσ.
Namely, for all s and N , and for all B,G ∈ Ψ0(X) such that q ≤ 0, resp. q ≥ 0, on
WF′(G), and forward, resp. backward, bicharacteristics of Pσ from WF′(B) reach

27Reality is needed to ensure that (2.15) holds.
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the elliptic set of Qσ, while remaining in the elliptic set of G, one has the usual
propagation estimates

(2.18) ‖Bu‖Hs ≤ C(‖G(Pσ − ıQσ)u‖Hs−k+1 + ‖u‖H−N ).

Again, for q ≥ 0 one can propagate regularity in the forward direction along the
Hamilton flow, while for q ≤ 0 one can do so in the backward direction. At the
cost of reversing the signs of q, this also gives that for all s and N , and for all
B,G ∈ Ψ0(X) such that q ≥ 0, resp. q ≤ 0, on WF′(G), and forward, resp.
backward, bicharacteristics of Pσ from WF′(B) reach the elliptic set of Qσ, while
remaining in the elliptic set of G, one has the usual propagation estimates

‖Bu‖Hs ≤ C(‖G(P ∗σ + ıQ∗σ)u‖Hs−k+1 + ‖u‖H−N ).

We remark that again, these estimates are stable under small perturbations in
Ψk(X) of Pσ and Qσ provided the perturbed operators still have real principal
symbols, and in the case of Qσ, satisfy q ≥ 0, since the geometric assumptions,
namely q ≤ 0, resp. q ≥ 0, on WF′(G), and forward, resp. backward, bicharacter-
istics of Pσ from WF′(B) reach the elliptic set of A, while remaining in the elliptic
set of G, are stable under these. However, since [15, Lemma 5.1] is stated in a
somewhat different setting, we give a brief sketch, which in particular shows this
stability. We follow the proof of [15, Lemma 5.1]; the role of the absorbing poten-

tial W ≥ 0 there is played by the formally self-adjoint operator Q̃σ = 1
2 (Qσ +Q∗σ)

with principal symbol q here. Although there W is a function on X (rather than a
general pseudodifferential operator), the only properties that matter in the present
notation are that the principal symbols are real and q ≥ 0. Indeed, in this case,
writing C (analogously to the proof of Propositions 2.3-2.4 here) instead of Q for
the commutant of [15, Lemma 5.1] to avoid confusion, and denoting its (real) prin-

cipal symbol by c, and letting P̃σ = Pσ + 1
2ı (Qσ − Q∗σ), so Pσ − ıQσ = P̃σ − ıQ̃σ,

and the principal symbol of the formally self-adjoint operator P̃σ is p, we have

(2.19) 〈u,−ı[C∗C, P̃σ]u〉 = −2 Re〈u, ıC∗C(Pσ − ıQσ)u〉 − 2 Re〈u,C∗CQ̃σu〉.
The operator on the left hand side has principal symbol Hpc

2, and will preserve its
signs under sufficiently small perturbations of p using the same construction of c
as in [15, Lemma 5.1] (which is just a real-principal type construction), much as in
the radial point setting discussed in the previous subsection. On the other hand,
the second term on the right hand side can be rewritten as

2 Re〈u,C∗CQ̃σu〉 = 2 Re〈u,C∗Q̃σCu〉+ 2 Re〈u,C∗[C, Q̃σ]u〉,
where the second term is 〈u, [C, [C, Q̃σ]]u〉 plus similar pairings involving (C∗ −
C)[C, Q̃σ], etc., which are all lower order than the operator on the left hand side of
(2.19) due to the real principal symbol of C and the presence of a commutator, or to
the presence of the double commutator. The first term, on the other hand, is non-
negative modulo terms that can be absorbed into the left hand side of (2.19), since

by the sharp G̊arding inequality28, 〈u,C∗Q̃σCu〉 ≥ −〈u,C∗RσCu〉 where Rσ is one
order lower than Qσ, i.e. is in Ψk−1(X), and as the principal symbol of C∗RσC
does not contain derivatives of c, an appropriate choice of C lets one use the Hpc

2

term, i.e. the principal symbol of the left hand side of (2.19), to dominate this, as

28If one assumes that q is microlocally the square of a symbol, one need not use the sharp
G̊arding inequality. Since q is a tool we use in the problems we study, not given to us by the

problem, one may make this choice if one wishes to do so.
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usual in real principal type estimates when subprincipal terms are dominated (c.f.
the treatment of the Imλ term in [15, Lemma 5.1]). Thus, (2.19) implies (2.18).

Remark 2.6. As mentioned in the introduction, these complex absorption methods
could be replaced in specific cases, including all the specific examples we discuss
here, by adding a boundary Ỹ instead, provided that the Hamilton flow is well-
behaved relative to the base space, namely inside the characteristic set Hp is not
tangent to T ∗

Ỹ
X with orbits crossing T ∗

Ỹ
X in the opposite directions in Σ± in the

following way. If Ỹ is defined by ỹ which is positive on ‘our side’ U with U as
discussed at the beginning of Subsection 2.2, we need ±Hpỹ|Ỹ > 0 on Σ±. Then
the functional analysis described in [32, Proof of Theorem 23.2.2], see also [56,
Proof of Lemma 4.14], can be used to prove analogues of the results we give below

on X+ = {ỹ ≥ 0}. For instance, if one has a Lorentzian metric on X near Ỹ ,

and Ỹ is space-like, then (up to the sign) this statement holds with Σ± being the
two components of the characteristic set. However, in the author’s opinion, this
detracts from the clarity of the microlocal analysis by introducing projection to
physical space in an essential way.

2.6. Global estimates. Recall now that q ≥ 0 near Σ−, and q ≤ 0 on Σ+, and
recall our non-trapping assumptions, i.e. (2.8). Thus, we can piece together the esti-
mates described earlier (elliptic, real principal type, radial points, complex absorp-
tion) to propagate estimates forward in Σ− and backward in Σ+, thus away from Λ±
(as well as from one end of a bicharacteristic which intersects the elliptic set of q in
both directions). This yields that for any N , and for any s ≥ m > (k−1)/2−β Imσ,
and for any A ∈ Ψ0(X) elliptic at Λ+ ∪ Λ−,

‖u‖Hs ≤ C(‖(Pσ − ıQσ)u‖Hs−k+1 + ‖Au‖Hm + ‖u‖H−N ).

This implies that for any s > m > (k − 1)/2− β Imσ,

(2.20) ‖u‖Hs ≤ C(‖(Pσ − ıQσ)u‖Hs−k+1 + ‖u‖Hm).

On the other hand, recalling that the adjoint switches the sign of the imaginary
part of the principal symbol and also that of the subprincipal symbol at the radial
sets, propagating the estimates in the other direction, i.e. backward in Σ− and
forward in Σ+, thus towards Λ±, from the elliptic set of q, we deduce that for any
N (which we take to satisfy s′ > −N) and for any s′ < (k − 1)/2 + β Imσ,

(2.21) ‖u‖Hs′ ≤ C(‖(P ∗σ + ıQ∗σ)u‖Hs′−k+1 + ‖u‖H−N ).

Note that the dual of Hs, s > (k−1)/2−β Imσ, is H−s = Hs′−k+1, s′ = k−1− s,
so s′ < (k − 1)/2 + β Imσ, while the dual of Hs−k+1, s > (k − 1)/2 − β Imσ,

is Hk−1−s = Hs′ , with s′ = k − 1 − s < (k − 1)/2 + β Imσ again. Thus, the
spaces (apart from the residual spaces, into which the inclusion is compact) in the
left, resp. right, side of (2.21), are exactly the duals of those on the right, resp.
left, side of (2.20). Thus, by a standard functional analytic argument, see e.g. [32,
Proof of Theorem 26.1.7] or indeed [54, Section 4.3] in the present context, namely

dualization and using the compactness of the inclusion Hs′ → H−N for s′ > −N ,
this gives the solvability of

(Pσ − ıQσ)u = f, s > (k − 1)/2− β Imσ,

for f in the annihilator in Hs−k+1 (via the duality between Hs−k+1 and H−s+k−1

induced by the L2-pairing) of the finite dimensional subspace Ker(P ∗σ + ıQ∗σ) of
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H−s+k−1 = Hs′ , and indeed elements of this finite dimensional subspace have wave
front set29 in Λ+∪Λ− and lie in ∩s′<(k−1)/2+β ImσH

s′ . Thus, there is the usual real
principal type loss of one derivative relative to the elliptic problem, and in addition,
there are restrictions on the orders for which is valid.

In addition, one also has almost uniqueness by a standard compactness argument
(using the compactness of the inclusion of Hs into Hm for s > m), by (2.20),
namely not only is the space of f in the space as above is finite codimensional, but
the nullspace of Pσ − ıQσ on Hs, s > (k− 1)/2− β Imσ, is also finite dimensional,
and its elements are in C∞(X); again, see [54, Section 4.3] for details in this setup.

In order to analyze the σ-dependence of solvability of the PDE, we reformulate
our problem as a more conventional Fredholm problem. Thus, let P̃ be any operator
with principal symbol p− ıq; e.g. P̃ is Pσ0

− ıQσ0
for some σ0. Then consider

(2.22) X s = {u ∈ Hs : P̃ u ∈ Hs−k+1}, Ys = Hs−k+1,

with

‖u‖2X s = ‖u‖2Hs + ‖P̃ u‖2Hs−k+1 .

Note that X s only depends on the principal symbol of P̃ . Moreover, C∞(X) is
dense in X s; this follows by considering Rε ∈ Ψ−∞(X), ε > 0, such that Rε → Id in
Ψδ(X) for δ > 0, Rε uniformly bounded in Ψ0(X); thus Rε → Id strongly (but not
in the operator norm topology) on Hs and Hs−k+1. Then for u ∈ X s, Rεu ∈ C∞(X)

for ε > 0, Rεu → u in Hs and P̃Rεu = RεP̃ u + [P̃ , Rε]u, so the first term on the

right converges to P̃ u in Hs−k+1, while [P̃ , Rε] is uniformly bounded in Ψk−1(X),
converging to 0 in Ψk−1+δ(X) for δ > 0, so converging to 0 strongly as a map

Hs → Hs−k+1. Thus, [P̃ , Rε]u → 0 in Hs−k+1, and we conclude that Rεu → u in
X s. (In fact, X s is a first-order coisotropic space, more general function spaces of
this nature are discussed by Melrose, Vasy and Wunsch in [42, Appendix A].)

With these preliminaries, for each σ with s ≥ m > (k − 1)/2− β Imσ,

Pσ − ıQσ : X s → Ys

is Fredholm; these form an analytic family of bounded operators in this half-plane.

Theorem 2.7. Let Pσ, Qσ be as above, and X s, Ys as in (2.22). If k−1−2s > 0,
let β = βinf , if k − 1− 2s < 0, let β = βsup. Then

Pσ − ıQσ : X s → Ys

is an analytic family of Fredholm operators on30 Cs ∩ Ω, where

(2.23) Cs =
{
σ ∈ C : Imσ > β−1

(k − 1

2
− s
)}
.

Thus, analytic Fredholm theory applies, giving the meromorphy of the inverse
provided the inverse exists for a particular value of σ.

29Since the original version of this paper, the work of Haber and Vasy [29] showed that elements

of this kernel are in fact Lagrangian distributions, i.e. they possess iterative regularity under
the module of first order pseudodifferential operators with principal symbol vanishing on the
Lagrangian, under additional assumptions on the structure at Λ±, namely that Λ± consists of
radial points for Hp. The latter holds, for instance, in de Sitter and de Sitter-Schwarzschild spaces,

as well as on Minkowski space, but not on Kerr-de Sitter space.
30Recall that Ω is the domain of σ for which Qσ is defined.
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Remark 2.8. Note that the Fredholm property means that P ∗σ+ıQ∗σ is also Fredholm
on the dual spaces; this can also be seen directly from the estimates; rather than
being a holomorphic family, it is an anti-holomorphic family. The analogue of this
remark also applies to the semiclassical discussion below.

Remark 2.9. Note that if s′ > s ≥ m > (k − 1)/2 − β Imσ and if Pσ − ıQσ :

X s → Ys and Pσ − ıQσ : X s′ → Ys′ are both invertible, then, as X s′ ⊂ X s and
Ys′ ⊂ Ys, (Pσ − ıQσ)−1|Ys′ agrees with (Pσ − ıQσ)−1 : Ys′ → X s′ . Moreover, as

Ys′ = Hs′−k+1 is dense in Ys, (Pσ− ıQσ)−1 : Ys′ → X s′ determines (Pσ− ıQσ)−1 :

Ys → X s, i.e. if A : Ys → X s is continuous and A|Ys′ is (Pσ − ıQσ)−1 : Ys′ → X s′
then A is (Pσ−ıQσ)−1 : Ys → X s. Thus, in this sense, (Pσ−ıQσ)−1 is independent
of s (satisfying s ≥ m > (k − 1)/2− β Imσ).

2.7. Stability. We also want to understand the behavior of Pσ−ıQσ under pertur-
bations. To do so, assume that Pσ = Pσ(w), Qσ = Qσ(w) depend continuously on
a parameter w ∈ Rl, with values in (analytic functions of σ with values in) Ψk(X)
and the principal symbols of Pσ(w) and Qσ(w) are real and independent of σ with
that of ∓Qσ(w) being non-negative near Σ±. We do not assume that the principal
symbols are independent of w, in fact, fixing some w0, we do not even assume that
for w 6= w0 the other assumptions on Pσ(w)− ıQσ(w) are satisfied for w 6= w0. (So,
for instance, as already mentioned in Remark 2.5, the structure of the radial set at
w0 may drastically change for w 6= w0.) However, see Remark 2.5 for the most del-
icate part, our estimates at w0 are stable just under the assumption of continuous
dependence with values Ψk(X), thus there exists δ0 > 0 such that for |w−w0| < δ0,
we have uniform versions of the estimates (2.20)-(2.21), i.e. the constant C and the
orders m and N can be taken to be uniform in these (independent of w), so e.g.

(2.24) ‖u‖Hs ≤ C(‖(Pσ(w)− ıQσ(w))u‖Hs−k+1 + ‖u‖Hm).

Thus, Pσ(w) − ıQσ(w) : X s(w) → Ys(w) is Fredholm, depending analytically on
σ, for each w with |w − w0| < δ0, Ys(w) = Ys = Hs−k+1 is independent of w
(and of σ), but X s(w) = {u ∈ Hs : Pσ(w)u ∈ Hs−k+1} ⊂ Hs does depend on w
(but not on σ). We claim, however, that, assuming that (Pσ(w0) − ıQσ(w0))−1 is
meromorphic in σ (i.e. the inverse exists at least at one point σ), (Pσ(w)−ıQσ(w))−1

is also meromorphic in σ for w close to w0, and it depends continuously on w
in the weak operator topology of L(Ys, Hs), and thus in the norm topology of
L(Hs−k+1+ε, Hs−ε) for ε > 0.

To see this, note first that if Pσ0(w0) − ıQσ0(w0) : X s(w0) → Ys is invertible,
then so is Pσ(w) − ıQσ(w) : X s(w) → Ys for w near w0 and σ near σ0. Once
this is shown, the meromorphy of (Pσ(w) − ıQσ(w))−1 follows when w is close to
w0, with this operator being the inverse of an analytic Fredholm family which is
invertible at a point. To see the invertibility of Pσ(w)− ıQσ(w) for w near w0 and
σ near σ0, first suppose there exist sequences wj → w0 and σj → σ0 such that
Pσj (wj) − ıQσj (wj) is not invertible, so either Ker(Pσj (wj) − ıQσj (wj)) on Hs or

Ker(Pσj (wj)
∗ + ıQσj (wj)

∗) on (Hs−k+1)∗ is non-trivial in view of the preceding
Fredholm discussion. By passing to a subsequence, we may assume that the same
one of these two possibilities holds for all j, and as the case of the adjoint is
completely analogous, we may also assume that Ker(Pσj (wj)− ıQσj (wj)) on Hs is
non-trivial for all j. Now, if uj ∈ Hs, ‖uj‖Hs = 1, and (Pσj (wj)− ıQσj (wj))uj = 0
then (2.24) gives 1 ≤ C‖uj‖Hm . Now, uj has a weakly convergent subsequence
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in Hs to some u0 ∈ Hs, which is thus norm-convergent in Hm; so (Pσ0
(w0) −

ıQσ0(w0))u0 = 0. Since 1 ≤ C‖uj‖Hm , and the subsequence is norm-convergent in
Hm, u0 6= 0, and thus Ker(Pσ0(w0)− ıQσ0(w0)) on Hs is non-trivial, so Pσ0(w0)−
ıQσ0

(w0) is not invertible, proving our claim.
So suppose now that fj ∈ Hs−k+1 and ‖fj‖Hs−k+1 ≤ 1. Let wj → w0, σj → σ0

(with wj sufficiently close to w0, σj sufficiently close to σ0 for invertibility), and let
uj = (Pσj (wj)−ıQσj (wj))−1fj . Suppose first that uj is not bounded in Hs, and let

vj =
uj

‖uj‖Hs . Then by (2.24), 1 ≤ C(‖uj‖−1
Hs + ‖vj‖Hm), so for j sufficiently large,

‖vj‖Hm ≥ 1
2C . On the other hand, a subsequence vjr of vj converges weakly to some

v0 in Hs, and
fjr

‖ujr‖Hs
= (Pσjr (wjr ) − ıQσjr (wjr ))vjr → (Pσ0

(w0) − ıQσ0
(w0))v0

weakly in Hs−k, so as the left hand side converges to 0 in Hs−k+1, (Pσ0
(w0) −

ıQσ0
(w0))v0 = 0. As vjr → v0 in norm in Hm, we deduce that v0 6= 0, contradicting

the invertibility of Pσ0
(w0)− ıQσ0

(w0). Thus, uj is uniformly bounded in Hs.
Next, suppose that fj → f in Hs−k+1, so uj is bounded in Hs by what we

just showed. Then any subsequence of uj has a weakly convergent subsequence ujr
with some limit u0 ∈ Hs. Then fjr = (Pσjr (wjr ) − ıQσjr (wjr ))ujr → (Pσ0(w0) −
ıQσ0

(w0))u0 weakly in Hs−k, so (Pσ0
(w0) − ıQσ0

(w0))u0 = f . By the injectivity
of Pσ0

(w0)− ıQσ0
(w0), u0 is thus independent of the subsequence of uj , i.e. every

subsequence of uj has a subsequence converging weakly to u0, and thus uj converges
weakly to u0 in Hs. This gives the convergence of (Pσ(w)−ıQσ(w))−1 to (Pσ0(w0)−
ıQσ0

(w0))−1 in the weak operator topology on L(Ys, Hs) as σ → σ0 and w → w0,
and thus in the norm topology on L(Ys+ε, Hs−ε) for ε > 0.

2.8. Semiclassical estimates. For reasons of showing meromorphy of the inverse,
and also for wave propagation, we also want to know the |σ| → ∞ asymptotics
of Pσ − ıQσ and P ∗σ + ıQ∗σ; here Pσ, Qσ are operators with a large parameter.
As discussed earlier, this can be turned into a semiclassical problem; one obtains
families of operators Ph,z, with h = |σ|−1, and z corresponding to σ/|σ| in the unit
circle in C. As usual, we multiply through by hk for convenient notation when we
define Ph,z:

Ph,z = hkPh−1z ∈ Ψk
~,cl(X).

Here we obtain uniform estimates in strips | Imσ| < C ′′, which amounts to | Im z| <
C ′h. Later, in Section 7, we extend these results to more general regions. While
these strengthen the results, for our main results these extensions are much less
significant than the treatment of strips. Since there are technical complications, we
postpone their treatment to the end of the paper; see also Remarks 3.3 and 7.4.

From now on, we merely require Ph,z, Qh,z ∈ Ψk
~,cl(X) (rather than the large

parameter statement). Here z satisfies | Im z| < C ′h, and thus Ph,z − Ph,Re z ∈
hΨk

~,cl(X); similarly with Qh,z. Thus, for semiclassical principal symbol considera-
tions, we regard p~,z as defined for z real: the semiclassical principal symbol p~,z,

z ∈ O ⊂ R, 0 /∈ O compact, is a function on T ∗X, has limit p at infinity in the
fibers of the cotangent bundle, so is in particular real in the limit. More precisely,
as in the classical setting, but now ρ̃ made smooth at the zero section as well (so is
not homogeneous there), we consider

ρ̃kp~,z ∈ C∞(T
∗
X ×O);
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then ρ̃kp~,z|S∗X×O = ρ̃kp, where S∗X = ∂T
∗
X. We assume that p~,z and q~,z

themselves are real31. Thus, Ph,z − P ∗h,z ∈ hΨk−1
~ (X).

We write the semiclassical characteristic set of p~,z as Σ~,z, and sometimes drop
the z dependence and write Σ~ simply; assume that

Σ~ = Σ~,+ ∪ Σ~,−, Σ~,+ ∩ Σ~,− = ∅,

Σ~,± are relatively open in Σ~, and

∓q~,z ≥ 0 near Σ~,±.
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Figure 2. The components Σ~,± of the semiclassical characteris-

tic set in T
∗
X, which are now two-dimensional in the figure. The

cosphere bundle is the horizontal plane at the bottom of the pic-
ture; the intersection of this figure with the cosphere bundle is
what is shown on Figure 1. The submanifolds L± are still points,
with L− a source, L+ a sink. The red lines are bicharacteristics,

with the thick ones inside S∗X = ∂T
∗
X. The blue regions near

the edges show the absorbing region, i.e. the support of q. For
Ph,z − ıQh,z, the estimates are always propagated away from L±
towards the support of q, so in the direction of the Hamilton flow
in Σ~,−, and in the direction opposite of the Hamilton flow in Σ~,+;
for P ∗h,z + ıQ∗h,z, the directions are reversed.

Microlocal results analogous to the classical results also exist in the semiclassical

setting. In the interior of T
∗
X, i.e. in T ∗X, only the microlocal elliptic, real

principal type and complex absorption (in which one considers the bicharacteristics
of Re p~,z) estimates are relevant. At L± ⊂ S∗X we in addition need the analogue

31If we do not restrict | Im z| < C′h, we would only assume this when z is real. We discuss
this in Section 7.
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of Propositions 2.3-2.4. As these are the only non-standard estimates32, though
they are very similar to estimates of [57], where, however, only global estimates
were stated, we explicitly state these here and indicate the very minor changes
needed in the proof compared to Propositions 2.3-2.4.

Proposition 2.10. For all N , for s ≥ m > (k − 1)/2 − β Imσ, σ = h−1z, and
for all A,B,G ∈ Ψ0

~(X) such that WF′h(G) ∩WF′h(Qσ) = ∅, A elliptic at L±, and
forward (or backward) bicharacteristics from WF′h(B) tend to L±, with closure in
the elliptic set of G, one has estimates33

(2.25) Au ∈ Hm
h ⇒ ‖Bu‖Hsh ≤ C(h−1‖GPh,zu‖Hs−k+1

h
+ h‖u‖H−Nh ),

where, as usual, GPh,zu ∈ Hs−k+1
h and u ∈ H−Nh are assumptions implied by the

right hand side.

Proposition 2.11. For s < (k − 1)/2 + β Imσ, for all N , σ = h−1z, and for all
A,B,G ∈ Ψ0

~(X) such that WF′h(G) ∩WF′h(Qσ) = ∅, B,G elliptic at L±, and
forward (or backward) bicharacteristics from WF′h(B) \ L± reach WF′h(A), while
remaining in the elliptic set of G, one has estimates

(2.26) ‖Bu‖Hsh ≤ C(h−1‖GP ∗h,zu‖Hs−k+1
h

+ ‖Au‖Hsh + h‖u‖H−Nh ).

Proof. We just need to localize in ρ̃ in addition to ρ0; such a localization in the
classical setting is implied by working on S∗X or with homogeneous symbols. We
achieve this by modifying the localizer φ in the commutant constructed in the proof
of Propositions 2.3-2.4. As already remarked, the proof is much like at radial points
in semiclassical scattering on asymptotically Euclidean spaces, studied by Vasy and
Zworski [57], but we need to be more careful about localization in ρ0 and ρ̃ as we
are assuming less about the structure.

First, note that L± is defined by ρ̃ = 0, ρ0 = 0 within Σ~, so for z > 0 to be
determined, zρ̃2 + ρ0 is a quadratic defining function of L±. Note that on Σ~,z,

∓ρ̃k−1(Hp~,zρ0 + 2ρ̃Hp~,z ρ̃) ≥ β1ρ0 + 2zβ0ρ̃
2 −O(ρ̃ρ

1/2
0 )−O((ρ̃2 + ρ0)3/2),

where the first O term is independent of z, and is due to ρ̃k−1Hp~,z restricting to

ρ̃k−1Hp at S∗X (so the difference between these two, using say the homogeneous
extension of the latter, is O(ρ̃)) plus the non-degenerate quadratic vanishing of ρ0

(so its differential can be estimated by its square root): these mean that modulo

O(ρ̃ρ
1/2
0 ), ∓ρ̃k−1Hp~,zρ0 is bounded below by ∓ρ̃k−1Hpρ0. Given K > 0 taking z >

32As an example, the standard semiclassical propagation of singularities result is that

WFs,rh (u), u = {uh}h∈(0,1) a polynomially bounded family, is a union of maximally extended

bicharacteristics of p~,z in Σ~,z \WFs−1,r+1
h (P~,zu); this is the Sobolev version of [63, Theo-

rem 12.5]. Note that the choice of r = −1 is most usual, but h commutes with P~,z , so the orders
may be adjusted easily. This can be translated into a uniform estimate as h→ 0 using the uniform

boundedness principle; see [54, Section 4.4], though as in the case of the classical estimates and

the application of the closed graph theorem there, this is somewhat round about: see Footnote 22.
Concretely, in this case, one has the estimate

‖Bu‖Hs
h
≤ C(h−1‖GPh,zu‖Hs−k+1

h
+ ‖Au‖Hs

h
+ h‖u‖

H−N
h

),

in the notation corresponding to (2.10), with bicharacteristics understood as integral curves of
Hph,z both at h = 0 and as at fiber-infinity, S∗X.

33Here and below the error term h‖u‖
H−N
h

can be changed to hN‖u‖
H−N
h

by iterating the

estimates, as required anyway for the proof of the ‖u‖
H−N
h

-type error.
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0 sufficiently large, β1ρ0 + 2zβ0ρ̃
2 −Kρ̃ρ1/2

0 becomes a positive definite quadratic

form in (ρ̃, ρ
1/2
0 ). Correspondingly, there exists φ ∈ C∞c (R) be identically 1 near 0,

φ′ ≤ 0 and φ supported sufficiently close to 0 so that

α ∈ supp d(φ ◦ (ρ̃2 + ρ0)) ∩ Σ~ ⇒ ∓ρ̃k−1(Hpρ0 + 2ρ̃Hpρ̃)(α) > 0

and

α ∈ supp d(φ ◦ (ρ̃2 + ρ0)) ∩ Σ~ ⇒ ∓ρ̃k−2Hpρ̃(α) > 0.

Then let c be given by

c = φ(ρ0 + zρ̃2)φ0(p0)ρ̃−s+(k−1)/2, cε = c(1 + ερ̃−1)−δ, p0 = ρ̃kp~,z.

The rest of the proof proceeds similarly to Propositions 2.3-2.4; one computes
principal symbols now in hΨk−1

~ (X). �

In order to have global estimates, we need to make a non-trapping assumption,
which we turn into a definition:

Definition 2.12. We say that p~,z − ıq~,z is semiclassically non-trapping if the
bicharacteristics of p~,z from any point in Σ~ \ (L+ ∪L−) flow to ell(q~,z)∪L+ (i.e.
either enter ell(q~,z) at some finite time, or tend to L+) in the forward direction,
and to ell(q~,z) ∪ L− in the backward direction.

Remark 2.13. The part of the semiclassically non-trapping property on S∗X is
just the classical non-trapping property; thus, the point is its extension into to the

interior T ∗X of T
∗
X.

Let Hs
h denote the usual semiclassical function spaces. The semiclassical version

of the classical estimates, stated above, are then applicable, and one obtains on the
one hand that for any s ≥ m > (k − 1)/2− β Im z/h, h < h0,

(2.27) ‖u‖Hsh ≤ Ch
−1(‖(Ph,z − ıQh,z)u‖Hs−k+1

h
+ h2‖u‖Hmh ),

On the other hand, for any N and for any s < (k − 1)/2 + β Im z/h, h < h0,

(2.28) ‖u‖Hsh ≤ Ch
−1(‖(P ∗h,z + ıQ∗h,z)u‖Hs−k+1

h
+ h2‖u‖H−Nh ),

The h2 term can be absorbed in the left hand side for sufficiently small h, so we
automatically obtain invertibility of Ph,z − ıQh,z.

We now translate this into the classical setting, where in particular, this gives
the meromorphy of Pσ − ıQσ. Note also that for instance

‖u‖2H1
|σ|−1

= ‖u‖2L2 + |σ|−2‖du‖2L2 , ‖u‖H0
|σ|−1

= ‖u‖L2 ,

(with the norms with respect to any positive definite inner product). We thus have

Theorem 2.14. Let Pσ, Qσ, Cs, β be as above (see (2.23) for the definition of
Cs), in particular semiclassically non-trapping, and X s, Ys as in (2.22). Let C− >
β−1(k−1

2 − s), C+ > 0. Then there exists σ0 such that

R(σ) : Ys → X s,
is holomorphic in {σ ∈ Ω : C− < Imσ < C+, |Reσ| > σ0}, assumed to be a subset
of Cs, and non-trapping estimates

‖R(σ)f‖Hs
|σ|−1

≤ C ′|σ|−k+1‖f‖Hs−k+1

|σ|−1



MICROLOCAL ASYMPTOTICALLY HYPERBOLIC AND KERR-DE SITTER 33

hold. For s = 1, k = 2 this states that for |Reσ| > σ0, C− < Imσ < C+,

‖R(σ)f‖2L2 + |σ|−2‖dR(σ)‖2L2 ≤ C ′′|σ|−2‖f‖2L2 .

Further, R(σ) : Ys → X s is meromorphic in {σ ∈ Ω : C− < Imσ < C+} ⊂ Cs.

While we only stated the global results here, one has microlocal estimates for the
solution. In particular we have the following, stated in the semiclassical language,
as immediate from the estimates used to derive from the Fredholm property:

Theorem 2.15. Let Pσ, Qσ, β be as above, in particular semiclassically non-
trapping, and X s, Ys as in (2.22).

For Re z > 0 and s′ > s, the resolvent Rh,z is semiclassically outgoing with a loss

of h−1 in the sense that if α ∈ T ∗X∩Σ~,±, and if for the forward (+), resp. backward

(−), bicharacteristic γ±, from α, WFs
′−k+1
h (f) ∩ γ± = ∅ then α /∈WFs

′

h (hRh,zf).

In fact, for any s′ ∈ R, the resolvent Rh,z extends to f ∈ Hs′

h (X), with non-
trapping bounds, provided that WFsh(f) ∩ (L+ ∪ L−) = ∅. The semiclassically
outgoing with a loss of h−1 result holds for such f and s′ as well.

Proof. The only part that is not immediate by what has been discussed is the
last claim. This follows, however, from microlocal solvability in arbitrary or-
dered Sobolev spaces away from the radial points (i.e. solvability modulo C∞, with
semiclassical estimates), combined with our preceding results to deal with this
smooth remainder plus the contribution near L+ ∪L−, which are assumed to be in
Hs
h(X). �

This result is needed for gluing constructions as in [15], namely polynomially
bounded trapping with appropriate microlocal geometry can be glued to our re-
solvent. Furthermore, it gives non-trapping estimates microlocally away from the
trapped set provided the overall (trapped) resolvent is polynomially bounded as
shown by Datchev and Vasy [16].

Definition 2.16. Suppose K± ⊂ T ∗X is compact, and O± is a neighborhood of
K with compact closure and O± ∩ Σ~ ⊂ Σ~,±. We say that p~,z is semiclassically
locally mildly trapping of order κ in a C0-strip if

(i) there is a function34 F ∈ C∞(T ∗X), F ≥ 2 on K±, F ≤ 1 on T ∗X \ O±,
and for α ∈ (O± \K±) ∩ Σ~,±, (Hp~,zF )(α) = 0 implies (H2

p~,z
F )(α) < 0;

and
(ii) there exists Q̃h,z ∈ Ψ~(X) with WF′h(Q̃h,z)∩K± = ∅, ∓q̃~,z ≥ 0 near Σ~,±,

q̃~,z elliptic on Σ~ \ (O+ ∪ O−) and h0 > 0 such that if Im z > −C0h and
h < h0 then

(2.29) ‖(Ph,z − ıQ̃h,z)−1f‖Hsh ≤ Ch
−κ−1‖f‖Hs−k+1

h
, f ∈ Hs−k+1

h .

We say that p~,z − ıq~,z is semiclassically mildly trapping of order κ in a C0-
strip if it is semiclassically locally mildly trapping of order κ in a C0-strip and if the
bicharacteristics from any point in Σ~,+ \ (L+ ∪K+) flow to {q~,z < 0}∪O+ in the

34 For ε > 0, such a function F provides an escape function, F̃ = e−CFHp~,zF on the set

where 1 + ε ≤ F ≤ 2 − ε. Namely, by taking C > 0 sufficiently large, Hp~,z F̃ < 0 there; thus,

every bicharacteristic must leave the compact set F−1([1 + ε, 2− ε]) in finite time. However, the

existence of such an F is a stronger statement than that of an escape function: a bicharacteristic
segment cannot leave F−1([1 + ε, 2 − ε]) via the boundary F = 2 − ε in both directions since F

cannot have a local minimum. This is exactly the way this condition is used in [15].
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backward direction and to {q~,z < 0}∪O+ ∪L+ in the forward direction, while the
bicharacteristics from any point in Σ~,− \ (L− ∪K−) flow to {q~,z > 0} ∪O− ∪L−
in the backward direction and to {q~,z > 0} ∪O− in the forward direction.

An example35 of locally mild trapping is hyperbolic trapping, studied by Wunsch
and Zworski [61], which is of order κ for some κ > 0. Note that (i) states that the
sets Kc = {F ≥ c}, 1 < c < 2, are bicharacteristically convex in O±, for by (i) any
critical points of F along a bicharacteristic are strict local maxima.

As a corollary, we have:

Theorem 2.17. Let Pσ, Qσ, Cs, β be as above (see (2.23) for the definition of
Cs), satisfying mild trapping assumptions with order κ estimates in a C0-strip, and
X s, Ys as in (2.22), C+, C− as in Theorem 2.14. Then

R(σ) : Ys → X s,
is meromorphic in Cs and there exists σ0 such that

R(σ) : Ys → X s,
is holomorphic in {σ ∈ Ω : max(−C0, C−) < Imσ < C+, |Reσ| > σ0}, and

(2.30) ‖R(σ)f‖Hs
|σ|−1

≤ C ′|σ|κ−k+1‖f‖Hs−k+1

|σ|−1
.

Further, if one has logarithmic loss in (2.29), i.e. if h−κ can be replaced by log(h−1),
for σ ∈ R, (2.30) also holds with a logarithmic loss, i.e. |σ|κ can be replaced by
log |σ| for σ real.

Proof. This is an almost immediate consequence of [15]. To get into that setting,
we replace Qh,z by Q′h,z with WF′h(Qh,z − Q′h,z) ⊂ O+ ∪ O− and Q′h,z elliptic

on K+ ∪ K−, with ∓q′~,z ≥ 0 on Σ~,±. Then Ph,z − ıQ′h,z is semiclassically non-
trapping in the sense discussed earlier, so all of our estimates apply. With the
polynomial resolvent bound assumption on Ph,z − ıQ̃h,z, and the function F in
place of x used in [15], the results of [15] apply, taking into account Theorem 2.15
and [15, Lemma 5.1]. Note that the results of [15] are stated in a slightly different
context for convenience, namely the function x is defined on the manifold X and
not on T ∗X, but this is a minor issue: the results and proofs apply verbatim in our
setting. �

3. Mellin transform and Lorentzian b-metrics

3.1. The Mellin transform. In this section we discuss the basics of Melrose’s
b-analysis on an n-dimensional manifold with boundary M̄ , where the boundary
is denoted by X. We refer to [43] as a general reference. In the main cases of
interest here, the b-geometry is trivial, and M̄ = X × [0,∞)τ with respect to
some (almost) canonical (to the problem) product decomposition. Thus, the reader
should feel comfortable in trivializing all the statements below with respect to

35Condition (i) follows by letting F̃ = ϕ2κ
+ + ϕ2κ

− with the notation of [61, Lemma 4.1]; so

H2
pF̃ = 4κ2

(
(c4+ − κ−1c+Hpc+)ϕ2κ

+ + 4κ2
(
(c4− + κ−1c−Hpc−)ϕ2κ

−

near the trapped set, ϕ+ = 0 = ϕ−. Thus, for sufficiently large κ, HpF̃ > 0 outside F̃ = 0. Since

F̃ = 0 defines the trapped set, in order to satisfy Definition 2.16, writing K and O instead of K±
and O±, one lets K = {F̃ ≤ α}, O = {F̃ < β} for suitable (small) α and β, α < β, and takes

F = G ◦ F̃ with G strictly decreasing, G|[0,α] > 2, G|[β,∞) < 1.
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this decomposition. In this trivial case, the main result on the Mellin transform,
Lemma 3.1 is fairly standard, with possibly different notation of the function spaces;
we include it here for completeness.

First, recall that the Lie algebra of b-vector fields, Vb(M̄) consists of C∞ vector
fields on M̄ tangent to the boundary. In local coordinates (τ, y), such that τ is a

boundary defining function, they are of the form anτ∂τ +
∑n−1
j=1 aj∂yj , with aj arbi-

trary C∞ functions. Correspondingly, they are the set of all smooth sections of a C∞
vector bundle, bTM̄ , with local basis τ∂τ , ∂y1

, . . . , ∂yn−1
. The dual bundle, bT ∗M̄ ,

thus has a local basis given by dτ
τ , dy1, . . . , dyn−1. All tensorial constructions, such

as form and density bundles, go through as usual.
We remark here that with τ = e−t, t ≥ 0, say, the vector fields take the form

an∂t+
∑n−1
j=1 aj∂yj , where aj are smooth functions of e−t and y. Thus, these vector

fields, and the corresponding differential operators, are modelled on allowing vari-
able coefficients on t-translation invariant vector fields, but require them to stabilize
exponentially fast at infinity (in the precise sense of the stated smooth dependence).
However, it is easier to keep track of the structure from the b-perspective, so we do
not pursue this point of view.

The natural bundles related to the boundary are reversed in the b-setting. Thus,
the b-normal bundle of the boundary X is well-defined as the span of τ∂τ defined
using any coordinates, or better yet, as the kernel of the natural map ι : bTmM̄ →
TmM̄ , m ∈ X, induced via the inclusion Vb(M̄)→ V(M̄), so

anτ∂τ +

n−1∑
j=1

aj∂yj 7→
n−1∑
j=1

aj∂yj , aj ∈ R.

Its annihilator in bT ∗mM̄ is called the b-cotangent bundle of the boundary; in local
coordinates (τ, y) it is spanned by dy1, . . . , dyn−1. Invariantly, it is the image of
T ∗mM̄ in bT ∗mM̄ under the adjoint of the tangent bundle map ι; as this has kernel
N∗mX, bT ∗mM̄ is naturally identified with T ∗mX = T ∗mM̄/N∗mX.

The algebra of differential operators generated by Vb(M̄) over C∞(M̄) is denoted

Diffb(M̄); in local coordinates as above, elements of Diffkb(M̄) are of the form

P =
∑

j+|α|≤k

ajα(τDτ )jDα
y

in the usual multiindex notation, α ∈ Nn−1, with ajα ∈ C∞(M̄). Writing b-
covectors as

σ
dτ

τ
+

n−1∑
j=1

ηj dyj ,

we obtain canonically dual coordinates to (τ, y), namely (τ, y, σ, η) are local coor-
dinates on bT ∗M̄ . The principal symbol of P is

(3.1) p̃ = σb,k(P) =
∑

j+|α|=k

ajασ
jηα;

it is a C∞ function, which is a homogeneous polynomial of degree k in the fibers,
on bT ∗M̄ . Its Hamilton vector field, Hp̃, is a C∞ vector field, which is just the
extension of the standard Hamilton vector field from M̄◦, is homogeneous of degree
k − 1, on bT ∗M̄ , and it is tangent to bT ∗XM̄ . Explicitly, as a change of variables
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shows, in local coordinates,

(3.2) Hp̃ = (∂σp̃)(τ∂τ ) +
∑
j

(∂ηj p̃)∂yj − (τ∂τ p̃)∂σ −
∑
j

(∂yj p̃)∂ηj ,

so the restriction of Hp̃ to τ = 0 is

(3.3) Hp̃|bT∗XM̄ =
∑
j

(∂ηj p̃)∂yj −
∑
j

(∂yj p̃)∂ηj ,

and is thus tangent to the fibers (identified with T ∗X) of bT ∗XM over bT ∗XM/T ∗X
(identified with Rσ).

We next want to define normal operator36 of P ∈ Diffkb(M̄), obtained by freezing
coefficients at X = ∂M̄ . To do this naturally, we want to extend the ‘frozen
operator’ to one invariant under dilations in the fibers of the inward pointing normal
bundle +N(X) of X; see [43, Equation (4.91)]. The latter can always be trivialized
by the choice of an inward-pointing vector field V , which in turn fixes the differential
of a boundary defining function τ at X by V τ |X = 1; given such a choice we can
identify +N(X) with a product

M̄∞ = X × [0,∞)τ ,

with the normal operator being invariant under dilations in τ . Then for m = (x, τ),
bTmM̄∞ is identified with bT(x,0)M̄ .

On M̄∞ operators of the form∑
j+|α|≤k

ajα(y)(τDτ )jDα
y ,

i.e. ajα ∈ C∞(X), are invariant under the R+-action on [0,∞)τ ; its elements are

denoted by Diffb,I(M̄∞). The normal operator of P ∈ Diffkb(M̄) is given by freezing
the coefficients at X:

N(P) =
∑

j+|α|≤k

ajα(0, y)(τDτ )jDα
y ∈ Diffkb,I(M̄∞).

The normal operator family, which is a large parameter (in σ) family of differential
operators on X, is then defined as

N̂(P)(σ) = Pσ =
∑

j+|α|≤k

ajα(0, y)σjDα
y ∈ Diffk(X).

Note also that we can identify a neighborhood of X in M̄ with a neighborhood of
X ×{0} in M̄∞ (this depends on choices), and then transfer P to an operator (still
denoted by P) on M̄∞, extended in an arbitrary smooth manner; then P−N(P) ∈
τDiffkb(M̄∞).

The principal symbol p of the normal operator family, including in the high
energy (or, after rescaling, semiclassical) sense, is given by σb,k(P)|bT∗XM̄ . Corre-

spondingly, the Hamilton vector field, including in the high-energy sense, of p is
given by Hσb,k(P)|bT∗XM̄ ; see (3.3). It is useful to note that via this restriction we

drop information about Hσb,k(P) as a b-vector field, namely the τ∂τ component
is neglected. Correspondingly, the dynamics (including at high energies) for the
normal operator family is the same at radial points of the Hamilton flow regardless
of the behavior of the τ∂τ component, thus whether on bS∗M̄ = (bT ∗M̄ \ o)/R+,

36In fact, P ∈ Ψkb(M̄) works similarly.
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with the τ variable included, we have a source/sink, or a saddle point, with the
other (stable/unstable) direction being transversal to the boundary. This is re-
flected by the same normal operator family showing up in both de Sitter space
and in Minkowski space, even though in de Sitter space (and also in Kerr-de Sitter
space) in the full b-sense the radial points are saddle points, while in Minkowski
space they are sources/sinks (with a neutral direction along the conormal bundle
of the event horizon/light cone inside the boundary in both cases).

We now translate our results to solutions of (P − ıQ)u = f when Pσ− ıQσ is the
normal operator family of the b-operator P − ıQ, with P,Q ∈ Ψk

b(M̄). A typical
application is when P = �g is the d’Alembertian of a Lorentzian b-metric on M̄ ,
discussed in Subsection 3.2.

Thus, consider the Mellin transform in τ , i.e. consider the map

(3.4) M : u 7→ û(σ, .) =

∫ ∞
0

τ−ıσu(τ, .)
dτ

τ
,

with inverse transform

(3.5) M−1 : v 7→ v̌(τ, .) =
1

2π

∫
R+ıα

τ ıσv(σ, .) dσ,

with α chosen in the region of holomorphy. Note that for polynomially bounded
(in τ) u (with values in a space, such as C∞(X), L2(X), C−∞(X)), for u supported
near τ = 0, Mu is holomorphic in Imσ > C, C > 0 sufficiently large, with
values in the same space (such as C∞(X), etc). We discuss more precise statements
below. The Mellin transform is described in detail in [43, Section 5], but it is also
merely a renormalized Fourier transform (corresponding to the exponential change
of variables, τ = e−t, mentioned above), so the results below are simply those for
the Fourier transform (often of Paley-Wiener type) after suitable renormalization.

First, Plancherel’s theorem is that if ν is a smooth non-degenerate density on X
and rc denotes restriction to the line Imσ = c, then

(3.6) r−α ◦M : ταL2(X × [0,∞);
|dτ |
τ
ν)→ L2(R;L2(X; ν))

is an isomorphism. We are interested in functions u supported near τ = 0, in which
case, with r(c1,c2) denoting restriction to the strip c1 < Imσ < c2, for N > 0,

r−α,−α+N ◦M : τα(1 + τ)−NL2(X × [0,∞);
|dτ |
τ
ν)

→
{
v : R× ı(−α,−α+N) 3 σ → v(σ) ∈ L2(X; ν);

v is holomorphic in σ and sup
−α<r<−α+N

‖v(.+ ır, .)‖L2(R;L2(X;ν)) <∞
}
,

(3.7)

see [43, Lemma 5.18]. Note that in accordance with (3.6), v in (3.7) extends con-
tinuously to the boundary values, r = −α and r = −α−N , with values in the same
space as for holomorphy. Moreover, for functions supported in, say, τ < 1, one can
take N arbitrary.
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Analogous results also hold for the b-Sobolev spaces Hs
b(X × [0,∞)). For s ≥ 0,

these can be defined as in [43, Equation (5.41)]:

r−α ◦M : ταHs
b(X × [0,∞);

|dτ |
τ
ν)

→
{
v ∈ L2(R;Hs(X; ν)) : (1 + |σ|2)s/2v ∈ L2(R;L2(X; ν))

}
,

(3.8)

with the analogue of (3.7) also holding; for s < 0 one needs to use the appropriate
dual statements. See also [43, Equations (5.41)-(5.42)] for differential versions for
integer order spaces. Note that the right hand side of (3.8) is equivalent to

(3.9) 〈|σ|〉sv ∈ L2(R;Hs
〈|σ|〉−1(X; ν)),

where the space on the right hand side is the standard semiclassical Sobolev space
and 〈|σ|〉 = (1 + |σ|2)1/2; indeed, for s ≥ 0 integer both are equivalent to the
statement that for all α with |α| ≤ s, 〈|σ|〉s−|α|Dα

y v ∈ L2(R;L2(X; ν)). Here by
equivalence we mean not only the membership of a set, but also that of the standard
norms37 corresponding to these spaces. Note that by dualization, (3.9) holds for all
s ∈ R.

If P − ıQ is invariant under dilations in τ on M̄∞ = X × [0,∞) then N(P − ıQ)
can be identified with P − ıQ and we have the following simple lemma:

Lemma 3.1. Suppose P − ıQ is invariant under dilations in τ for functions sup-
ported near τ = 0, and the normal operator family N̂(P − ıQ) is of the form
Pσ − ıQσ satisfying the conditions of Section 2 and Section 7, including semiclas-
sical non-trapping. Let σj be the poles of the meromorphic family (Pσ − ıQσ)−1.
Then for ` < β−1(s − (k − 1)/2), β as in Proposition 2.3, ` 6= − Imσj for any j,

(P − ıQ)u = f , u tempered, supported near τ = 0, f ∈ τ `Hs−k+1
b (M̄∞), u has an

asymptotic expansion

(3.10) u =
∑
j

∑
κ≤mj

τ ıσj (log |τ |)κajκ + u′

with ajκ ∈ C∞(X) and u′ ∈ τ `Hs
b(M̄∞), and with the σj being the finite number

of poles of the normal operator in −` < Imσ < −α, where α is such that u ∈
τα
′
Hr

b(M̄∞) for some r and α′ > α, α′ < β−1(r − (k − 1)/2).
If instead N(P − ıQ) is semiclassically mildly trapping of order κ in a C0-strip

then for ` < C0 (still with ` < β−1(s − (k − 1)/2), ` 6= − Imσj for any j) and

f ∈ τ `Hs−k+1+κ
b (M̄∞) one has

(3.11) u =
∑
j

∑
κ≤mj

τ ıσj (log |τ |)κajκ + u′

with ajκ ∈ C∞(X) and u′ ∈ τ `Hs
b(M̄∞).

Conversely, given f in the indicated spaces, with f supported near τ = 0, a
solution u of (P − ıQ)u = f of the form (3.10), resp. (3.11), supported near τ = 0
exists.

In either case, the coefficients ajκ are given by the Laurent coefficients of (P −
ıQ)−1 at the poles σj applied to f , with simple poles corresponding to mj = 0.

If f =
∑
j

∑
κ≤m′j

ταj (log |τ |)κbjκ + f ′, with f ′ in the spaces indicated above for

f , and bjκ ∈ Hs−k+1(X), analogous results hold when the expansion of f is added

37Standard up to equivalence, such as
(∑

|α|≤s
∫
Imσ=−α〈|σ|〉2(s−|α|)‖Dαy v‖2L2(X;ν)

dσ
)1/2

.
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to the form of (3.10) and (3.11), in the sense of the extended union of index sets,
see [43, Section 5.18].

Further, the result is stable under sufficiently small dilation-invariant perturba-
tions in the b-sense, i.e. if P ′ and Q′ are sufficiently close to P and Q in Ψk

b(M̄∞)
with P ′σ and Q′σ possessing real principal symbols, and that of Q′σ is non-negative,
then there is a similar expansion for solutions of (P ′ − ıQ′)u = f .

For P∗ + ıQ∗ in place of P − ıQ, analogous results apply, but we need ` <
−β−1(s − (k − 1)/2), and the ajκ are not smooth, rather have wave front set38 in
the Lagrangians Λ±.

Remark 3.2. Thus, for P − ıQ, the more terms we wish to obtain in an expansion,
the better Sobolev space we need to work in. For P∗ + ıQ∗, dually, we need to be
in a weaker Sobolev space under the same circumstances. However, these spaces
only need to be worse at the radial points, so under better regularity assumptions
on f we still get the expansion in better Sobolev spaces away from the radial points
— in particular in elliptic regions. This is relevant in our description of Minkowski
space.

Remark 3.3. If the large Imσ, i.e. Im z 6= 0, assumptions in Section 7 are not
satisfied (but the assumptions corresponding to a strip, i.e. roughly real z, still
are), the proof of this lemma still goes through apart from the support conclusion
in the existence part. For the existence argument, one can then pick any α < `
with (Pσ − ıQσ)−1 having no poles on the line Imσ = −α; different choices of α
result in different solutions. See also Remark 7.4.

Proof. First consider the expansion. Suppose α, r ∈ R are such that α < β−1(r −
(k − 1)/2), u ∈ ταHr

b(M̄∞) and (Pσ − ıQσ)−1 has no poles on the line Imσ = −α;
note that the vanishing of u for τ > 1 and the absence of poles of (Pσ− ıQσ)−1 near
infinity inside strips (by the semiclassical non-trapping/mildly trapping assump-
tions) means that this can be arranged, and then also u ∈ τα(1+τ)−NHr

b(M̄∞) for
all N . The Mellin transform of the PDE, a priori on Imσ = −α, is (Pσ−ıQσ)Mu =
Mf . Thus,

(3.12) Mu = (Pσ − ıQσ)−1Mf

there. If f ∈ τ `Hs−k+1
b (M̄∞), then shifting the contour of integration in the inverse

Mellin transform, (3.5), to Imσ = −`, we obtain contributions from the poles of
(Pσ − ıQσ)−1, giving the expansion in (3.10) and (3.11) by Cauchy’s theorem. The
shift of the contour is justified by Theorem 2.14 or Theorem 2.17, depending on non-
trapping or mild trapping assumptions, giving the high energy estimates controlling
the integral as |Reσ| → ∞. The error term u′ is what one obtains by integrating
along the new contour in view of the high energy bounds on (Pσ − ıQσ)−1 (which
differ as one changes one’s assumption from non-trapping to mild trapping), and
the assumptions on f .

Conversely, to obtain existence, let α < min(`,− sup Imσj) and define u ∈
ταHs

b(M̄∞) by (3.12) using the inverse Mellin transform with Imσ = −α. Then u
solves the PDE, hence the expansion follows by the first part of the argument. The

38See the discussion after (2.21). Also note that while for P − ıQ the coefficients ajκ are

smooth, the operator mapping f to ajκ is not smoothing exactly because of the non-smoothness
of the expansion for the adjoint operator: it maps sufficiently regular f to smooth functions, but

cannot be applied to all distributional f .
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support property of u follows from Paley-Wiener, taking into account holomorphy
in Imσ > −α, and the estimates on Mf and (Pσ − ıQσ)−1 there.

Finally, stability of the expansion follows from Subsection 2.7 since the mero-
morphy and the large σ estimates are stable under such a perturbation. Note that
the condition on the principal symbol of P ′σ and Q′σ to be independent of σ is auto-
matically satisfied, for this is just the principal symbol in Ψk

b(M̄∞) (which stands
for one-step, or classical b-pseudodifferential operators) of P ′ and Q′ evaluated at
σ = 0 (or any other finite constant), cf. the large parameter discussion at the end
of Subsection 2.1. �

Remark 3.4. One actually gets estimates for the coefficients ajκ and u′ in (3.10)-
(3.11). Indeed, in view of the isomorphism (3.9) and the contour deformation after

(3.12), u′ is bounded in τ `Hs
b(M̄∞) by f in τ `Hs−k+1

b (M̄∞) in the non-trapping
case, with the κ shift in the mildly trapping case. Then, in the nontrapping case,
the norm of f in τ `Hs−k+1

b (M̄∞) gives a bound for the norm of Mf on the line

Imσ = −` in 〈|σ|〉−(s−k+1)L2(R;Hs−k+1
〈|σ|〉−1(X)); now the non-trapping bounds for

(Pσ−ıQσ)−1 imply that (Pσ−ıQσ)−1Mf is bounded in 〈|σ|〉−sL2(R;Hs
〈|σ|〉−1(X)),

and thus u′ is bounded in τ `Hs
b(M̄∞). One gets similar bounds for the ajκ; indeed

only the norm of f in slightly less weighted spaces (i.e. with a weight `′ < `)
corresponding to the location of the poles of (Pσ − ıQσ)−1 is needed to estimate
these. In the case of mild trapping, one needs stronger norms on f corresponding
to κ in view of the bounds on (Pσ − ıQσ)−1 then.

One can iterate this to obtain a full expansion even when P − ıQ is not dilation
invariant. Note that in most cases considered below, Lemma 3.1 suffices; the ex-
ception is if we allow general, non-stationary, b-perturbations of Kerr-de Sitter or
Minkowski metrics.

Proposition 3.5. Suppose (P − ıQ)u = f , and the normal operator family N̂(P −
ıQ) is of the form Pσ−ıQσ satisfying the conditions of Sections 2 and39 7, including
semiclassical non-trapping. Then for ` < β−1(min(s, r − 1)− |`− α| − (k − 1)/2),
` /∈ − Imσj + N for any j, u ∈ ταHr

b(M̄∞) supported near 0, (P − ıQ)u = f ,

f ∈ τ `Hs−k+1
b (M̄∞), u has an asymptotic expansion

(3.13) u =
∑
j

∑
l

∑
κ≤mjl

τ ıσj+l(log |τ |)κajκl + u′

with ajκ ∈ C∞(X) and u′ ∈ τ `Hmin(s,r−1)−[`−α]
b (M̄∞), [`−α] being the integer part

of `− α.
If instead N(P − ıQ) is semiclassically mildly trapping of order κ in a C0-strip

then for ` < C0 and f ∈ τ `Hs−k+1+κ
b (M̄∞) one has

(3.14) u =
∑
j

∑
l

∑
κ≤mjl

τ ıσj+l(log |τ |)κajκl + u′

with ajκl ∈ C∞(X) and u′ ∈ τ `Hmin(s,r−1)−[`−α]
b (M̄∞).

If f =
∑
j

∑
κ≤m′j

ταj (log |τ |)κbjκ + f ′, with f ′ in the spaces indicated above for

f , and bjκ ∈ Hs−k+1(X), analogous results hold when the expansion of f is added

39See Remark 3.3.
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to the form of (3.13) and (3.14) in the sense of the extended union of index sets,
see [43, Section 5.18].

If σb,k(P−ıQ) vanishes on the characteristic set of N(P−ıQ) to infinite order in
Taylor series at τ = 0, then there are no losses in the order of u′, i.e. one can replace

u′ ∈ τ `Hmin(s,r−1)−[`−α]
b (M̄∞) by u′ ∈ τ `Hmin(s,r)

b (M̄∞), and ` < β−1(min(s, r −
1)− |`−α| − (k− 1)/2) by ` < β−1(min(s, r)− (k− 1)/2), giving the same form as
in Lemma 3.1 apart from the presence of the a priori regularity r.

Conversely, under the characteristic assumption in the previous paragraph, given
f in the indicated spaces, with f supported near τ = 0, a solution u of (P −
ıQ)u = f + f ] of the form (3.10), resp. (3.11), f ] ∈ τ∞Hs−k+1

b (M̄∞), resp.

Hs−k+1+κ
b (M̄∞), supported near τ = 0, exists.
Again, the result is stable under sufficiently small perturbations, in the b-sense, of

P and Q, in the same sense, apart from dilation invariance, as stated in Lemma 3.1.

Remark 3.6. The losses in the regularity of u′ without further assumptions are
natural due to the lack of ellipticity. Specifically, if, for instance, u is conormal to
a hypersurface S transversal to X, as is the case in many interesting examples, the
orbits of the R+-action on M̄∞ must be tangent to S to avoid losses of regularity
in the Taylor series expansion.

In particular, there are no losses if (P − ıQ) − N(P − ıQ) ∈ τDiffk−1
b (M̄∞),

rather than merely in τDiffkb(M̄∞).
We only stated the converse result under the extra characteristic assumption to

avoid complications with the Sobolev orders. Global solvability depends on more
than the normal operator, which is why we do not state such a result here.

Proof. One proceeds as in Lemma 3.1, Mellin transforming the problem, but re-
placing P − ıQ by N(P − ıQ). Note that (P − ıQ) − N(P − ıQ) ∈ τDiffkb(M̄∞).
We treat

f̃ = ((P − ıQ)−N(P − ıQ))u

as part of the right hand side, subtracting it from f , so

N(P − ıQ)u = f − f̃ .
If u ∈ ταHr

b(M̄∞) is supported near 0, then f̃ ∈ τα+1Hr−k
b (M̄∞) (or, under the

characteristic assumption on P − ıQ, f̃ ∈ τα+1Hr−k+1
b (M̄∞)), so Lemma 3.1 is

applicable with ` replaced by min(`, α+ 1). If ` ≤ α+ 1, we are done, otherwise we
repeat the argument. Indeed, we now know that u is given by an expansion giving

rise to poles ofMu in Imσ > α+1 plus an element of τα+1H
min(s,r−1)
b (M̄∞), so we

also have better information on f̃ , namely it is also given by a partial expansion, plus

an element of τα+2H
min(s,r−1)−k
b (M̄∞), or indeed τα+2H

min(s,r)−k+1
b (M̄∞) under

the characteristic assumption on P− ıQ. Using the f with a partial expansion part
of Lemma 3.1 to absorb the ũ terms, we can work with ` replaced by min(`, α+2). It
is this step that starts generating the sum over l in (3.13) and (3.14). The iteration
stops in a finite number of steps, completing the proof.

For the existence, define a zeroth approximation u0 to u using N(P − ıQ) in

Lemma 3.1, and iterate away the error f̃ = ((P− ıQ)−N(P− ıQ))u0−f in Taylor
series. �

3.2. Lorentzian metrics. We now review common properties of Lorentzian b-
metrics g on M̄ . Lorentzian b-metrics are symmetric non-degenerate bilinear forms
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on bTmM̄ , m ∈ M̄ , of signature (1, n−1), i.e. the maximal dimension of a subspace
on which g is positive definite is exactly 1, which depend smoothly on m. In other
words, they are symmetric sections of bT ∗M̄ ⊗ bT ∗M̄ which are in addition non-
degenerate of Lorentzian signature. Usually it is more convenient to work with
the dual metric G, which is then a symmetric section of bTM̄ ⊗ bTM̄ which is in
addition non-degenerate of Lorentzian signature.

By non-degeneracy there is a nowhere vanishing b-density associated to the met-

ric, |dg|, which in local coordinates (τ, y) is given by
√
|det g| |dτ |τ |dy|, and which

gives rise to a Hermitian (positive definite!) inner product on functions. There is
also a non-degenerate, but not positive definite, inner product on the fibers of the
b-form bundle, bΛM̄ , and thus, when combined with the aforementioned Hermitian
inner product on functions, an inner product on differential forms which is not pos-
itive definite only due to the lack of definiteness of the fiber inner product. Thus,
A∗ is defined, as a formal adjoint, for any differential operator A ∈ Diffkb(M̄ ; bΛM̄)
acting on sections of the b-form bundle, such as the exterior derivative, d. Thus, g
gives rise to the d’Alembertian,

�g = d∗d+ dd∗ ∈ Diff2
b(M̄ ; ΛM̄),

which preserves form degrees. The d’Alembertian on functions is also denoted by
�g. The principal symbol of �g is

σb,2(�g) = G.

As discussed above, the normal operator of �g on M̄ is N(�g) ∈ Diffb,I(M̄∞),
M̄∞ = X × [0,∞)τ . If M̄ = M̄∞ (i.e. it is a product space to start with) and if
�g already has this invariance property under a product decomposition, then the
normal operator can be identified with �g itself. Taking the Mellin transform in τ ,
we obtain a family of operators, Pσ, on X, depending analytically on σ, the b-dual
variable of τ . For z ∈ C not necessarily real the semiclassical principal symbol of
Ph,z = h2Ph−1z is just the dual metric G on the complexified cotangent bundle
b,CT ∗mM̄ , m = (x, τ), evaluated on covectors $ + z dττ , where $ is in the (real)

span Π of the ‘spatial variables’ T ∗xX; thus Π and dτ
τ are linearly independent.

Although for now we are interested in z real mostly, we consider z complex for the
next paragraphs since complex values of z motivate the choice of the function used
to divide up the characteristic set in (3.16). Thus, for z complex,

〈$ + z
dτ

τ
,$ + z

dτ

τ
〉G

= 〈$ + Re z
dτ

τ
,$ + Re z

dτ

τ
〉G − (Im z)2〈dτ

τ
,
dτ

τ
〉G

+ 2ı Im z〈$ + Re z
dτ

τ
,
dτ

τ
〉G.

(3.15)

For Im z 6= 0, the vanishing of the imaginary part states that 〈$+Re z dττ ,
dτ
τ 〉G = 0;

the real part is the first two terms on the right hand side of (3.15).
Although we do not need it for our considerations in | Imσ| < C, when working

with a larger half-plane it is very useful to assume, in view of (3.15), that dτ
τ is

time-like for G; see Section 7.
Furthermore, for z ∈ C non-zero, motivated by (3.15), we consider the hyper-

surface 〈$ + Re z dττ ,
dτ
τ 〉G = 0. The characteristic set of p~,z cannot intersect this

hypersurface, for G is negative definite on covectors satisfying this equality, so if
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the intersection were non-empty, $ + Re z dττ would vanish there, as would Im z in
view of the second term of (3.15), which cannot happen for $ ∈ Π since z 6= 0 by
assumption. Correspondingly, we can divide the semiclassical characteristic set in
two parts by

(3.16) Σ~,± ∩ T ∗X = {$ ∈ Σ~ ∩ T ∗X : ±〈$ + Re z
dτ

τ
,
dτ

τ
〉G > 0};

note that by the definiteness of the quadratic form on this hypersurface, in fact

this separation holds on the fiber-compactified bundle, T
∗
X. In general, one of the

‘components’ Σ~,± may be empty.
From now on in this Subsection, we take z real unless otherwise specified. More-

over, for m ∈ M̄ , and with Π denoting the ‘spatial’ hyperplane in the real cotangent
bundle, bT ∗mM̄ , the Lorentzian nature of G means that for z real and non-zero, the
intersection of Π + z dττ with the zero-set of G in bT ∗q M̄ , i.e. the characteristic set,
has two components if G|Π is Lorentzian, and one component if it is negative def-
inite (i.e. Riemannian, up to the sign). Further, in the second case, on the only
component 〈$+ z dττ ,

dτ
τ 〉G and 〈z dττ , dττ 〉G have the same sign, so only Σ~,sgn z can

enter the elliptic region.
We also need information about p~,z − ıq~,z, i.e. when the complex absorption

has been added, with q~,z defined for z in an open set Ω̃ ⊂ C \ {0}. Since for the
semiclassical principal symbols only z real matters, here we need to choose q~,z in
such a way as to ensure that for real z 6= 0, q~,z is real and ∓q~,z ≥ 0 on Σ~,± (as
well as an classical and semiclassical ellipticity condition in the region in which q~,z
is to provide absorption; we discuss this below (3.17) in terms of χ > 0). In order
to arrange this, we take40, with fz a first order symbol elliptic in the classical sense,

q~,z = −χfz〈$ + z
dτ

τ
,
dτ

τ
〉G, z ∈ R⇒ fz is real,

χ ≥ 0, independent of z;
(3.17)

note that if in addition fz is bounded away from 0 when z is bounded away from 0
in R, then the above conditions for real z are then automatically satisfied in view
of (3.16). In addition, at points where χ > 0, p~,z− ıq~,z does not vanish for z real,

since the imaginary part, q~,z, is non-zero except when 〈$+ z dττ ,
dτ
τ 〉G = 0, but in

that case the real part satisfies p~,z < 0 by (3.16). Further, p~,z − ıq~,z is elliptic in
the classical sense where χ > 0 for the same reason.

Since 〈$ + z dττ ,
dτ
τ 〉G is holomorphic in z, we actually obtain a holomorphic

family of operators if we choose fz to be such.
In fact, typically p~,z itself is not globally defined, so we need to extend it beyond

the domain where it is defined. Typically one has a function µ on X with dµ time-
like41 for µ near µ1 ∈ R, and p~,z is given by a Lorentzian b-metric in µ ≥ µ1,

but we need to extend p~,z to µ < µ1. For this purpose, we first let H̃ to be a
Riemannian metric on X, and then for some j ≥ 1 integer we let

p̂~,z =
(
‖$‖2j

H̃
+ z2j

)1/j

;

40For now z real being the only case, but in Section 7 z complex is allowed in the same

expression.
41This actually does not matter for the discussion below, but due to Subsection 3.3 it ensures

that the choice of the extension is irrelevant.
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thus the case of j = 1 actually corresponds to a Riemannian b-metric in which dτ
τ

and $ ∈ T ∗xX are orthogonal, unlike in the case of G. Here we choose the branch
of the jth root function which is positive along the positive reals and has a branch
cut along the negative reals, and take as the domain of p̂~,z the values of $ and z

for which ‖$‖2j
H̃

+ z2j lies outside the branch cut. Thus, the complement Dj of the

rays z = reiπ(2k+1)/(2j), k an integer, r ≥ 0, is always in the domain of p̂~,z, and
thus as j varies, these domains cover any compact set of C disjoint from 0. Now
let µ0 > µ′0 > µ′1 > µ1, and choose a partition of unity χ1 + χ2 = 1, χj ≥ 0, with
suppχ1 ⊂ (µ′1,+∞), suppχ2 ⊂ (−∞, µ′0). Further, with z > 0 a constant to be
chosen, let χ ≥ 0 be identically z on [µ′1, µ

′
0] and supported in (µ1, µ0), let

fz =
(
‖$‖2j

H̃
+ z2j

)1/2j

,

where again the branch cut for the 2jth root is along the negative reals, so p̂~,z = f2
z .

In particular, note that Re fz > 0 with this choice, and even Re f2
z > 0 if j ≥ 2.

Now, let

(3.18) p̃~,z = χ1p~,z − χ2p̂~,z,

and let q~,z be defined by (3.17). We already know from the discussion after (3.17)
that where χ1 = 1, p̃~,z − ıq~,z satisfies our requirements. We claim that where
either χ2 > 0 or χ > 0, p̃~,z − ıq~,z is actually elliptic; where χ2 = 0 but χ >
0, this was checked above. Note that as ‖$‖H̃ → ∞ and z in a compact set,
semiclassical ellipticity becomes a statement (namely, that of ellipticity) for the
standard principal symbol, p̃− ıq, which is easy to check as

p̃− ıq = χ1〈$,$〉G − χ2‖$‖2H̃ + ıχ‖$‖H̃〈$,
dτ

τ
〉,

homogeneous of degree 2 in $. Indeed, the imaginary part of p̃− ıq only vanishes
(for $ 6= 0) when either χ or 〈$, dττ 〉 does. In the former case, χ2 = 1 and χ1 = 0,
so p̃− ıq < 0. In the latter case, 〈$,$〉G is negative definite, so the real part does
not vanish as χ1 + χ2 = 1. Hence, for sufficiently large $, p̃~,z − ıq~,z is elliptic in
this region; we only need to consider whether it vanishes for finite $. Next, if z is
real, z 6= 0, then fz > 0,

(3.19) p̃~,z − ıq~,z = χ1〈$ + z
dτ

τ
,$ + z

dτ

τ
〉G − χ2f

2
z + ıχfz〈$ + z

dτ

τ
,
dτ

τ
〉,

so again the imaginary part only vanishes if either χ or 〈$ + z dττ ,
dτ
τ 〉 does. In

the former case, χ2 = 1 and χ1 = 0 so p̃~,z − ıq~,z < 0. In the latter case,

〈$+ z dττ , $+ z dττ 〉G is negative definite, so the real part of p̃~,z − ıq~,z is negative.
Thus, if q~,z is given by (3.17) and if we extend p~,z to a new symbol, p̃~,z across

a hypersurface, µ = µ1, in the manner (3.18), then with χ, χ1 and χ2 as discussed
there, p̃~,z − ıq~,z satisfies the requirements for p~,z − ıq~,z, and in addition it is
elliptic in the extended part of the domain. We usually write p~,z − ıq~,z for this
extension. Thus, these properties need not be checked individually in specific cases.

We remark that fz as above arises from the standard quantization Fσ of(
‖$‖2j

H̃
+ σ2j + C2j

)1/2j

,

for C > 0 arbitrarily chosen; the large-parameter rescaling hFh−1z of this has
the semiclassical principal symbol fz. Then for the induced operators Pσ − ıQσ,
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the operators are holomorphic in the domain Ωj,C given with C with the half-

lines eiπ(2k+1)/(2j)[C,+∞), k an integer, removed, and thus as j and C vary, these
domains cover C, and they all include strips | Imσ| < C ′ for sufficiently small
C ′ > 0.

It is useful to note the following explicit calculation regarding the time-like char-
acter of dτ

τ if we are given a Lorentzian b-metric g that, with respect to some local

boundary defining function τ̃ and local product decomposition U × [0, δ)τ̃ of M̄

near U ⊂ X open, is of the form G = (τ̃ ∂τ̃ )2 − G̃ on U × [0, δ)τ̃ , G̃ a Riemannian
metric on U . In this case, if we define τ = τ̃ eφ, φ a function on X, so dτ

τ = dτ̃
τ̃ +dφ,

then

〈dτ
τ
,
dτ

τ
〉G = 〈dτ̃

τ̃
,
dτ̃

τ̃
〉G − 〈dφ, dφ〉G = 1− 〈dφ, dφ〉G̃,

so dτ
τ is time-like if |dφ|G̃ < 1. Note that the effect of such a coordinate change on

the Mellin transform of the normal operator of �g is conjugation by e−ıσφ since
τ̃−ıσ = τ−ıσeıσφ. Such a coordinate change is useful whenG has a product structure
on U × [0, δ)τ̃ , but τ̃ is only a local boundary defining function on U × [0, δ)τ̃ (the
product structure might not extend smoothly beyond U), in which case it is useful
to see if one can conserve the time-like nature of dτ̃

τ̃ for a global boundary defining
function. This is directly relevant for the study of conformally compact spaces in
Subsection 4.9.

3.3. Wave equation localization. In this section we recall energy estimates and
their consequences when Pσ ∈ Diff2(X) is the wave operator to leading order in
a region O ⊂ X, i.e. when for a Lorentzian metric h on O, Pσ − �h ∈ Diff1(O),
and indeed when an analogous statement holds in the ‘large parameter’ sense as
well, with the latter naturally arising by Mellin transforming b-wave equations.
These results are not needed for the Fredholm properties, but are very useful in
describing the asymptotics of the solutions of the wave equation on Kerr-de Sitter
space as they show that certain terms arising from cutoffs do not affect the solution
in the region of interest. These are also useful for giving an alternative explanation
why the choice of the extension of the modified Laplacian across the boundary is
unimportant on an (asymptotically) hyperbolic space. In this whole subsection we
assume | Imσ| < C0 in our uniform estimates, i.e. we only work in strips in C.

So assume that one is also given a function t : O → (t0, t1) with dt time-like
and with t proper on O. Then one has the standard energy estimate; see e.g. [51,
Section 2.8] for a version of these estimates (in a slightly different setup):

Proposition 3.7. Assume t0 < T0 < T ′0 < T1 < t1. Then

‖u‖H1(t−1([T ′0,T1])) ≤ C
(
‖u‖H1(t−1([T0,T ′0])) + ‖Pσu‖L2(t−1([T0,T1]))

)
.

Before proceeding, we recall here Remark 2.2: the error terms in our estimates
in Section 2 can be localized in the base space X when one use sufficiently localized
pseudodifferential operators, i.e. one does not need the global space H−N in the
errors. This will be useful for us below in using the basic energy estimate to control
such errors.

For us, even more important is a semiclassical version of Proposition 3.7. The
setup is more conveniently formulated in the large parameter setting, where the
large parameter is interpreted as the dual variable of an extra variable of which the
operator is independent. So with O as above, consider the family Pσ ∈ Diff2(O)



46 ANDRAS VASY

with large parameter dependence, and assume that the large parameter principal

symbol of Pσ, pσ, is the dual metric function G on T ∗O×bT ∗R+
τ of an R+-invariant

(acting as dilations in the second factor on O × R+) Lorentzian b-metric g, where

σ is the b-dual variable42 on bT ∗R+. Suppose moreover that, as above, we are also
given a function t : O → (t0, t1) with dt time-like and with t proper on O. Then

Proposition 3.8. Assume t0 < T0 < T ′0 < T1 < t1. Then, with Ph,z = h2Ph−1z,

‖u‖H1
~(t−1([T ′0,T1])) ≤ C

(
‖u‖H1

~(t−1([T0,T ′0])) + h−1‖Ph,zu‖L2(t−1([T0,T1]))

)
.

We remark that Proposition 3.7 implies the corresponding estimate for σ finite
(with the standard proof giving uniform dependence on σ in compact sets), so we
may assume h < 1, i.e. |σ| > 1, here without losing control in a bounded set of σ.

Proof. We start by remarking that the L2 norm on the right hand side is just the
H0

~ norm, so this is a non-microlocal real principal type estimate except that there
is no error term h‖u‖H−N~ (t−1([T0,T1])) norm inside the parentheses on the right hand

side (cf. the displayed equation in Footnote 32), and except that one would usually
expect that both h−1‖Ph,zu‖L2(t−1([T0,T1])) and h‖u‖H−N~ (t−1([T0,T1])) should in fact

be taken on a larger set, such as t−1([T0, T
′
1]), T ′1 > T1. The point is thus to gain

these improvements; this is done by a version of the classical energy estimates. We
note that of these observations the only truly important part is the absence of a
term h‖u‖H−N~ (t−1([T0,T ′1])), which is thus on a larger set – this would prevent the

argument leading to Proposition 3.9 below.
The following is essentially the standard proof of energy estimates, see e.g. [51,

Section 2.8], but in a different context. Here we phrase it as done in [56, Sections 3
and 4]. So consider Vσ = −ıZσ, Zσ = χ(t)Wσ, and let Wσ be given by W = G(dt, .)
considered as a first order differential operator on O. That is, on O × R+, G(dt, .)
gives a vector field of the form W = W ′ + a τ∂τ , with W ′ a vector field on O and
a a function on O (both independent of τ), and via the Mellin transform one can
consider W as Wσ = W ′+ ıaσ, a σ-dependent first order differential operator on O,
with standard large-parameter dependence. Let � be the d’Alembertian of g, and
let �σ be its Mellin conjugate, so Pσ−�σ is first order, even in the large parameter
sense, on O. As usual in energy estimates, we want to consider the ‘commutator’

(3.20) −ı(V ∗σ�σ − (�σ)∗Vσ).

While this can easily be computed directly, in order to connect it to the wave
equation, we first recall the computation of −ı(V ∗�−�V ) on O×R+ with adjoints
taken using the Lorentzian density (so � is formally self-adjoint), rephrase this in
terms of Diffb(O × [0,∞)); note that �, V ∈ Diffb(O × [0,∞)) so

−ı(V ∗�−�V ) ∈ Diff2
b(O × [0,∞)).

Since all operators here are R+-invariant, the b-expressions are mostly a matter of
notation. We then Mellin transform to compute43 (3.20).

42We could also work with T ∗R and standard dual variables via a logarithmic change of
variables, changing dilations to translations, but in view of the previous section, the b-setup is
particularly convenient.

43Operating with − log τ in place of τ one would have translation invariance, no changes
required into the b-notation, and one would use the Fourier transform.



MICROLOCAL ASYMPTOTICALLY HYPERBOLIC AND KERR-DE SITTER 47

Then, the usual computation, see [56, Section 3] for it written down in this form,
using the standard summation convention, yields

− ı(V ∗�−�V ) = d∗Cd, Cji = gi`B
`j

Bij = −J−1∂k(JZkGij) +Gik(∂kZ
j) +Gjk(∂kZ

i),
(3.21)

where Cji are the matrix entries of C relative to the basis {dz`} of the fibers of the
cotangent bundle (rather than the b-cotangent bundle), z` = y` for ` ≤ n− 1, the
y` local coordinates on a chart in O, zn = τ . Expanding B using Z = χW , and
separating the terms with χ derivatives, gives

Bij = Gik(∂kZ
j) +Gjk(∂kZ

i)− J−1∂k(JZkGij)

= (∂kχ)
(
GikW j +GjkW i −GijW k

)
+ χ

(
Gik(∂kW

j) +Gjk(∂kW
i)− J−1∂k(JW kGij)

)
.

(3.22)

Multiplying the first term on the right hand side by αi αj (and summing over i, j;
here α ∈ Cn ' CT ∗q (O × R+), q ∈ O × R+) gives

EW,dχ(α) = (∂kχ)(GikW j +GjkW i −GijW k)αi αj

= (α, dχ)G α(W ) + α(W ) (dχ, α)G − dχ(W )(α, α)G = χ′(t)EW,dt,

EW,dt = (α, dt)G α(W ) + α(W ) (dt, α)G − dt(W )(α, α)G.

(3.23)

Now, EW,dt is twice the sesquilinear stress-energy tensor associated to α, W and dt.
This is well-known to be positive definite in α, i.e. EW,dχ(α) ≥ 0, with vanishing if
and only if α = 0, when W and dt are both forward time-like for smooth Lorentz
metrics, see e.g. [51, Section 2.7] or [32, Lemma 24.1.2]; (7.10) below provides the
computation when α is real.

We change to a local basis of the b-cotangent bundle and use the b-differential
bd = (dX , τ∂τ ) and the local basis {dy1, . . . , dyn−1,

dτ
τ } of the fibers of the b-

cotangent bundle, ∂̂j = δj∂j , δj = 1 for j ≤ n− 1, δn = τ , for the local basis of the

fibers of the b-tangent bundle, write Ĝij , ĝij for the corresponding metric entries,

Ẑi for the vector field components. This yields

− ı(V ∗�−�V ) = bd∗ Ĉ bd, Ĉji = ĝi`B̂
`j

B̂ij = −J−1δ−1
k δ−1

i δ−1
j ∂̂k(JδkẐ

kδiδjĜ
ij) + Ĝik(δ−1

j ∂̂kδjẐ
j) + Ĝjk(δ−1

i ∂̂kδiẐ
i).

(3.24)

While the δ-factors may have non-vanishing derivatives in the above expression for
B̂, if these are differentiated, χ in Ẑi = χŴ i is not, so we conclude that

B̂ij =(∂̂kχ)
(
ĜikŴ j + ĜjkŴ i − ĜijŴ k

)
+ χ

(
Ĝikδ−1

j (∂̂kδjW
j) +Gjkδ−1

i (∂̂kδiW
i)

− J−1δ−1
k δ−1

i δ−1
j ∂̂k(JδkδiδjW

kGij)
)
,

and so

Ĉ = χ′A+ χR,

with A positive definite, i.e. fixing any positive definite R+-invariant inner product
g̃ on bT ∗(O × [0,∞)), 〈Ĉα, α〉g ≥ c‖α‖2g̃, α ∈ CbT ∗(O × [0,∞)). Notice that the
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inner product on the left hand side is with respect to g, and is thus not positive
definite. It is thus useful to rewrite

bd∗g Ĉ
bd = bd∗g̃ C̃

bd, C̃ = χ′Ã+ χR̃,

where the subscript denotes the inner product with respect to which the adjoint is

taken. Below it is convenient to take g̃ to be of product form, so g̃ = dτ2

τ2 + h̃, h̃ a
Riemannian metric on O. Further, the R+-invariant b-density |dg| can be written

as |dτ |τ ω, where ω is a smooth density on O; we may choose h̃ so that ω is the

volume density of h̃.
Then for any dilation invariant L ∈ Diffkb(O × [0,∞)), we can write L =∑
α≤k Lα(τDτ )α, Lα ∈ Diffk−α(O) lifted via the product structure and then

L∗dg =
∑
α(Lα)∗

h̃
(τDτ )α, where the subscript under the adjoint sign denotes the

density with respect to which it is taken. This gives under the Mellin transform
Lσ =

∑
α Lασ

α, (L∗dg)σ =
∑
α(Lα)∗

h̃
σα, so

(Lσ)∗
h̃

=
∑
α

(Lα)∗
h̃
σα = (L∗dg)σ.

In particular, if L∗dg = L then (Lσ)∗
h̃

= Lσ, so Lσ is formally self-adjoint with

respect to h̃ when σ is real, and in general then (Lσ)∗
h̃
−Lσ = (Imσ)L̃σ, where L̃σ

is a large parameter differential operator of order k−1 (which is not holomorphic in
σ). The analogous computations also work on cotangent bundle valued differential
operators if the adjoint is taken with respect to g̃, so for instance it works for
bd∗g̃C̃

bd above.

The Mellin transformed version of (3.24) finally computes (3.20); it reads as

(3.25) −ı((V ∗)σ�σ −�σVσ) = (d∗g̃)σC̃dσ, C̃ = χ′Ã+ χR̃

where dσ = (dX , ıσ), with the last component being multiplication by ıσ, while
(d∗g̃)σ = (dσ)∗g̃ is the transpose of (d∗

X,h̃
,−ıσ), and A is positive definite. In particu-

lar, (�σ)∗−�σ = �σ−�σ, which in the strip | Imσ| < C0 is first order in the large
parameter sense, i.e. is of the form S + σT ′ + σT ′′, S ∈ Diff1(O), T ′, T ′′ ∈ C∞(O)
dependent on σ only via the bounded quantity Imσ (i.e. are uniformly controlled).
Correspondingly, dropping the subscripts on adjoints,

− ı((V ∗)σPσ − (Pσ)∗Vσ)

= −ı((V ∗)σ�σ −�σVσ)− ı(V ∗)σ(Pσ −�σ) + ı(Pσ −�σ)∗Vσ + ı((�σ)∗ −�σ)Vσ

= (dσ)∗C̃dσ + Êχdσ + (dσ)∗χÊ∗,

(3.26)

where Ê = (ÊX , Ê
′), ÊX ∈ C∞(O;TX), Ê′ ∈ C∞(O), and

C̃ = χ′Ã+ χR̃],

since the contribution of Pσ −�σ and �σ −�σ to second order terms in the large
parameter sense is only via terms not differentiated in χ, and where we absorbed
(dσ)∗ − (d∗)σ arising from the right hand side of (3.25) in the Ê term. A standard
argument, given below, making χ′ large relative to χ, completes the proof.

Indeed, let χ0(s) = e−1/s for s > 0, χ0(s) = 0 for s ≤ 0, χ1 ∈ C∞(R) identically
1 on [1,∞), vanishing on (−∞, 0], Thus, s2χ′0(s) = χ0(s) for s ∈ R. Now let
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Figure 3. The graph of the function χ used below.

T ′1 ∈ (T1, t1), and consider (see Figure 3)

χ(s) = χ0(−z−1(s− T ′1))χ1((s− T0)/(T ′0 − T0)).

Then

• suppχ ⊂ [T0, T
′
1],

• s ∈ [T ′0, T
′
1]⇒ χ′ = −z−1χ′0(−z−1(s− T ′1)),

so
s ∈ [T ′0, T

′
1]⇒ χ = −z−1(s− T ′1)2χ′,

so for z > 0 sufficiently large, this is bounded by a small multiple of χ′, namely

(3.27) s ∈ [T ′0, T
′
1]⇒ χ ≤ −γχ′, γ = (T ′1 − T ′0)2z−1.

In particular, for sufficiently large z,

−(χ′Ã+ χR̃]) ≥ −χ′0χ1Ã/2

on [T ′0, T
′
1]. Thus,

〈d∗σC̃dσu, u〉 ≥ −
1

2
〈χ′0χ1Ãdσu, dσu〉 − C ′‖dσu‖2L2(t−1([T0,T ′0])).

So for some c0 > 0, by (3.26),

c0‖(−χ′0)1/2χ
1/2
1 dσu‖2 ≤ −

1

2
〈χ′0χ1Ãdσu, dσu〉

≤ C ′‖dσu‖2L2(t−1([T0,T ′0])) + C ′‖χ1/2Pσu‖‖χ1/2dσu‖+ C ′‖χ1/2u‖‖χ1/2dσu‖
≤ C ′‖dσu‖2L2(t−1([T0,T ′0])) + C ′‖χ1/2Pσu‖2 + 2C ′γ‖(−χ′0)1/2χ1dσu‖2

+ C ′γ|σ|−1‖(−χ′0)1/2χ1dσu‖2,

(3.28)

where we used ‖χ1/2u‖ ≤ |σ|−1‖χ1/2dσu‖ (which holds in view of the last com-
ponent of dσ). Thus, choosing first z > 0 sufficiently large (thus γ > 0 is suf-
ficiently small), and then |σ| sufficiently large, the last two terms on the right
hand side can be absorbed into the left hand side. Rewriting in the semiclassical
notation gives the desired result, except that ‖Ph,zu‖L2

~(t−1([T0,T1])) is replaced by

‖Ph,zu‖L2
~(t−1([T0,T ′1])) (or ‖χ1/2Ph,zu‖L2

~(t−1([T0,T ′1]))). This however is easily reme-

died by replacing χ by

χ(s) = H(T1 − s)χ0(−z−1(s− T ′1))χ1((s− T0)/(T ′0 − T0)),

where H is the Heaviside step function (the characteristic function of [0,∞)) so
suppχ ⊂ [T0, T1]. Now χ is not smooth, but either approximating H by smooth
bump functions and taking a limit, or indeed directly performing the calculation,
integrating on the domain with boundary t ≤ T1, the contribution of the derivative
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of H to χ′ is a delta distribution at t = T1, corresponding to a boundary term on
the domain, which has the same sign as the derivative of χ0. Thus, with ST1 the
hypersurface {t = T1}, (3.28) holds in the form

c0‖dσu‖2L2(t−1([T ′0,T1])) + c0‖dσu‖2L2(ST1
)

≤ C ′‖dσu‖2L2(t−1([T0,T ′0])) + C ′‖χ1/2Pσu‖2 + 2C ′γ‖(−χ′0)1/2χ1Hdσu‖2

+ C ′γ−1|σ|−1‖(−χ′0)1/2χ1Hdσu‖2.

Now one can simply drop the second term from the left hand side and proceed as
above; the semiclassical rewriting now proves the claimed result. �

Suppose now that t is a globally defined function on X, with t|O having the
properties discussed above, and such that p~,z is semiclassically non-trapping, resp.
mildly trapping, in t−1((−∞, T1]), in the sense that in Definitions 2.12, resp. Defini-

tion 2.16, ell(q~,z) is replaced by T
∗
t=T1

X (andX itself is replaced by t−1((−∞, T1])).
Proposition 3.8 can be used to show directly that when Reσ is large, σ is in a strip,
if suppPσu ⊂ t−1([T1,+∞)), then suppu ⊂ t−1([T1,+∞)). Indeed, by the discus-
sion preceding Theorem 2.14, if Pσ is semiclassically non-trapping, we have, with
T ′0 < T ′′0 < T1, and suitably large s (which we may take to satisfy s ≥ 1),

‖u‖Hs~(t−1(−∞,T ′0]) ≤ C
(
h−1‖Ph,zu‖Hs−1

~ (t−1(−∞,T ′′0 ]) + h‖u‖H−N~ (t−1(−∞,T ′′0 ))

)
.

If instead Pσ − ıQσ is mildly trapping of order κ then

‖u‖Hs~(t−1(−∞,T ′0]) ≤ C
(
h−κ−1‖Ph,zu‖Hs−1

~ (t−1(−∞,T ′′0 ]) + h‖u‖H−N~ (t−1(−∞,T ′′0 ))

)
.

Using this in combination with Proposition 3.8 yields

‖u‖H1
~(t−1(−∞,T1]) ≤ C

(
h−κ−1‖Ph,zu‖Hs−1

~ (t−1(−∞,T1]) + h‖u‖H−N~ (t−1(−∞,T ′′0 ])

)
.

Now, for sufficiently small h, the second term on the right hand side can be absorbed
into the left hand side to yield

(3.29) ‖u‖H1
~(t−1(−∞,T1]) ≤ Ch−κ−1‖Ph,zu‖Hs−1

~ (t−1(−∞,T1]).

This shows that for h sufficiently small, i.e. Reσ sufficiently large, the vanishing of
Pσu in {t < T1} gives that of u in the same region.

Turning to the operator Pσ − ıQσ, assuming that Ω, the domain of definition of
Qσ, includes the set C− < Imσ < C+ (with C+ > C−) for |Reσ| sufficiently large,
as is the case for all the operators considered in Subsection 3.2, we thus conclude:

Proposition 3.9. Suppose O, t, Pσ are as discussed before the statement of Propo-
sition 3.8, with t globally defined on X, and Pσ, Qσ as in Theorem 2.14 or as in
Theorem 2.17, with domain satisfying the asymptotic strip condition as stated be-
fore the proposition. Suppose also that p~,z is semiclassically mildly trapping in
t−1((−∞, T1]) in the sense discussed above. Finally, suppose that the Schwartz



MICROLOCAL ASYMPTOTICALLY HYPERBOLIC AND KERR-DE SITTER 51

kernel of Qσ is supported in t−1((T1,+∞))× t−1((T1,+∞)). Then44

supp f ⊂ t−1([T1,+∞))⇒ supp(Pσ − ıQσ)−1f ⊂ t−1([T1,+∞)),

supp g ⊂ t−1((−∞, T1])⇒ supp(P ∗σ + ıQ∗σ)−1g ⊂ t−1((−∞, T1]).

Proof. Note that u = (Pσ − ıQσ)−1f satisfies (Pσ − ıQσ)u = f , so in view of the
support condition on Qσ, suppPσu ⊂ t−1([T1,+∞)). For σ ∈ Ω in the strip C− <
Imσ < C+ and with |Reσ| sufficiently large, the proposition then follows from
(3.29). Thus, with ψ supported in t−1((−∞, T1)), φ supported in t−1((T1,+∞)),
and σ in this region, ψ(Pσ− ıQσ)−1φ = 0. By the meromorphy of ψ(Pσ− ıQσ)−1φ,
ψ(Pσ− ıQσ)−1φ = 0 follows for all σ ∈ Ω. This also gives φ(P ∗σ + ıQ∗σ)−1ψ = 0. �

One reason this proposition is convenient is that it shows that for ψ supported
in t−1((−∞, T1)), ψ(Pσ − ıQσ)−1 is independent of the choice of Qσ (satisfying
the general conditions); analogous results hold for modifying Pσ in t−1((T1,+∞)).
Indeed, let Q′σ be another operator satisfying conditions analogous to those on
Qσ for σ in some open set Ω′ ⊂ C (including the assumption of asymptotically,
as |Reσ| → ∞, containing a strip C− < Imσ < C+), and let (X ′)s ⊂ Hs be the
corresponding function space in place of X s (note that Ys = Hs−1 is independent of
Qσ); thus (Pσ − ıQσ)−1 : Ys → X s and (Pσ − ıQ′σ)−1Ys → (X ′)s are meromorphic
on Ω ∩ Ω′. Then for σ ∈ Ω ∩ Ω′ which is not a pole of either (Pσ − ıQσ)−1 or
(Pσ − ıQ′σ)−1, and for f ∈ Ys, let u = (Pσ − ıQσ)−1f , u′ = (Pσ − ıQ′σ)−1f . Then
(Pσ − ıQσ)u′ = f + ı(Qσ −Q′σ)u′ ∈ Hs−2, and thus, provided s− 1 > 1/2− β Imσ
(rather than this inequality holding merely for s),

u′ = (Pσ − ıQσ)−1f + (Pσ − ıQσ)−1ı(Qσ −Q′σ)u′,

so

ψ(Pσ − ıQ′σ)−1f = ψ(Pσ − ıQσ)−1f

since ψ(Pσ − ıQσ)−1ı(Qσ − Q′σ) = 0 in view of the support properties of Qσ and
Q′σ. In particular, one may drop the particular choice of Qσ from the notation; note
also that this also establishes the equality for s > 1/2− β Imσ since (Pσ − ıQσ)−1

is independent of s in this range in the sense of Remark 2.9. This is particularly
helpful if for σ in various open subsets Ωj of C we construct different operators

Q
(j)
σ ; if for instance for each Ωj , (Pσ− ıQ(j)

σ )−1 is meromorphic, resp. holomorphic,
the same follows for the single operator family (independent of j) ψ(Pσ − ıQσ)−1

where we now we write Qσ for any of the valid choices (i.e. Qσ = Q
(j)
σ for any one

of the j’s such that σ ∈ Ωj). We then have the following extension of Lemma 3.1.

Corollary 3.10. Suppose P is invariant under dilations in τ for functions sup-
ported near τ = 0, and the normal operator family N̂(P) is of the form Pσ satisfying

44In particular, this shows that the support of the Schwartz kernel of the inverse, with the
first (left) factor giving the ‘outgoing’ and the second (right) factor the ‘incoming’ (i.e. the one in
which the integral is taken) variables, satisfies

suppK(Pσ−ıQσ)−1 ⊂
(
X × t−1((−∞, t0])

)
∪
(
t−1([t1,+∞))×X

)
∪ (t× t)−1{(t′, t′′) ∈ (t0, t1)2 : t′ ≥ t′′};

for K(P∗σ+ıQ∗σ)
−1 the two factors are reversed. This also gives that the Laurent coefficients have

similar support properties at any pole. In summary, there is a ‘block lower triangular’ structure

(with the first variable being on the vertical axis, increasing downwards, as in matrix notation)
to suppK(Pσ−ıQσ)−1 , with the middle piece, (t0, t1)2, itself being lower triangular.
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the conditions45 of Sections 2 and 7, and such that there are is an open cover of

C by sets Ωj, and for each j there is an operator Q
(j)
σ satisfying the conditions of

Section 2, including semiclassical non-trapping. Let t be as in Proposition 3.9, ψ
supported in t−1((−∞, T1)), identically 1 on t < T ′1. Let σj be the poles of the mero-
morphic family46 ψ(Pσ− ıQσ)−1. Then for ` < β−1(s− (k− 1)/2), ` 6= − Imσj for

any j, Pu = f in t < T1, u tempered, supported near τ = 0, f ∈ τ `Hs−k+1
b (M̄∞),

in t < T ′1, u has an asymptotic expansion

(3.30) u =
∑
j

∑
κ≤mj

τ ıσj (log |τ |)κajκ + u′

with ajκ ∈ C∞(X) and u′ ∈ τ `Hs
b(M̄∞).

If instead the family Pσ − ıQσ is semiclassically mildly trapping of order κ in a
C0-strip then for ` < C0 and f ∈ τ `Hs−k+1+κ

b (M̄∞) one has, in t < T ′1,

(3.31) u =
∑
j

∑
κ≤mj

τ ıσj (log |τ |)κajκ + u′

with ajκ ∈ C∞(X) and u′ ∈ τ `Hs
b(M̄∞).

Conversely, given f in the indicated spaces, with f supported near τ = 0, a
solution u of Pu = f of the form (3.30), resp. (3.31), supported near τ = 0 exists
in t < T ′1.

In either case, the coefficients ajκ are given by the Laurent coefficients of ψ(P −
ıQ)−1 at the poles σj applied to f , with simple poles corresponding to mj = 0.

If f =
∑
j

∑
κ≤m′j

ταj (log |τ |)κbjκ + f ′, with f ′ in the spaces indicated above for

f , and bjκ ∈ Hs−k+1(X), analogous results hold when the expansion of f is added
to the form of (3.30) and (3.31), in the sense of the extended union of index sets,
see [43, Section 5.18].

Further, the result is stable under sufficiently small dilation-invariant perturba-
tions in the b-sense, i.e. if P ′ is sufficiently close to P in Ψk

b(M̄∞) with real principal
symbol, then there is a similar expansion for solutions of P ′u = f in t < T ′1.

For P∗ in place of P, analogous results apply, but we need ` < −β−1(s − (k −
1)/2), and the ajκ are not smooth, but have wave front set in the Lagrangians Λ±.

Remark 3.11. Proposition 3.5 has an analogous extension, but we do not state it
here explicitly.

Further, estimates analogous to Remark 3.4 are applicable, with the norms of
restrictions to t < T ′1 bounded in terms of the norms of restrictions to t < T1.

Proof. We follow the proof of Lemma 3.1 closely. Again, we first consider the
expansion, and let α, r ∈ R be such that u ∈ ταHr

b(M̄∞) and ψ(Pσ − ıQσ)−1 has47

no poles on Imσ = −α. These α, r exist due to the vanishing of u for τ > 1

and the absence of poles of ψ(Pσ − ıQ(j)
σ )−1 for Reσ large, σ in a strip; then also

u ∈ τα(1 + τ)−NHr
b(M̄∞) for all N . The Mellin transform of the PDE, a priori on

Imσ = −α, is PσMu =Mf , and thus (Pσ − ıQσ)Mu = f − ıQσMu. Thus,

(3.32) Mu = (Pσ − ıQσ)−1Mf − (Pσ − ıQσ)−1ıQσMu

45Again, as discussed in Remark 7.4, the large Imσ assumptions only affect the existence part
below, and do so relatively mildly.

46As remarked above, these are independent of the choice of j for σ ∈ C as long as σ ∈ Ωj .
47Recall that this operator, when considered as a product, refers to ψ(Pσ − ıQ(j)

σ )−1, with j
appropriately chosen.
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there. Restricting to t < T1, the last term vanishes by Proposition 3.9, so

Mu|t<T ′1 = (Pσ − ıQσ)−1Mf |t<T ′1
If f ∈ τ `Hs−k+1

b (M̄∞), then shifting the contour of integration to Imσ = −`,
we obtain contributions from the poles of (Pσ − ıQσ)−1, giving the expansion in
(3.30) and (3.31) by Cauchy’s theorem. The error term u′ is what one obtains by
integrating along the new contour in view of the high energy bounds on (Pσ−ıQσ)−1

(which differ as one changes one’s assumption from non-trapping to mild trapping),
and the assumptions on f .

Conversely, to obtain existence, let α < min(`,− sup Imσj) and define u ∈
ταHs

b(M̄∞) by

Mu = (Pσ − ıQσ)−1Mf,

using the inverse Mellin transform with Imσ = −α. Then

PσMu =Mf + ıQσMu,

and so PσMu|t<T1 = Mf |t<T1 . Thus, the expansion follows by the first part of
the argument. The support property of u follows from Paley-Wiener, taking into
account holomorphy in Imσ > −α, and the estimates on Mf and ψ(Pσ − ıQσ)−1

there.
Finally, stability under perturbations follows for the same reasons as those stated

in Lemma 3.1 once one remarks that the Q
(j)
σ used for P can actually be used for

P ′ as well provided these two are sufficiently close, since the relationship between

Pσ and Q
(j)
σ is via ellipticity considerations, and these are preserved under small

perturbations of Pσ. �

4. De Sitter space and conformally compact spaces

In this section we show how de Sitter space and conformally compact spaces fit
into the general framework we have developed. We start by describing de Sitter
space and hyperbolic space from this perspective, then in Subsection 4.8 we discuss
more general operators, and then in Subsection 4.9 we show that even asymptoti-
cally hyperbolic spaces indeed fit into this framework, and we state our results in
this setting.

4.1. De Sitter space as a symmetric space. Rather than starting with the
static picture of de Sitter space, we consider it as a Lorentzian symmetric space. We
follow the treatment of [53] and [40]. De Sitter space M is given by the hyperboloid

z2
1 + . . .+ z2

n = z2
n+1 + 1 in Rn+1

equipped with the pull-back g of the Minkowski metric

dz2
n+1 − dz2

1 − . . .− dz2
n.

Introducing polar coordinates (R, θ) in (z1, . . . , zn), so

R =
√
z2

1 + . . .+ z2
n =

√
1 + z2

n+1, θ = R−1(z1, . . . , zn) ∈ Sn−1, τ̃ = zn+1,

the hyperboloid can be identified with Rτ̃ × Sn−1
θ with the Lorentzian metric

g =
dτ̃2

τ̃2 + 1
− (τ̃2 + 1) dθ2,
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where dθ2 is the standard Riemannian metric on the sphere. For τ̃ > 1, set x = τ̃−1,
so the metric becomes

g =
(1 + x2)−1 dx2 − (1 + x2) dθ2

x2
.

An analogous formula holds for τ̃ < −1, so compactifying the real line to an interval
[0, 1]T , with T = x = τ̃−1 for x < 1

4 (i.e. τ̃ > 4), say, and T = 1 − |τ̃ |−1, τ̃ < −4,

gives a compactification, M̂, of de Sitter space on which the metric is conformal to
a non-degenerate Lorentz metric. There is natural generalization, to asymptotically
de Sitter-like spaces M̂ , which are diffeomorphic to compactifications [0, 1]T × Y
of Rτ̃ × Y , where Y is a compact manifold without boundary, and M̂ is equipped
with a Lorentz metric on its interior which is conformal to a Lorentz metric smooth
up to the boundary. These space-times are Lorentzian analogues of the much-
studied conformally compact (Riemannian) spaces. On this class of space-times
the solutions of the Klein-Gordon equation were analyzed by Vasy in [53], and were
shown to have simple asymptotics analogous to those for generalized eigenfunctions
on conformally compact manifolds.

Theorem. ([53, Theorem 1.1.]) Set s±(λ) = n−1
2 ±

√
(n−1)2

4 − λ. If s+(λ)−s−(λ) /∈
N, any solution u of the Cauchy problem for � − λ, with C∞ initial data imposed
at τ̃ = 0, is of the form48

u = xs+(λ)v+ + xs−(λ)v−, v± ∈ C∞(M̂).

If s+(λ)−s−(λ) is an integer, the same conclusion holds if v− ∈ C∞(M̂) is replaced

by v− = C∞(M̂) + xs+(λ)−s−(λ) log x C∞(M̂).
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Figure 4. On the left, the compactification of de Sitter space with
the backward light cone from q+ = (1, 0, 0, 0) and forward light
cone from q− = (−1, 0, 0, 0) are shown. Ω+, resp. Ω−, denotes the
intersection of these light cones with τ̃ > 0, resp. τ̃ < 0. On the
right, the blow up of de Sitter space at q+ is shown. The interior
of the light cone inside the front face ffq+ can be identified with
the spatial part of the static model of de Sitter space. The spatial
and temporal coordinate lines for the static model are also shown.

48Here the asymptotic behavior as x→ 0 is the interesting statement.
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One important feature of asymptotically de Sitter spaces is the following: a
conformal factor, such as x−2 above, does not change the image of null-geodesics,
only reparameterizes them. More precisely, recall that null-geodesics are merely
projections to M of null-bicharacteristics of the metric function in T ∗M . Since
p 7→ Hp is a derivation, ap 7→ aHp+pHa, which is aHp on the characteristic set of p.
Thus, the null-geodesics of de Sitter space are the same (up to reparameterization)
as those of the metric

(1 + x2)−1 dx2 − (1 + x2) dθ2

which is smooth on the compact space M̂ .

4.2. The static model of a part of de Sitter space. The simple structure of de
Sitter metric (and to some extent of the asymptotically de Sitter-like metrics) can

be hidden by blowing up certain submanifolds of the boundary of M̂ . In particular,
the static model of de Sitter space arises by singling out a point on Sn−1

θ , e.g.
q0 = (1, 0, . . . , 0) ∈ Sn−1 ⊂ Rn. Note that (θ2, . . . , θn) ∈ Rn−1 are local coordinates
on Sn−1 near q0. Now consider the intersection of the backward light cone from q0

considered as a point q+ at future infinity, i.e. where T = 0, and the forward light
cone from q0 considered as a point q− at past infinity, i.e. where T = 1. These
intersect the equator T = 1/2 (here τ̃ = 0) in the same set, and together form a

‘diamond’, Ω̂, with a conic singularity at q+ and q−. Explicitly Ω̂ is given by the two
inequalities z2

2 + . . . + z2
n ≤ 1, z1 ≥ 0, inside the hyperboloid. If q+, q− are blown

up, as well as the corner ∂Ω̂ ∩ {τ̃ = 0}, i.e. where the light cones intersect τ̃ = 0

in Ω̂, we obtain a manifold M̄ , which can be blown down to (i.e. is a blow up of)
the space-time product [0, 1]×Bn−1, with Bn−1 = {Z ∈ Rn−1 : |Z| ≤ 1} on which
the Lorentz metric has a time-translation invariant warped product form. Namely,
first considering the interior Ω of Ω̂ we introduce the global (in Ω) standard static
coordinates (t̃, Z), given by (with the expressions involving x valid near T = 0)

(Bn−1)◦ 3 Z = (z2, . . . , zn) = x−1
√

1 + x2(θ2, . . . , θn),

sinh t̃ =
zn+1√
z2

1 − z2
n+1

= (x2 − (1 + x2)(θ2
2 + . . .+ θ2

n))−1/2.

It is convenient to rewrite these as well in terms of polar coordinates in Z (valid
away from Z = 0):

r =
√
z2

2 + . . .+ z2
n =

√
1 + z2

n+1 − z2
1 = x−1

√
1 + x2

√
θ2

2 + . . .+ θ2
n,

sinh t̃ =
zn+1√
z2

1 − z2
n+1

= (x2 − (1 + x2)(θ2
2 + . . .+ θ2

n))−1/2 = x−1(1− r2)−1/2,

ω = r−1(z2, . . . , zn) = (θ2
2 + . . .+ θ2

n)−1/2(θ2, . . . , θn) ∈ Sn−2.

In these coordinates the metric becomes

(4.1) (1− r2) dt̃2 − (1− r2)−1dr2 − r2 dω2,

which is a special case of the de Sitter-Schwarzschild metrics with vanishing mass,
M = 0, and cosmological constant Λ = 3, see Section 6. Correspondingly, the dual
metric is

(4.2) (1− r2)−1∂2
t̃ − (1− r2)∂2

r − r−2∂2
ω.
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We also rewrite this in terms of coordinates valid at the origin, namely Y = rω:

(4.3) (1− |Y |2)−1∂2
t̃ + (

n−1∑
j=1

Yj∂Yj )
2 −

n−1∑
j=1

∂2
Yj .

4.3. Blow-up of the static model. We have already seen that de Sitter space
has a smooth conformal compactification; the singularities in the metric of the form
(4.1) at r = 1 must thus be artificial. On the other hand, the metric is already
well-behaved for r < 1 bounded away from 1, so we want the coordinate change to
be smooth there — this means smoothness in valid coordinates (Y above) at the
origin as well. This singularity can be removed by a blow-up on an appropriate
compactification. We phrase this at first in a way that is closely related to our
treatment of Kerr-de Sitter space, and the Kerr-star-type coordinates used there,
see (6.4)-(6.5). So let

t = t̃+ h(r), h(r) =
1

2
logµ, µ = 1− r2.

Note that h is smooth at the origin. A key feature of this change of coordinates is

h′(r) = − r
µ

= − 1

µ
+

1

1 + r
,

which is −µ−1 near r = 1 modulo terms smooth at r = 1. Other coordinate changes
with this property would also work. Let

τ = e−t =
e−t̃

µ1/2
.

Thus, if we compactify static space-time as Bn−1
rω × [0, 1]T̃ , with T̃ = e−t̃ for say

t̃ > 4, then this procedure amounts to blowing up the corner T̃ = 0, µ = 0
parabolically49. Then the dual metric becomes

−µ∂2
r − 2r∂rτ∂τ + τ2∂2

τ − r−2∂2
ω,

or

(4.4) −4r2µ∂2
µ + 4r2τ∂τ∂µ + τ2∂2

τ − r−2∂2
ω,

which is a non-degenerate Lorentzian b-metric50 on Rn−1
rω × [0, 1)τ , i.e. it extends

smoothly and non-degenerately across the ‘event horizon’, r = 1. Note that in
coordinates valid near r = 0 this becomes

(
∑
j

Yj∂Yj )
2 − 2(

∑
j

Yj∂Yj )τ∂τ + τ2∂2
τ −

∑
j

∂2
Yj = (τ∂τ −

∑
j

Yj∂Yj )
2 −

∑
j

∂2
Yj .

In slightly different notation, this agrees with the symbol of [53, Equation (7.3)].

We could have used other equivalent local coordinates; for instance replaced e−t̃

by (sinh t̃)−1, in which case the coordinates (r, τ, ω) we obtained are replaced by

(4.5) r, ρ = (sinh t̃)−1/(1− r2)1/2 = x, ω.

As expected, in these coordinates the metric would still be a smooth and non-
degenerate b-metric. These coordinates also show that Kerr-star-type coordinates

49If we used τ = e−2t and T̃ = e−2t̃, everything would go through, except there would be many

additional factors of 2; then the blow-up would be homogeneous, i.e. spherical. See Footnote 14
for a description of spherical blow-ups. See [43] for parabolic blow-ups.

50See Section 3 for a quick introduction to b-geometry and further references.
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are smooth in the interior of the front face on the blow-up of our conformal com-
pactification of de Sitter space at q+.51 In summary we have reproved (modulo a
few details):

Lemma 4.1. (See [40, Lemma 2.1] for a complete version.) The lift of Ω̂ to the

blow up [M̂ ; q+, q−] is a C∞ manifold with corners, Ω̄. Moreover, near the front
faces ffq± , i.e. away from τ̃ = 0, Ω̄ is naturally diffeomorphic to a neighborhood of
the temporal faces tf± in the C∞ manifold with corners obtained from [0, 1]T ×Bn−1

by blowing up the corners {0} × ∂Bn−1 and {1} × ∂Bn−1 in the parabolic manner
indicated in (4.5); here tf± are the lifts of {0} × ∂Bn−1 and {1} × ∂Bn−1.

It is worthwhile comparing the de Sitter space wave asymptotics of [53],

(4.6) u = xn−1v+ + v−, v+ ∈ C∞(M̂), v− ∈ C∞(M̂) + xn−1(log x)C∞(M̂),

with our main result, Theorem 1.4. The fact that the coefficients in the de Sitter
expansion are C∞ on M̂ means that on M̄ , the leading terms are constant. Thus,
(4.6) implies (and is much stronger than) the statement that u decays to a constant
on M̄ at an exponential rate.

4.4. D’Alembertian and its Mellin transform. Consider the d’Alembertian,
�g, whose principal symbol, including subprincipal terms, is given by the metric

function. Thus, writing b-covectors on [M̂ ; q+, q−] near the interior of the front face
(away from r = 0, to be precise), where µ, ω, τ are coordinates with τ = 0 being
the boundary, i.e. τ the defining function of the front face, as

ξ dµ+ σ
dτ

τ
+ η dω,

we have, by (4.4),

(4.7) G = σb,2(�) = −4r2µξ2 + 4r2σξ + σ2 − r−2|η|2,
with |η|2ω denoting the dual metric function on the sphere. Note that there is a polar
coordinate singularity at r = 0; this is resolved by using actually valid coordinates
Y = rω on Rn−1 near the origin; writing b-covectors as

σ
dτ

τ
+ ζ dY,

we have

G = σb,2(�) = (Y · ζ)2 − 2(Y · ζ)σ + σ2 − |ζ|2 = (Y · ζ − σ)2 − |ζ|2,
Y · ζ =

∑
j

Yj · ζj , |ζ|2 =
∑
j

ζ2
j .

(4.8)

Since there are no interesting phenomena at the origin, we may ignore this point
below.

We now describe the normal operator of the d’Alembertian at τ = 0. Via
conjugation by the (inverse) Mellin transform, see Subsection 3.1, we obtain the
normal operator family Pσ depending on σ, the b-dual variable of τ , on Rn−1

rω

with both principal and high energy (|σ| → ∞) symbol given by (4.7). Thus, the

51If we had worked with e−2t instead of e−t above, we would obtain x2 as the defining function
of the temporal face, rather than x.
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principal symbol of Pσ ∈ Diff2(Rn−1), including in the high energy sense (σ →∞),
is

pfull = −4r2µξ2 + 4r2σξ + σ2 − r−2|η|2ω
= (Y · ζ)2 − 2(Y · ζ)σ + σ2 − |ζ|2 = (Y · ζ − σ)2 − |ζ|2.

(4.9)

The Hamilton vector field is

Hpfull
= 4r2(−2µξ + σ)∂µ − r−2H|η|2ω − (4(1− 2r2)ξ2 − 4σξ − r−4|η|2ω)∂ξ

= 2(Y · ζ − σ)(Y · ∂Y − ζ · ∂ζ)− 2ζ · ∂Y ,
(4.10)

with ζ ·∂Y =
∑
ζj∂Yj , etc. Thus, in the standard ‘classical’ sense, which effectively

means letting σ = 0, the principal symbol is

p = σ2(Pσ) = −4r2µξ2 − r−2|η|2ω
= (Y · ζ)2 − |ζ|2,

(4.11)

while the Hamilton vector field is

Hp = −8r2µξ∂µ − r−2H|η|2ω − (4(1− 2r2)ξ2 − r−4|η|2ω)∂ξ

= 2(Y · ζ)(Y · ∂Y − ζ · ∂ζ)− 2ζ · ∂Y ,
(4.12)

Moreover, the imaginary part of the subprincipal symbol, given by the principal
symbol of 1

2ı (Pσ − P ∗σ ), is

σ1(
1

2ı
(Pσ − P ∗σ )) = 4r2(Imσ)ξ = −2(Y · ζ) Imσ.

When comparing these with [53, Section 7], it is important to keep in mind that
what is denoted by σ there (which we refer to as σ̃ here to avoid confusion) is ıσ
here corresponding to the Mellin transform, which is a decomposition in terms of
τ ıσ ∼ xıσ, being replaced by weights xσ̃ in [53, Equation (7.4)].

One important feature of this operator is that

N∗{µ = 0} = {(µ, ω, ξ, η) : µ = 0, η = 0}
is invariant under the classical flow (i.e. effectively letting σ = 0); moreover, the
Hamilton vector field is radial there. Let

N∗S \ o = Λ+ ∪ Λ−, Λ± = N∗S ∩ {±ξ > 0}, S = {µ = 0}.
Let L± be the image of Λ± in S∗Rn−1. Next we analyze the flow at Λ±. First,

(4.13) Hp|η|2ω = 0

and

(4.14) Hpµ = −8r2µξ = −8ξµ+ aµ2ξ

with a being C∞ in T ∗X, and homogeneous of degree 0. While, in the spirit of
linearizations, we used an expression in (4.14) that is linear in the coordinates
whose vanishing defines N∗S, one should note that µ is an elliptic multiple of p in
the sense of linearizations (i.e. the differentials at N∗S are elliptic multiples of each
other), so one can simply use p̂ = p/|ξ|2 (which is homogeneous of degree 0, like µ)
in its place.

It is convenient to rehomogenize (4.13) in terms of η̂ = η/|ξ|. To phrase this

more invariantly, consider the fiber-compactification T
∗Rn−1 of T ∗Rn−1, see Sub-

section 2.2. On this space, the classical principal symbol, p, is (essentially) a func-

tion on ∂T
∗Rn−1 = S∗Rn−1. Then at fiber infinity near N∗S, we can take (|ξ|−1, η̂)
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Figure 5. The cotangent bundle near the event horizon S = {µ =
0}. It is drawn in a fiber-radially compactified view. The boundary
of the fiber compactificaton is the cosphere bundle S∗Rn−1; it is
the surface of the cylinder shown. Σ± are the components of the
(classical) characteristic set containing L±. They lie in µ ≤ 0,
only meeting S∗SRn−1 at L±. Semiclassically, i.e. in the interior of

T
∗Rn−1, for z = h−1σ > 0, only the component of the semiclassical

characteristic set containing L+ can enter µ > 0. This is reversed
for z < 0.

as coordinates on the fibers of the cotangent bundle, with ρ̃ = |ξ|−1 defining S∗X

in T
∗
X. Then |ξ|−1Hp is a C∞ vector field in this region and

(4.15) |ξ|−1Hp|η̂|2 = |η̂|2Hp|ξ|−1 = −4(sgn ξ)|η̂|2 + ã,

where ã vanishes cubically at N∗S, i.e. (2.3) holds. In similar notation we have

Hp|ξ|−1 = −4 sgn(ξ) + ã′,

|ξ|−1Hpµ = −8(sgn ξ)µ.
(4.16)

with ã′ smooth (indeed, homogeneous degree zero without the compactification)
vanishing at N∗S. As the vanishing of η̂, |ξ|−1 and µ defines ∂N∗S, we con-
clude that L− = ∂Λ− is a source, while L+ = ∂Λ+ is a sink, in the sense that
all nearby bicharacteristics (in fact, including semiclassical (null)bicharacteristics,
since Hp|ξ|−1 contains the additional information needed) converge to L± as the pa-
rameter along the bicharacteristic goes to ±∞. In particular, the quadratic defining
function of L± given by

ρ0 = ̂̃p+ p̂2, where p̂ = |ξ|−2p, ̂̃p = |η̂|2,
satisfies (2.4).

The imaginary part of the subprincipal symbol at L± is given by

(4 sgn(ξ)) Imσ|ξ|;
here (4 sgn(ξ)) is pulled out due to (4.16), namely its size relative to Hp|ξ|−1 matters,
with a change of sign, see Subsection 2.2, thus (2.5)-(2.6) hold. This corresponds
to the fact52 that (µ± ı0)ıσ, which are Lagrangian distributions associated to Λ±,
solve the PDE modulo an error that is two orders lower than what one might a
priori expect, i.e. Pσ(µ± ı0)ıσ ∈ (µ± i0)ıσC∞(Rn−1). Note that Pσ is second order,
so one should lose two orders a priori; the characteristic nature of Λ± reduces the

52This needs the analogous statement for full subprincipal symbol, not only its imaginary part.
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loss to 1, and the particular choice of exponent eliminates the loss. This has much
in common with eıλ/xx(n−1)/2 being an approximate solution in asymptotically
Euclidean scattering. The precise situation for Kerr-de Sitter space is more delicate
as the Hamilton vector field does not vanish at L±, but this53 is irrelevant for
our estimates: only a quantitative version of the source/sink statements and the
imaginary part of the subprincipal symbol are relevant.

While (µ± ı0)ıσ is singular regardless of σ apart from integer coincidences (when
this should be corrected anyway), it is interesting to note that for Imσ > 0 this
is not bounded at µ = 0, while for Imσ < 0 it vanishes there. This is interesting
because if one reformulates the problem as one in µ ≥ 0, as was done for instance by
Sá Barreto and Zworski [47], and later by Melrose, Sá Barreto and Vasy [40] for de
Sitter-Schwarzschild space then one obtains an operator that is essentially (up to a
conjugation and a weight, see below) the Laplacian on an asymptotically hyperbolic

space at energy σ2 + (n−2)2

4 — more precisely its normal operator (which encodes
its behavior near µ = 0) is a multiple of that of the hyperbolic Laplacian. Then the
growth/decay behavior corresponds to the usual scattering theory phenomena, but
in our approach smooth extendability across µ = 0 is the distinguishing feature of
the solutions we want, not growth/decay. See Remark 4.5 for more details.

4.5. Global behavior of the characteristic set. First remark that 〈dττ , dττ 〉G =

1 > 0, so dτ
τ is time-like. Correspondingly all the results of Subsection 3.2 apply. In

particular, (3.16) gives that the characteristic set is divided into two components
with Λ± in different components. It is easy to make this explicit: points with ξ = 0,
or equivalently Y · ζ = 0, cannot lie in the characteristic set. Thus,

Σ± = Σ ∩ {±ξ > 0} = Σ ∩ {∓(Y · ζ) > 0}.
While it is not important here since the characteristic set in µ ≥ 0 is localized at

N∗S, hence one has a similar localization for nearby µ, for global purposes (which
we do not need here), we point out that Hpµ = −8r2µξ. Since ξ 6= 0 on Σ, and
in Σ, r = 1 can only happen at N∗S, i.e. only at the radial set, the C∞ function
µ provides a negative global escape function which is increasing on Σ+, decreasing
on Σ−. Correspondingly, bicharacteristics in Σ+ travel from infinity to L+, while
in Σ− they travel from L− to infinity.

4.6. High energy, or semiclassical, asymptotics. We are also interested in the
high energy behavior, as |σ| → ∞. For the associated semiclassical problem one
obtains a family of operators

Ph,z = h2Ph−1z,

with h = |σ|−1, and z corresponding to σ/|σ| in the unit circle in C. Then the
semiclassical principal symbol p~,z of Ph,z is a function on T ∗Rn−1. As in Section 2,
we are mostly interested in | Im z| ≤ Ch, which corresponds to | Imσ| ≤ C ′; in the
limit h → 0 this means z is real. It is sometimes convenient to think of p~,z, and

its rescaled Hamilton vector field, as objects on T
∗Rn−1. Thus,

p~,z = σ2,h(Ph,z) = −4r2µξ2 + 4r2zξ + z2 − r−2|η|2ω
= (Y · ζ)2 − 2(Y · ζ)z + z2 − |ζ|2 = (Y · ζ − z)2 − |ζ|2.

(4.17)

53This would be relevant for a full Lagrangian analysis, as done e.g. in [39], or in a somewhat
different, and more complicated, context by Hassell, Melrose and Vasy in [30, 31].
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We make the general discussion of Subsection 3.2 and Section 7 explicit; for z
non-real one can jump to the next paragraph. First,

(4.18) Im p~,z = 2 Im z(2r2ξ + Re z) = −2 Im z(Y · ζ − Re z).

In particular, for z non-real, Im p~,z = 0 implies 2r2ξ+Re z = 0, i.e. Y ·ζ−Re z = 0,
which means that Re p~,z is

(4.19) −r−2(Re z)2 − (Im z)2 − r−2|η|2ω = −(Im z)2 − |ζ|2 < 0,

i.e. p~,z is semiclassically elliptic on T ∗Rn−1, but not at fiber infinity, i.e. at S∗Rn−1

(standard ellipticity is lost only in r ≥ 1, of course). Explicitly, if we introduce for
instance

(µ, ω, ν, η̂), ν = |ξ|−1, η̂ = η/|ξ|,
as valid projective coordinates in a (large!) neighborhood of L± in T

∗Rn−1, then

ν2p~,z = −4r2µ+ 4r2(sgn ξ)zν + z2ν2 − r−2|η̂|2ω
so

ν2 Im p~,z = 4r2(sgn ξ)ν Im z + 2ν2 Re z Im z

which automatically vanishes at ν = 0, i.e. at S∗Rn−1. Thus, for σ large and pure
imaginary, the semiclassical problem adds no complexity to the ‘classical’ quantum
problem, but of course it does not simplify it. In fact, we need somewhat more
information at the characteristic set, which is thus at ν = 0 when Im z is bounded
away from 0:

ν small, Im z ≥ 0⇒ (sgn ξ) Im p~,z ≥ 0⇒ ± Im p~,z ≥ 0 near Σ~,±,

ν small, Im z ≤ 0⇒ (sgn ξ) Im p~,z ≤ 0⇒ ± Im p~,z ≥ 0 near Σ~,±,

which, as we have seen, means that for Ph,z with Im z > 0 one can propagate
estimates forwards along the bicharacteristics where ξ < 0 (in particular, away
from L−, as the latter is a source) and backwards where ξ > 0 (in particular,
away from L+, as the latter is a sink), while for P ∗h,z the directions are reversed.
The directions are also reversed if Im z switches sign. This is important because it
gives invertibility for z = ı (corresponding to Imσ large positive, i.e. the physical
halfplane), but does not give invertibility for z = −ı negative.

We now return to the claim that even semiclassically, for z real real the character-
istic set can be divided into two components Σ~,±, with L± in different components.
As explained in Subsection 3.2 the vanishing of the factor following Im z in (4.18)
gives a hypersurface that separates Σ~ into two parts; this can be easily checked
also by a direct computation. Concretely, this is the hypersurface given by

(4.20) 0 = 2r2ξ + z = −(Y · ζ − z),
and so

Σ~,± = Σ~ ∩ {∓(Y · ζ − z) > 0}.
We finally need more information about the global semiclassical dynamics. Here

all null-bicharacteristics go to either L+ in the forward direction or to L− in the
backward direction, and escape to infinity in the other direction. Rather than
proving this at once, which depends on the global non-trapping structure on Rn−1,
we first give an argument that is local near the event horizon, and suffices for the
extension discussed below for asymptotically hyperbolic spaces.
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As stated above, first, we are only concerned about semiclassical dynamics in
µ > µ0, where µ0 < 0 might be close to 0. To analyze this (with z real as usual),
we observe that the semiclassical Hamilton vector field is

Hp~,z = 4r2(−2µξ + z)∂µ − r−2H|η|2ω − (4(1− 2r2)ξ2 − 4zξ − r−4|η|2ω)∂ξ

= 2(Y · ζ − z)(Y · ∂Y − ζ · ∂ζ)− 2ζ · ∂Y .
(4.21)

Thus,
Hp~,z (Y · ζ) = −2|ζ|2,

and ζ = 0 implies p~,z = z2, so Hp~,z (Y · ζ) has a negative upper bound on the
characteristic set in compact subsets of T ∗{r < 1}; note that the characteristic set is
compact in T ∗{r ≤ r0} if r0 < 1 by standard ellipticity. Thus, bicharacteristics have
to leave {r ≤ r0} for r0 < 1 in both the forward and backward direction (as Y · ζ is
bounded over this region on the characteristic set). We already know the dynamics
near L±, which is the only place where the characteristic set intersects S∗SRn−1,
namely L+ is a sink and L− is a source. Now, at µ = 0, Hp~,zµ = z, which is positive
when z > 0, so bicharacteristics can only cross µ = 0 in the inward direction. In
view of our preceding observations, thus, once a bicharacteristic crossed µ = 0, it
has to tend to L+. As bicharacteristics in a neighborhood of L+ (even in µ < 0)
tend to L+ since L+ is a sink, it follows that in Σ~,+ the same is true in µ > µ0

for some µ0 < 0. On the other hand, in a neighborhood of L− all bicharacteristics
emanate from L− (but cannot cross into µ > 0 by our observations), so leave µ > µ0

in the forward direction. These are all the relevant features of the bicharacteristic
flow for our purposes as we shall place a complex absorbing potential near µ = µ0

in the next subsection.
However, it is easy to see the global claim by noting that Hp~,zµ = 4r2(−2µξ+z),

and this cannot vanish on Σ~ in µ < 0, since where it vanishes, a simple calculation
gives p~,z = 4µξ2 − r−2|η|2. Thus, Hp~,zµ has a constant sign on Σ~,± in µ < 0,
so combined with the observation above that all bicharacteristics escape to µ = µ0

in the appropriate direction, it shows that all bicharacteristics in fact escape to
infinity in that direction54.

In fact, for applications, it is also useful to remark that for α ∈ T ∗X,

(4.23) 0 < µ(α) < 1, p~,z(α) = 0 and (Hp~,zµ)(α) = 0⇒ (H2
p~,z

µ)(α) < 0.

Indeed, as Hp~,zµ = 4r2(−2µξ + z), the hypotheses imply z = 2µξ and H2
p~,z

µ =

−8r2µHp~,zξ, so we only need to show that Hp~,zξ > 0 at these points. Since

Hp~,zξ = −4(1− 2r2)ξ2 + 4zξ + r−4|η|2ω = 4ξ2 + r−4|η|2ω = 4r−2ξ2,

54There is in fact a not too complicated global escape function, e.g.

f =
2Y · ζ − z

2
√

1 + |Y |2(Y · ζ − z)
=

2Y · ζ̂ − z|ζ|−1

2
√

1 + |Y |2(Y · ζ̂ − z|ζ|−1)
,

which is a smooth function on the characteristic set in T ∗Rn−1 as Y ·ζ 6= z there; further, it extends

smoothly to the characteristic set in T
∗Rn−1 away from L± since

√
1 + |Y |2(Y ·ζ̂−z|ζ|−1) vanishes

only there near S∗Rn−1 (where these are valid coordinates), at which it has conic points. This

function arises in a straightforward manner when one reduces Minkowski space, Rn = Rn−1
z′ ×Rt

with metric g0, to the boundary of its radial compactification, as described in Section 5, and uses

the natural escape function

(4.22) f̃ =
tt∗ − z′(z′)∗
t∗
√
t2 + |z′|2

there; here t∗ is the dual variable of t and (z′)∗ of z′, outside the origin.
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where the second equality uses Hp~,zµ = 0 and the third uses that in addition
p~,z = 0, this follows from 2µξ = z 6= 0, so ξ 6= 0. Thus, µ can be used for gluing
constructions as in [15].

4.7. Complex absorption. The final step of fitting Pσ into our general microlocal
framework is moving the problem to a compact manifold, and adding a complex
absorbing second order operator. We thus consider a compact manifold without
boundary X for which Xµ0 = {µ > µ0}, µ0 < 0, say, is identified as an open subset
with smooth boundary; it is convenient to take X to be the double55 of Xµ0

.
It is convenient to separate the ‘classical’ (i.e. quantum!) and ‘semiclassical’

problems, for in the former setting trapping does not matter, while in the latter it
does.
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Figure 6. The cotangent bundle near the event horizon S = {µ =
0}. It is drawn in a fiber-radially compactified view, as in Figure 5.
The circles on the left show the support of q; it has opposite signs
on the two disks corresponding to the opposite directions of prop-
agation relative to the Hamilton vector field.

Ultimately, we want to extend Pσ to X (as currently it is only defined near Xµ0),
and introduce a complex absorbing operator Qσ ∈ Ψ2

cl(X) with principal symbol
q, such that h2Qh−1z ∈ Ψ2

~,cl(X) with semiclassical principal symbol q~,z, and such

that p ± ıq is elliptic near ∂Xµ0
, i.e. near µ = µ0, Qσ is supported there (say, in

µ < µ0/2) and which satisfies that the ∓q ≥ 0 on Σ±. In fact, it is convenient to also
arrange that p± ıq are elliptic near X \Xµ0

; the region we added is thus irrelevant
in the sense that it does not complicate the analysis. In view of Subsection 3.3, the
solution in, say, µ > µ0/2 is unaffected by thus modifying Pσ, i.e. working with Pσ
and Pσ − ıQσ is equivalent for this purpose, so the region we added is irrelevant in
this sense as well.

First, for the ‘classical’ problem (i.e. completely ignoring the issue of uniform
bounds as σ → ∞), we can make Qσ actually independent of σ. Indeed, it is
straightforward to write down q with the required properties (so q is independent
of σ), as we now do; quantizing it in a standard σ-independent manner gives a
desired Qσ; now Qσ depends holomorphically on σ (since there is no σ-dependence

55In fact, in the de Sitter context, this essentially means moving to the boundary of n-
dimensional Minkowski space, where our (n − 1)-dimensional model is the ‘upper hemisphere’,
see Section 5. Thus, doubling over means working with the whole boundary, but putting an ab-

sorbing operator near the equator, corresponding to the usual Cauchy hypersurface in Minkowski
space, and solving from the radial points at both the future and past light cones towards the
equator — this would be impossible without the complex absorption.
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at all). Concretely, as discussed in Subsection 3.2, this can be achieved by defining
p̃ = χ1p−χ2p̂, where p̂ is a Riemannian metric function (or is simply a homogeneous
degree 2, positive function), χ1 + χ2 = 1, χ1 = 1 on Xµ0 , is supported nearby,

χj ≥ 0, letting q = −2r2ξp̃1/2χ(µ) = (Y · ζ)p̃1/2χ(µ), χ ≥ 0 supported near µ0,
identically equal to a positive constant where neither χ1 nor χ2 vanishes. As p < 0
when ξ = 0, on the set where χ = 1, p̃± ıq does not vanish (for the vanishing of q
there implies that p < 0, and −p̂ is always negative), while if χ2 = 1, p̃ < 0 so p̃± ıq
does not vanish, and if χ1 = 1, p̃± ıq = p± ıq behave the required way as ∓q ≥ 0
on Σ±. Thus, renaming p̃ as p (since we consider it an extension of p) p± ıq satisfy
our requirements.

An alternative to this extension would be simply adding a boundary at µ = µ0;
this is easy to do since this is a space-like hypersurface, but this is slightly unpleasant
from the point of view of microlocal analysis as one has to work on a manifold with
boundary (though as mentioned this is easily done, see Remark 2.6).

For the semiclassical problem we need to increase the requirements on Qσ. For
this we need in addition, in the semiclassical notation, semiclassical ellipticity near
µ = µ0, i.e. that p~,z ± ıq~,z are elliptic near ∂Xµ0

, i.e. near µ = µ0, and which
satisfies that the ∓q~,z ≥ 0 on Σ~,±. While this is extremely easy to arrange if we
ignore holomorphy in z, a bit of care is required to ensure the latter. Following
(3.17), and taking into account (4.18), we take

q~,z = −(2r2ξ + z)fzχ(µ) = (Y · ζ − z)fzχ(µ),

with
fz = (|ζ|2j + z2j)1/2j ,

χ ∈ C∞c (R), χ ≥ 0 is supported near µ0, and is identically 1 in a smaller neighbor-
hood of µ0, j ≥ 1 integer and the branch of the 2jth root function is chosen so that
it is defined on C\ (−∞, 0) and is non-negative when the argument is non-negative,
thus the real part of this root is ≥ 0 on C \ (−∞, 0) with vanishing only at the
origin. In fact, we can make Qσ a (standard) quantization of

(Y · ζ − σ)(|ζ|2j + σ2j + C2j)1/2jχ(µ),

where C > 0 is chosen suitably large; then Qσ is holomorphic away from the inverse
images of the branch cuts, and in particular when | Imσ| < C Im eıπ/j . Here we
can take even j = 1 and then choose C greater than the width of the strip we
want to study. However, by allowing j to vary, we obtain an open cover of C by

domains Ωj of holomorphy for Q
(j)
σ as discussed in Subsection 3.3, and as Re f ≥ 0,

Subsection 3.2 shows that Q
(j)
σ in fact satisfies the required semiclassical properties

in Ωj . Again, we extend Pσ to X (Qσ can already be considered as being defined
on X in view of suppχ), for instance in a manner analogous to the ‘classical’ one
discussed above, i.e. replacing p~,z by χ1p~,z − χ2p̂~,z, with p̂ = (‖ζ‖2j + z2j)1/j ,
with ‖.‖2 denoting a Riemannian metric function on X. Then p± ıq and p~,z± ıq~,z
are elliptic near X \Xµ0

, as desired, as discussed in Subsection 3.2.

4.8. More general metrics. If the operator is replaced by one on a neighborhood
of Yy × (−δ, δ)µ with full principal symbol (including high energy terms)

− 4(1 + a1)µξ2 + 4(1 + a2)σξ + (1 + a3)σ2 − |η|2h,(4.24)

and h a family of Riemannian metrics on Y depending smoothly on µ, aj vanishing
at µ = 0, then the local behavior of this operator Pσ near the ‘event horizon’ Y ×{0}
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is exactly as in the de Sitter setting. If we start with a compact manifold X0 with
boundary Y and a neighborhood of the boundary identified with Y × [0, δ)µ with
the operator of the form above, and which is elliptic in X0 (we only need to assume
this away from Y ×[0, δ/2), say), including in the non-real high energy sense (i.e. for
z away from R when σ = h−1z) then we can extend the operator smoothly to one
on Xµ0

, µ0 = −δ, which enjoys all the properties above, except semiclassical non-
trapping. If we assume that X◦0 is non-trapping in the usual sense, the semiclassical
non-trapping property also follows. In addition, for µ > 0 sufficiently small, (4.23)
also holds since η is small when Hp~,zµ = 0 and p~,z = 0, for the former gives

z = 2(1 + a2)−1(1 + a1)µξ, and then the latter gives

4(1 + a1)

(
1 +

(1 + a1)(1 + a3)

(1 + a2)2
µ

)
µξ2 = |η|2h,

so the contribution of |η|2h to Hp~,zξ, which can be large elsewhere even at µ = 0,
is actually small.

We show below in the proof of Theorem 4.3 that (4.24) holds on general even
asymptotically hyperbolic spaces; as mentioned above, the non-trapping property of
the asymptotically hyperbolic space then also implies that of the extended operator.

4.9. Results for asymptotically hyperbolic and de Sitter metrics. The pre-
ceding subsections show that for the Mellin transform of �g on n-dimensional de
Sitter space, all the hypotheses needed in Section 2 are satisfied, thus analogues of
the results stated for Kerr-de Sitter space in the introduction, Theorems 1.1-1.4,
hold. It is important to keep in mind, however, that there is no trapping to re-
move, so Theorem 1.1 applies with Qσ supported outside the event horizon, and
one does not need gluing or the result of Wunsch and Zworski [61]. In particular,
Theorem 1.3 holds with arbitrary C ′, without the logarithmic or polynomial loss.
As already mentioned when discussing [53, Theorem 1.1] at the beginning of this
section, this is weaker than the result of [53, Theorem 1.1], since there one has
smooth asymptotics without a blow-up of a boundary point56.

We now reinterpret our results on the Mellin transform side in terms of (n− 1)-
dimensional hyperbolic space. Let Bn−1

1/2 be Bn−1 = {r ≤ 1} with ν =
√
µ added

to the smooth structure. For the purposes of the discussion below, we identify the
interior {r < 1} of Bn−1

1/2 with a Poincaré ball model57 of hyperbolic (n − 1)-space

(Hn−1, gHn−1). Using polar coordinates around the origin, let cosh ρ = ν−1, ρ is
the distance from the origin. The Laplacian on Hn−1 in these coordinates is

∆Hn−1 = D2
ρ − ı(n− 2) coth ρDρ + (sinh ρ)−2∆ω.

56Note that our methods work equally well for asymptotically de Sitter spaces in the sense of

[53]; after the blow up, the boundary metric is ‘frozen’ at the point that is blown up, hence the
induced problem at the front face is the same as for the de Sitter metric with asymptotics given

by this ‘frozen’ metric.
57The standard Poincaré ball model is the metric 4 dw2

(1−|w|2)2 on Bn−1. Introducing polar

coordinates, w = r̃ω, the present form arises by letting ν = 1−r̃2
1+r̃2

, i.e. r̃2 = 1−ν
1+ν

with ν =
√

1− r2;

recall that µ = 1− r2. Thus, ν and 1− r̃2 are equivalent boundary defining functions.
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It is shown in [53, Lemma 7.10] that in r < 1, and with s be such that 2s = ıσ− n
2 ,

(1− r2)−sPσ(1− r2)s = ν
n
2−ıσPσν

ıσ−n2

= −ν−1

(
∆Hn−1 − σ2 −

(
n− 2

2

)2

− ν2n(n− 2)

4

)
ν−1

= − cosh ρ

(
∆Hn−1 − σ2 −

(
n− 2

2

)2

− (cosh ρ)−2n(n− 2)

4

)
cosh ρ.

(4.25)

We thus deduce:

Proposition 4.2. The inverse R(σ) of

∆Hn−1 − σ2 −
(
n− 2

2

)2

− (cosh ρ)−2n(n− 2)

4

has a meromorphic continuation from Imσ > 0 to C with poles with finite rank
residues as a map R(σ) : Ċ∞(Bn−1) → C−∞(Bn−1), and with non-trapping esti-
mates in every strip −C < Imσ < C+, |Reσ| � 0: s > 1

2 + C,
(4.26)

‖(cosh ρ)(n−2)/2−ıσR(σ)f‖Hs
|σ|−1 (Bn−1) ≤ C|σ|−1‖(cosh ρ)(n+2)/2−ıσf‖Hs−1

|σ|−1 (Bn−1),

where the Sobolev spaces are those on Bn−1 (rather than Bn−1
1/2 ). If supp f ⊂

(Bn−1)◦, the s− 1 norm on f can be replaced by the s− 2 norm.
The same conclusion holds for small even C∞ perturbations, vanishing at ∂Bn−1

1/2 ,

of gHn−1 in the class of conformally compact metrics, or the addition of (not nec-
essarily small) V ∈ µC∞(Bn−1).

Proof. By self-adjointness and positivity of ∆Hn−1 ,(
∆Hn−1 − σ2 −

(
n− 2

2

)2

− ν2n(n− 2)

4

)
u = f ∈ Ċ∞(Bn−1)

has a unique solution u = R(σ)f ∈ L2(Bn−1
1/2 , |dgHn−1 |) when when Imσ � 0. On

the other hand, let f̃0 = νıσ−n/2ν−1f in r ≤ 1, and f̃0 still vanishes to infinite order
at r = 1. Let f̃ be an arbitrary smooth extension of f̃0 to the compact manifold
X on which Pσ − ıQσ is defined. Let ũ = (Pσ − ıQσ)−1f̃ , with (Pσ − ıQσ)−1 given

by our results in Section 2; this satisfies (Pσ − ıQσ)ũ = f̃ and ũ ∈ C∞(X). Thus,
u′ = −ν−ıσ+n/2ν−1ũ|r<1 satisfies u′ ∈ ν(n−2)/2−ıσC∞(Bn−1), and(

∆Hn−1 − σ2 −
(
n− 2

2

)2

− ν2n(n− 2)

4

)
u′ = f

by (4.25) (as Qσ is supported in r > 1). Since u′ ∈ L2(Bn−1, |dgHn−1 |) for Imσ > 0,
by the aforementioned uniqueness, u = u′.

To make the extension from Bn−1 to X more systematic, let Es : Hs(Bn−1) →
Hs(X) be a continuous extension operator, Rs : Hs(X)→ Hs(Bn−1) the restriction

map. Then, as we have just seen, for f ∈ Ċ∞(Bn−1),

(4.27) R(σ)f = −ν−ıσ+n/2ν−1Rs(Pσ − ıQσ)−1Es−1ν
ıσ−n/2ν−1f.

Thus, the first half of the proposition (including the non-trapping estimate) follows
immediately from the results of Section 2. Note also that this proves that every
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pole of R(σ) is a pole of (Pσ − ıQσ)−1 (for otherwise (4.27) would show R(σ) does
not have a pole either), but (Pσ − ıQσ)−1 may have poles which are not poles of
R(σ). However, in the latter case, the Laurent coefficients of (Pσ − ıQσ)−1 would
be annihilated by multiplication by Rs from the left when applied to elements of
Ċ∞(Bn−1), regarded as a subset of C∞(X). If (σ−σ0)−jFj is the most singular Lau-
rent term at σ0, and Fj =

∑
i φi〈ψi, .〉, then (Pσ0−ıQσ0)φi = 0, (P ∗σ0

+ıQ∗σ0
)ψi = 0;

we refer to φi as resonant states and ψi as dual states. This also holds in µ > 0 if
(σ−σ0)−jFj is just the most singular term with support intersecting (0,∞)×(0,∞)
in µ (i.e. µ−1((0,∞))×µ−1((0,∞))) non-trivially. Thus, if σ is not a pole of R(σ),
the resonant states of Pσ−ıQσ (which are C∞) are supported in µ ≤ 0, in particular
vanish to infinite order at µ = 0, unless the corresponding dual state vanishes when
paired with Ċ∞(Bn−1), i.e. is supported in µ ≤ 0.58

We now turn to the perturbation. After the conjugation, division by µ1/2 from
both sides, elements of V ∈ µC∞(Bn−1) can be extended to become elements of
C∞(Rn−1), and they do not affect any of the structures discussed in Section 2, so the
results automatically go through. Operators of the form x2L, L ∈ Diffb,even(Bn−1

1/2 ),

i.e. with even coefficients with respect to the local product structure, become ele-
ments of Diffb(Bn−1) after conjugation and division by µ1/2 from both sides. Hence,
they can be smoothly extended across ∂Bn−1, and they do not affect either the prin-
cipal or the subprincipal symbol at L± in the classical sense. They do, however,
affect the classical symbol elsewhere and the semiclassical symbol everywhere, thus
the semiclassical Hamilton flow, but under the smallness assumption the required
properties are preserved, since the dynamics is non-degenerate (the rescaled Hamil-

ton vector field on T
∗Rn−1 does not vanish) away from the radial points. �

Without the non-trapping estimate, this is a special case of a result of Mazzeo
and Melrose [37], with improvements by Guillarmou [28]. The point is that first, we
do not need the machinery of the zero calculus here, and second, the analogous re-
sult holds true on arbitrary asymptotically hyperbolic spaces, with the non-trapping
estimates holding under dynamical assumptions (namely, no trapping). The poles
were actually computed in [53, Section 7] using special algebraic properties, within
the Mazzeo-Melrose framework; however, given the Fredholm properties our meth-
ods here give, the rest of the algebraic computation in [53] go through. Indeed,

58In fact, a stronger statement can be made: a calculation completely analogous to what we
just performed, see Remark 4.6, shows that in µ < 0, Pσ is a conjugate (times a power of µ)
of a Klein-Gordon-type operator on (n − 1)-dimensional de Sitter space with µ = 0 being the

boundary (i.e. where time goes to infinity). Thus, if σ is not a pole of R(σ) and (Pσ − ıQσ)ũ = 0
then one would have a solution u of this Klein-Gordon-type equation near µ = 0, i.e. infinity, that

rapidly vanishes at infinity. It is shown in [53, Proposition 5.3] by a Carleman-type estimate that
this cannot happen; although there σ2 ∈ R is assumed, the argument given there goes through
almost verbatim in general. Thus, if Qσ is supported in µ < c, c < 0, i.e. the Schwartz kernel is
supported in (−∞, c)× (−∞, c) in terms of µ, then ũ is also supported in µ < c. This argument

can be applied to the highest order Laurent term which has support intersecting (c,∞) × (c,∞)
non-trivially (which need not be the overall highest order term), so if σ is a pole of (Pσ − ıQσ)−1

with a Laurent coefficient with support intersecting (c,∞) × (c,∞) non-trivially, but σ is not a
pole of R(σ), then the corresponding resonant state is supported in µ < c, unless the dual state is
supported in µ ≤ 0. Applying the argument to the highest order terms with support intersecting
(c,∞)× (0,∞) non-trivially (with the first factor corresponding to the resonant state, the second
to the dual state), we see that all poles of (Pσ − ıQσ)−1 with Laurent coefficients with support

intersecting (c,∞)× (0,∞) non-trivially are given by poles of R(σ).
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the results are stable under perturbations59, provided they fit into the framework
after conjugation and the weights. In the context of the perturbations (so that the
asymptotically hyperbolic structure is preserved) though with evenness conditions
relaxed, the non-trapping estimate is almost the same as in [41], where it is shown
by a parametrix construction; here the estimates are slightly stronger.

In fact, by the discussion of Subsection 4.8, we deduce a more general result,
which in particular, for even metrics, generalizes the results of Mazzeo and Melrose
[37], Guillarmou [28], and adds high-energy non-trapping estimates under non-
degeneracy assumptions. It also adds the semiclassically outgoing property which is
useful for resolvent gluing, including for proving non-trapping bounds microlocally
away from trapping, provided the latter is mild, as shown by Datchev and Vasy
[15, 16].

Theorem 4.3. Suppose that (X0, g0) is an (n − 1)-dimensional manifold with
boundary with an even conformally compact metric and boundary defining func-
tion x. Let X0,even denote the even version of X0, i.e. with the boundary defining
function replaced by its square with respect to a decomposition in which g0 is even.
Then the inverse of

∆g0 −
(
n− 2

2

)2

− σ2,

written as R(σ) : L2 → L2, has a meromorphic continuation from Imσ � 0 to C,

R(σ) : Ċ∞(X0)→ C−∞(X0),

with poles with finite rank residues. Further, if (X0, g0) is non-trapping, then non-
trapping estimates hold in every strip −C < Imσ < C+, |Reσ| � 0: for s > 1

2 +C,
(4.28)

‖x−(n−2)/2+ıσR(σ)f‖Hs
|σ|−1 (X0,even) ≤ C̃|σ|−1‖x−(n+2)/2+ıσf‖Hs−1

|σ|−1 (X0,even).

If f is supported in X◦0 , the s− 1 norm on f can be replaced by the s− 2 norm.
If instead ∆g0

−σ2 satisfies mild trapping assumptions with order κ estimates in
a C0-strip, see Definition 2.16, then the mild trapping estimates hold, with |σ|κ−1

replacing |σ|−1 on the right hand side of (4.28), as long as C ≤ C0.
Furthermore, for Re z > 0, Im z = O(h), the resolvent R(h−1z) is semiclassically

outgoing with a loss of h−1 in the sense that if f has compact support in X◦0 ,
α ∈ T ∗X is in the semiclassical characteristic set and if WFs−1

h (f) is disjoint from
the backward bicharacteristic from α, then α /∈WFsh(h−1R(h−1z)f).

We remark that although in order to go through without changes, our meth-
ods require the evenness property, it is not hard to deduce more restricted results
without this. Essentially one would have operators with coefficients that have a
conormal singularity at the event horizon; as long as this is sufficiently mild rela-
tive to what is required for the analysis, it does not affect the results. The problems
arise for the analytic continuation, when one needs strong function spaces (Hs with
s large); these are not preserved when one multiplies by the singular coefficients.

59Though of course the resonances vary with the perturbation, in the same manner as they
would vary when perturbing any other Fredholm problem.
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Proof. Suppose that g0 is an even asymptotically hyperbolic metric. Then we may
choose a product decomposition near the boundary such that

(4.29) g0 =
dx2 + h

x2

there, where h is an even family of metrics; it is convenient to take x to be a globally
defined boundary defining function. Then

(4.30) ∆g0 = (xDx)2 + ı(n− 2 + x2γ)(xDx) + x2∆h,

with γ even. Changing to coordinates (µ, y), µ = x2, we obtain

(4.31) ∆g0
= 4(µDµ)2 + 2ı(n− 2 + µγ)(µDµ) + µ∆h,

Now we conjugate by µ−ıσ/2+n/4 to obtain

µıσ/2−n/4(∆g0
− (n− 2)2

4
− σ2)µ−ıσ/2+n/4

= 4(µDµ − σ/2− ın/4)2 + 2ı(n− 2 + µγ)(µDµ − σ/2− ın/4)

+ µ∆h −
(n− 2)2

4
− σ2

= 4(µDµ)2 − 4σ(µDµ) + µ∆h − 4ı(µDµ) + 2ıσ − 1 + 2ıµγ(µDµ − σ/2− ın/4).

Next we multiply by µ−1/2 from both sides to obtain

µ−1/2µıσ/2−n/4(∆g0
− (n− 2)2

4
− σ2)µ−ıσ/2+n/4µ−1/2

= 4µD2
µ − µ−1 − 4σDµ − 2ıσµ−1 + ∆h − 4ıDµ + 2µ−1 + 2ıσµ−1 − µ−1

+ 2ıγ(µDµ − σ/2− ı(n− 2)/4)

= 4µD2
µ − 4σDµ + ∆h − 4ıDµ + 2ıγ(µDµ − σ/2− ı(n− 2)/4).

(4.32)

This is certainly in Diff2(X), and for σ with bounded imaginary part, is equivalent
to the form we want via conjugation by a smooth function, with exponent depending
on σ. The latter would make no difference even semiclassically in the real regime as
it is conjugation by an elliptic semiclassical FIO. However, in the non-real regime
(where we would like ellipticity) it does; the present operator is not semiclassically
elliptic at the zero section. So finally we conjugate by (1 + µ)ıσ/4 to obtain

4µD2
µ − 4σDµ − σ2 + ∆h − 4ıDµ + 2ıγ(µDµ − σ/2− ı(n− 2)/4)(4.33)

modulo terms that can be absorbed into the error terms in the negative of operators
in the class (4.24).

We still need to check that µ can be appropriately chosen in the interior away
from the region of validity of the product decomposition (4.29) (where we had no
requirements so far on µ). This only matters for semiclassical purposes, and (being
smooth and non-zero in the interior) the factor µ−1/2 multiplying from both sides
does not affect any of the relevant properties (semiclassical ellipticity and possible
non-trapping properties), so can be ignored — the same is true for σ independent
powers of µ.

To do so, it is useful to think of (τ̃ ∂τ̃ )2 − G0, G0 the dual metric of g0, as a
Lorentzian b-metric on X◦0 × [0,∞)τ̃ . From this perspective, we want to introduce
a new boundary defining function τ = τ̃ eφ, with our σ the b-dual variable of τ and
φ a function on X0, i.e. with our τ already given, at least near µ = 0, i.e. φ already
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fixed there, namely eφ = µ1/2(1 + µ)−1/4. Recall from the end of Subsection 3.2
that such a change of variables amounts to a conjugation on the Mellin transform
side by e−ıσφ. Further, properties of the Mellin transform are preserved provided
dτ
τ is globally time-like, which, as noted at the end of Subsection 3.2, is satisfied if
|dφ|G0

< 1. But, reading off the dual metric from the principal symbol of (4.31),

1

4

∣∣∣∣d(logµ− 1

2
log(1 + µ))

∣∣∣∣2
G0

=

(
1− µ

2(1 + µ)

)2

< 1

for µ > 0, with a strict bound as long as µ is bounded away from 0. Correspondingly,
µ1/2(1 + µ)−1/4 can be extended to a function eφ on all of X0 so that dτ

τ is time-
like, and we may even require that φ is constant on a fixed (but arbitrarily large)
compact subset of X◦0 . Then, after conjugation by e−ıσφ all of the semiclassical
requirements of Section 2 are satisfied. Naturally, the semiclassical properties could
be easily checked directly for the conjugate of ∆g0 − σ2 by the so-extended µ.

Thus, all of the results of Section 2 apply. The only part that needs some ex-
planation is the direction of propagation for the semiclassically outgoing condition.
For z > 0, as in the de Sitter case, null-bicharacteristics in X◦0 must go to L+, hence
lie in Σ~,+. Theorem 2.15 states backward propagation of regularity for the oper-
ator considered there. However, the operator we just constructed is the negative
of the class considered in (4.24), and under changing the sign of the operator, the
Hamilton vector field also changes direction, so semiclassical estimates (or WFh)
indeed propagate in the forward direction. �

Remark 4.4. We note that if the dual metric G1 on X0 is of the form κ2G0, G0 the
dual of g0 as in (4.29), then

∆G1 − κ2 (n− 2)2

4
− σ2 = κ2(∆G0

− (n− 2)2

4
− (σ/κ)2).

Thus, with µ as above, and with P̃σ the conjugate of ∆G0
− (n−2)2

4 − (σ/κ)2, of

the form (4.33) (modulo error terms as described there) then with eφ = µ1/(2κ)(1 +
µ)−1/(4κ) extended into the interior of X0 as above, we have

µ−1/2µn/4eıσφ(∆g1
− κ2 (n− 2)2

4
− σ2)e−ıσφµn/4µ−1/2 = κ2P̃σ/κ.

Now, Pσ = κ2P̃σ/κ still satisfies all the assumptions of Section 2, thus directly con-

jugation by e−ıσφ and multiplication from both sides by µ−1/2 gives an operator
to which the results of Section 2 apply. This is relevant because if we have an
asymptotically hyperbolic manifold with ends of different sectional curvature, the
manifold fits into the general framework directly, including the semiclassical esti-
mates60. A particular example is de Sitter-Schwarzschild space, on which resonances
and wave propagation were analyzed from an asymptotically hyperbolic perspective
in [47, 5, 40]; this is a special case of the Kerr-de Sitter family discussed in Section 6.
The stability of estimates for operators such as Pσ under small smooth, in the b-
sense, perturbations of the coefficients of the associated d’Alembertian means that
all the properties of de Sitter-Schwarzschild obtained by this method are also valid
for Kerr-de Sitter with sufficiently small angular momentum. However, working
directly with Kerr-de Sitter space, and showing that it satisfies the assumptions of
Section 2 on its own, gives a better result; we accomplish this in Section 6.

60For ‘classical’ results, the interior is automatically irrelevant.
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Remark 4.5. We now return to our previous remarks regarding the fact that our
solution disallows the conormal singularities (µ ± i0)ıσ from the perspective of
conformally compact spaces of dimension n − 1. The two indicial roots on these
spaces61 correspond to the asymptotics µ±ıσ/2+(n−2)/4 in µ > 0. Thus for the
operator

µ−1/2µıσ/2−n/4(∆g0 −
(n− 2)2

4
− σ2)µ−ıσ/2+n/4µ−1/2,

or indeed Pσ, they correspond to(
µ−ıσ/2+n/4µ−1/2

)−1

µ±ıσ/2+(n−2)/4 = µıσ/2±ıσ/2.

Here the indicial root µ0 = 1 corresponds to the smooth solutions we construct for
Pσ, while µıσ corresponds to the conormal behavior we rule out. Back to the original
Laplacian, thus, µ−ıσ/2+(n−2)/4 is the allowed asymptotics and µıσ/2+(n−2)/4 is the
disallowed one. Notice that Re ıσ = − Imσ, so the disallowed solution is growing
at µ = 0 relative to the allowed one, as expected in the physical half plane, and the
behavior reverses when Imσ < 0. Thus, in the original asymptotically hyperbolic
picture one has to distinguish two different rates of growths, whose relative size
changes. On the other hand, in our approach, we rule out the singular solution and
allow the non-singular (smooth one), so there is no change in behavior at all for
the analytic continuation.

Remark 4.6. For even asymptotically de Sitter metrics on an (n − 1)-dimensional
manifoldX ′0 with boundary, the methods for asymptotically hyperbolic spaces work.
For the past de Sitter problem, solving locally the Klein-Gordon equation propa-
gating away from the boundary, Pσ− ıQσ plays the same role as for asymptotically
hyperbolic spaces; for the future de Sitter problem, propagating towards the bound-
ary, Pσ− ıQσ and P ∗σ + ıQ∗σ switch roles, which does not affect Fredholm properties,
see Remark 2.8. Again, evenness means that we may choose a product decomposi-
tion near the boundary such that

(4.34) g0 =
dx2 − h
x2

there, where h is an even family of Riemannian metrics; as above, we take x to be a
globally defined boundary defining function. For the past problem, with µ̃ = x2, so

µ̃ > 0 is the Lorentzian region, the above calculations for �g0− (n−2)2

4 −σ2 in place

of ∆g0 − (n−2)2

4 − σ2 leading to (4.32) all go through with µ replaced by µ̃, and ∆h

replaced by −∆h. Letting µ = −µ̃, and conjugating by (1 + µ)ıσ/4 as above, yields

− 4µD2
µ + 4σDµ + σ2 −∆h + 4ıDµ + 2ıγ(µDµ − σ/2− ı(n− 2)/4),(4.35)

modulo terms that can be absorbed into the error terms in operators in the class
(4.24); this is the negative of the operator (4.33) apart from the γ term, which
is not important for our framework. For the future problem the calculations are
analogous except we work with σ in place of σ since our aim is to get to P ∗σ + ıQ∗σ;

the above calculations for �g0
− (n−2)2

4 − σ2 yield

− 4µD2
µ + 4σDµ + σ2 −∆h + 4ıDµ + 2ıγ(µDµ − σ/2− ı(n− 2)/4),(4.36)

61Note that µ = x2.
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again modulo terms that can be absorbed into the error terms in operators in the
class (4.24), i.e. this is indeed of the form P ∗σ + ıQ∗σ in the framework of Sub-
section 4.8, at least near µ̃ = 0. If now X ′0 is extended to a manifold without
boundary so that in µ̃ < 0, i.e. µ > 0, one has a classically elliptic, semiclassically
either non-trapping or mildly trapping problem, then all the results of Section 2
are applicable.

For the past problem one concretely obtains a formula analogous to (4.27),
namely when f is supported in (c, 0)µ, and Qσ is supported in µ < c, the past

solution of (�g0
− (n−2)2

4 − σ2)u = f , i.e. the solution vanishing for µ sufficiently
close to 0, which exists and is unique for all σ ∈ C, is

(4.37) µ̃−ıσ+n/2µ̃−1R̃s(Pσ − ıQσ)−1Ẽs−1µ̃
ıσ−n/2µ̃−1f,

where R̃s is restriction to (c, 0)µ, and Ẽs−1 is an Hs−1 extension to X, in a manner
that vanishes in µ ≥ 0. In particular, for all poles σ of (Pσ − ıQσ)−1 either the
resonant state or the corresponding dual state vanishes in (c, 0)µ. If the resonant
state does (which is in C∞(X)), then, as in Footnote 58, a unique continuation
statement on the asymptotically hyperbolic side shows that it also vanishes for
µ > 0, so in particular such a term does not contribute to the Laurent coefficients of
the asympotically hyperbolic resolvent, R(σ), either. If the resonant state does not
vanish identically in (c, 0)µ (and thus the dual state does vanish there identically),
then it does not vanish in µ > 0 either identically (again, by unique continuation,
now on the de Sitter side). There are two possibilities then: either the support of
the dual state intersects µ > 0 non-trivially, and then σ is a pole of R(σ) and the
dual state is supported62 in µ−1([0,∞)), or its support intersects µ > c precisely at
µ = 0, in which case it is a differentiated delta distribution. Since it lies in H1−s,
this can only happen for s > 3/2; since the poles of (Pσ− ıQσ)−1 in Imσ > −C are
independent of s as long as s > 1

2 + C, in Imσ > −1 the poles of ψ(Pσ − ıQσ)−1φ
when φ, ψ are supported in µ > c are exactly those of R(σ). Indeed, using the form
of P ∗σ + ıQ∗σ we see that differentiated delta distributions can lie in its nullspace
only if σ ∈ −ıN+ (with N+ standing for positive integers), so these are the only
possible poles of ψ(Pσ− ıQσ)−1φ in addition to those of R(σ); for all of these poles
the dual states are necessarily supported in63 µ−1([0,∞)).

5. Minkowski space

Perhaps our simplest example is Minkowski space M = Rn with the metric

g0 = dz2
n − dz2

1 − . . .− dz2
n−1.

62There can be no support in µ−1((−∞, c]) in view of Footnote 44.
63In view of the block lower triangular structure of the Schwartz kernel of (Pσ − ıQσ)−1, as

explained in Footnote 44, at least for σ near a fixed σ0, one can change Qσ by a holomorphic

finite rank operator family, keeping its support in µ < c in both factors, so that for the new

Qσ the poles of (Pσ − ıQσ)−1 near σ0 are exactly those of ψ(Pσ − ıQσ)−1φ, with multiplicities.
This in particular implies that in the perturbation framework of Subsection 2.7, for perturbations
Pσ(w)− ıQσ(w), w close to w0, the poles of ψ(Pσ(w)− ıQσ(w))−1φ are necessarily close to the

poles of ψ(Pσ(w0) − ıQσ(w0))−1φ, with multiplicities. In the Kerr-de Sitter setting for small
angular momentum, a, as in Theorem 1.4, this justifies the simplicity and one dimensionality of

the zero resonance: while for a = 0, (Pσ(a)− ıQσ(a))−1 may have other resonant states at σ = 0,

only 1 contributes to ψ(Pσ(a)− ıQσ(a))−1φ with a = 0, with a resulting simple resonance, hence
for small a the same holds.
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Also, let M̂ = Rn be the radial (or geodesic) compactification of space-time, see

[39, Section 1]; thus M̂ is the n-ball, with boundary X = Sn−1. Writing z′ =
(z1, . . . , zn−1) = rω in terms of Euclidean product coordinates, and t = zn, local

coordinates on M̂ in |z′| > ε|zn|, ε > 0, are given by

(5.1) s =
t

r
, ρ = r−1, ω,

while in |zn| > ε|z′|, by

(5.2) ρ̃ = |t|−1, Z =
z′

|t| .

Note that in the overlap, the curves given by Z constant are the same as those
given by s, ω constant, but the actual defining function of the boundary we used,
namely ρ̃ vs. ρ, differs, and does so by a factor which is constant on each fiber. For
some purposes it is useful to fix a global boundary defining function, such as ρ̂ =
(r2+t2)−1/2. We remark that if one takes a Mellin transform of functions supported
near infinity along these curves, and uses conjugation by the Mellin transform to
obtain families of operators on X = ∂M̂ , the effect of changing the boundary
defining function in this manner is conjugation by a non-vanishing factor which
does not affect most relevant properties of the induced operator on the boundary,
so one can use local defining functions when convenient.

The metric g0 is a Lorentzian scattering metric in the sense of Melrose [39]
(where, however, only the Riemannian case was discussed) in that it is a symmetric

non-degenerate bilinear form on the scattering tangent bundle of M̂ of Lorentzian
signature. This would be the appropriate locus of analysis of the Klein-Gordon
operator, �g0

−λ for λ > 0, but for λ = 0 the scattering problem becomes degenerate
at the zero section of the scattering cotangent bundle at infinity. However, one
can convert �g0

to a non-degenerate b-operator on M̂ : it is of the form ρ̂2P̃ ,

P̃ ∈ Diff2
b(X), where ρ̂ is a defining function of the boundary. In fact, following

Wang [60], we consider (taking into account the different notation for dimension)

ρ−2ρ−(n−2)/2�g0ρ
(n−2)/2 = �g̃0 +

(n− 2)(n− 4)

4
;

G̃0 = (1− s2)∂2
s − 2(s∂s)(ρ∂ρ)− (ρ∂ρ)

2 − ∂2
ω,

(5.3)

with G̃0 being the dual metric of g̃0; here we write �g̃0
of the d’Alembertian of g̃0.

Again, this ρ is not a globally valid defining function, but changing to another one
does not change the properties we need64 where this is a valid defining function. It
is then a straightforward calculation that the induced operator on the boundary is

P ′σ = Ds(1− s2)Ds − σ(sDs +Dss)− σ2 −∆ω +
(n− 2)(n− 4)

4
,

In the other coordinate region, where ρ̃ is a valid defining function, and t > 0, it is
even easier to compute

(5.4) �g0 = ρ̃2
(
(ρ̃Dρ̃)

2 + 2(ρ̃Dρ̃)ZDZ + (ZDZ)2 −∆Z − ı(ρ̃Dρ̃)− ıZDZ

)
,

so after Mellin transforming ρ̃−2�, we obtain

L̃σ = (σ − ı/2)2 +
1

4
+ 2(σ − ı/2)ZDZ + (ZDZ)2 −∆Z .

64Only when Imσ →∞ can such a change matter.
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Conjugation by ρ̃(n−2)/2 simply replaces σ by σ − ın−2
2 , yielding that the Mellin

transform Lσ of ρ̃−(n−2)/2ρ̃−2�g0
ρ̃(n−2)/2 is

Lσ =
(
σ − ın− 1

2

)2

+
1

4
+ 2
(
σ − ın− 1

2

)
ZDZ + (ZDZ)2 −∆Z

=
(
ZDZ + σ − ın− 1

2

)2

+
1

4
−∆Z .

(5.5)

Note that Lσ and L′σ are not the same operator in different coordinates; they are
related by a σ-dependent conjugation. The operator Lσ in (5.5) is almost exactly
the operator arising from de Sitter space on the front face, see the displayed equation
after [53, Equation 7.4] (the σ in [53, Equation 7.4] is ıσ in our notation as already
remarked in Section 4), with the only change that our σ would need to be replaced

by −σ, and we need to add (n−1)2

4 − 1
4 to our operator65. However, due to the way

we need to propagate estimates, as explained below, we need to think of this as the
adjoint of an operator of the type we considered in Section 4 up to Remark 4.6, or
after [53, Equation 7.4]. Thus, we think of Lσ as the adjoint (with respect to |dZ|)
of

Pσ = L∗σ = (ZDZ + σ − ı(n− 1)/2)2 +
1

4
−∆Z

= (ZDZ + σ − ı(n− 1))(ZDZ + σ)−∆Z +
1

4
− (n− 1)2

4
,

which is the de Sitter operator after [53, Equation 7.4], except, denoting σ of that

paper by σ̌, ıσ̌ = σ, and we need to take λ = (n−1)2

4 − 1
4 in [53, Equation 7.4]. This

is also of the form in Section 4, but with σ of that section, denoted temporarily by
σ̂, being given by −σ. Thus, all of the analysis of Section 4 applies.

In particular, note that Pσ is elliptic inside the light cone, where s > 1, and
hyperbolic outside the light cone, where s < 1. It follows from Subsection 4.9
that Pσ is a conjugate of the hyperbolic Laplacian inside the light cones66, and
of the Klein-Gordon operator on de Sitter space outside the light cones: with67

ν = (1− |Z|2)1/2 = (cosh ρHn−1)−1,

ν
n
2 +ıσP−σν

−ıσ−n2 = ν
n
2−ıσPσν

ıσ−n2 = −ν−1

(
∆Hn−1 − σ2 − (n− 2)2

4

)
ν−1.

We remark that in terms of dynamics on bS∗M̂ , as discussed in Subsection 3.1,
there is a sign difference in the normal to the boundary component of the Hamilton
vector field (normal in the b-sense, only), so in terms of the full b-dynamics (rather
than normal family dynamics) the radial points here are sources/sinks, unlike the
saddle points in the de Sitter case. This is closely related to the appearance of
adjoints in the Minkowski problem (as compared to the de Sitter one).

This immediately assures that not only the wave equation on Minkowski space
fits into our framework, wave propagation on it is stable under small smooth per-
turbation in Diff2

b(X) of ρ̂2�g0
which have real principal symbol.

65Since replacing t > 0 by t < 0 in the region we consider reverses the sign when relating
Dρ and Dt, the signs would agree with those from the discussion after [53, Equation 7.4] at the

backward light cone.
66As pointed out to the author by Gunther Uhlmann, this means that the Klein model of

hyperbolic space is the one induced by the Minkowski boundary reduction.
67Recall Footnote 57 for the connection to the standard Poincaré model.
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Further, it is shown in [53, Corollary 7.18] that the problem for P−σ is invertible
in the interior of hyperbolic space as an operator on weighted zero-Sobolev spaces,
with the inverse mapping Ċ∞(Bn−1) to ν2ıσC∞(Bn−1), unless

ıσ ∈ −n− 1

2
±
√

(n− 1)2

4
− λ− N = −n− 1

2
± 1

2
− N = −n− 2

2
− N,

i.e.

(5.6) σ ∈ −ı(n− 2

2
+ N);

this amounts to the invertibility of Pσ, with the inverse mapping Ċ∞(Bn−1) to
C∞(Bn−1). Recall also from Remark 4.6 that, with φ, ψ supported in s − 1 > c,
c < 0, as there (with the role of µ there played by s−1 here), φ(Pσ− ıQσ)−1ψ, and
thus also its adjoint, may have additional poles as compared to the resolvent of the
asymptotically hyperbolic model, but for these −σ = σ̂ ∈ −ıN+, i.e. σ ∈ −ıN+.
Thus, if f is supported in s − 1 > c then ((P ∗σ + ıQ∗σ)−1f)|s−1>c only has the
poles given by the asymptotically hyperbolic model in s − 1 > c except possibly
−ıN+. Further for these non-asymptotically hyperbolic poles, the resonant states
of (P ∗σ + ıQ∗σ)−1 are the dual states of (Pσ − ıQσ)−1 and vice versa, so either the
dual states of (P ∗σ + ıQ∗σ)−1 are supported in s − 1 < c, in which case they are
not important to us since they do not affect the solution of the standard forward
problem when the forcing is supported in s− 1 > c, or the states are supported in
s − 1 ≤ 0, in which case they still do not affect the solution in the elliptic region
s− 1 > 0; see Footnote 58.

To recapitulate, Lσ is of the form described in Section 2, at least if we restrict
away from the backward light cone68. To be more precise, for the forward problem
for the wave equation, the adjoint Pσ of the operator Lσ we need to study satisfies
the properties in Section 2, i.e. singularities are propagated towards the radial points
at the forward light cone, which means that our solution lies in the ‘bad’ dual spaces
– of course, these are just the singularities corresponding to the radiation field
of Friedlander [25], see also [46], which is singular on the radial compactification
of Minkowski space. However, by elliptic regularity or microlocal propagation of
singularities, we of course automatically have estimates in better spaces away from
the boundary of the light cone. We also need complex absorption supported, say,
near s = −1/2 in the coordinates (5.1), as in Subsection 4.7. If we wanted to, we
could instead add a boundary at s = −1/2, or indeed at s = 0 (which would give
the standard Cauchy problem), see Remark 2.6. By Subsection 3.3, this does not
affect the solution in s > 0, say, when the forcing f vanishes in s < 0 and we want
the solution u to vanish there as well.

We thus deduce from Lemma 3.1 and the analysis of Section 2:

Theorem 5.1. Let K be a compact subset of the interior of the light cone at infinity
on M̂ . Suppose that g is a Lorentzian scattering metric and ρ̂2�g is sufficiently

close to ρ̂2�g0 in Diff2
b(M̂), with n the dimension of M̂ . Then solutions of the

68The latter is only done to avoid combining for the same operator the estimates we state
below for an operator Lσ and its adjoint; as follows from the remark above regarding the sign of
σ, for the operator here, the microlocal picture near the backward light cone is like that for the

Lσ considered in Section 2, and near the forward light cone like that for L∗σ . It is thus fine to
include both the backward and the forward light cones; we just end up with a combination of the
problem we study here and its adjoint, and with function spaces much like in [39, 57].
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wave equation �gu = f vanishing in t < 0 and f ∈ Ċ∞(M̂) = S(Rn) have a
polyhomogeneous asymptotic expansion in the sense of [43] in K of the form ∼∑
j

∑
k≤mj ajkρ̂

δj (log |ρ̂|)k, with ajk in C∞, and with

δj = ıσj +
n− 2

2
,

with σj being a point of non-invertibility of Lσ on the appropriate function spaces.
On Minkowski space, the exponents are given by

δj = ı(−ın− 2

2
− ıj) +

n− 2

2
= n− 2 + j, j ∈ N,

and they depend continuously on the perturbation if one perturbs the metric. A
distributional version holds globally.

For polyhomogeneous f the analogous conclusion holds, except that one has to add
to the set of exponents (index set) the index set of f , increased by 2 (corresponding
factoring out ρ̂2 in (5.4)), in the sense of extended unions [43, Section 5.18].

Remark 5.2. Here a compact K is required since we allow drastic perturbations
that may change where the light cone hits infinity. If one imposes more structure,
so that the light cone at infinity is preserved, one can get more precise results.

As usual, the smallness of the perturbation is only relevant to the extent that
rough properties of the global dynamics and the local dynamics at the radial points
are preserved (so the analysis is only impacted via dynamics). There are no size
restrictions on perturbations if one keeps the relevant features of the dynamics.

In a different class of spaces, namely asymptotically conic Riemannian spaces,
analogous and more precise results exist for the induced product wave equation, see
especially the work of Guillarmou, Hassell and Sikora [27]; the decay rate in their
work is the same in odd dimensional space-time (i.e. even dimensional space). In
terms of space-time, these spaces look like a blow-up of the ‘north and south poles’
Z = 0 of Minkowski space, with product type structure in terms of space time,
but general smooth dependence on ω (with the sphere in ω replaceable by another
compact manifold). In that paper a parametrix is constructed for ∆g at all energies
by combining a series of preceding papers. Their conclusion in even dimensional
space-time is one order better; this is presumably the result of a cancellation. It is
a very interesting question whether our analysis can be extended to non-product
versions of their setting.

Note that for the Mellin transform of �g0
one can perform a more detailed

analysis, giving Lagrangian regularity at the light cone, with high energy control.
This would be preserved for other metrics that preserve the light cone at infinity
to sufficiently high order. The result is an expansion on the M̂ blown up at the
boundary of the light cone, with the singularities corresponding to the Friedlander
radiation field. However, in this relatively basic paper we do not pursue this further.

6. The Kerr-de Sitter metric

6.1. The basic geometry. We now give a brief description of the Kerr-de Sitter
metric on

Mδ = Xδ × [0,∞)τ , Xδ = (r− − δ, r+ + δ)r × S2,

X+ = (r−, r+)r × S2, X− =
(
(r− − δ, r+ + δ)r \ [r−, r+]r

)
× S2,
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where r± are specified later. We refer the reader to the excellent treatments of the
geometry by Dafermos and Rodnianski [13, 14] and Tataru and Tohaneanu [50, 49]
for details, and Dyatlov’s paper [20] for the set-up and most of the notation we
adopt.
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τ
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X+r = r− r = r+X−

µ̃ > 0µ̃ < 0 µ̃ < 0

Figure 7. The basic diagram of Kerr-de Sitter space without the
factor S2. The function µ̃ = µ̃(r) is defined below in (6.1); the
event horizons are µ̃ = 0 corresponding to r = r+ (the de Sitter
end) and to r = r− (the Kerr end). The Mellin transform below is
taken in τ , corresponding to the ‘infinity’ τ = 0.

Away from the north and south poles q± we use spherical coordinates (θ, φ) on
S2:

S2 \ {q+, q−} = (0, π)θ × S1
φ.

Thus, away from (r−−δ, r+ +δ)r×[0,∞)τ×{q+, q−}, the Kerr-de Sitter space-time
is

(r− − δ, r+ + δ)r × [0,∞)τ × (0, π)θ × S1
φ

with the metric we specify momentarily.
The Kerr-de Sitter metric has a very similar microlocal structure at the event

horizon to de Sitter space. We first start with a coordinate system in which the
metric is usually expressed but in which the metric is singular at r− and r+, which
are roots of the function µ̃ defined below. The metric g is

g = −ρ2
(dr2

µ̃
+
dθ2

κ

)
− κ sin2 θ

(1 + γ)2ρ2
(a dt̃− (r2 + a2) dφ̃)2

+
µ̃

(1 + γ)2ρ2
(dt̃− a sin2 θ dφ̃)2,

while the dual metric is

G = −ρ−2
(
µ̃∂2

r +
(1 + γ)2

κ sin2 θ
(a sin2 θ ∂t̃ + ∂φ̃)2 + κ∂2

θ

− (1 + γ)2

µ̃
((r2 + a2)∂t̃ + a ∂φ̃)2

)(6.1)

with rs,Λ, a constants, rs,Λ ≥ 0,

ρ2 = r2 + a2 cos2 θ,

µ̃ = (r2 + a2)(1− Λr2

3
)− rsr,

κ = 1 + γ cos2 θ,

γ =
Λa2

3
.
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While G is defined for all values of the parameters rs,Λ, a, with rs,Λ ≥ 0, we make
further restrictions. Note that under the rescaling

r′ =
√

Λr, t̃′ =
√

Λt̃, r′s =
√

Λrs, a
′ =
√

Λa, Λ′ = 1,

Λ−1G would have the same form, but with all the unprimed variables replaced by
the primed ones. Thus, effectively, the general case Λ > 0 is reduced to Λ = 1.

Our first assumption is that µ̃(r) = 0 has two positive roots r = r±, r+ > r−,
with

(6.2) z± = ∓∂µ̃
∂r
|r=r± > 0;

r+ is the de Sitter end, r− is the Kerr end. Since µ̃ is a quartic polynomial, is > 0
at r = 0 if |a| > 0, and goes to −∞ at ±∞, it can have at most 3 positive roots;
the derivative requirements imply that these three positive roots exist, and r± are
the larger two of these. If a = 0, (6.2) is satisfied if and only if 0 < 9

4r
2
sΛ < 1.

Indeed, if (6.2) is satisfied, ∂
∂r (r−4µ̃) = −2r−3

(
1− 3rs

2r

)
must have a zero between

r− and r+, where µ̃ must be positive; ∂
∂r (r−4µ̃) = 0 gives r = 3

2rs, and then

µ̃(r) > 0 gives 1 > 9
4r

2
sΛ. Conversely, if 0 < 9

4r
2
sΛ < 1, then the cubic polynomial

r−1µ̃ = r − Λ
3 r

3 − rs is negative at 0 and at +∞, and thus will have exactly

two positive roots if it is positive at one point, which is the case at r = 3
2rs.

Indeed, note that r−4µ̃ = r−2 − Λ
3 − rsr

−3 is a cubic polynomial in r−1, and

∂r(r
−4µ̃) = −2r−3

(
1− 3rs

2r

)
, so r−4µ̃ has a non-degenerate critical point at r = 3

2rs,

and if 0 ≤ 9
4r

2
sΛ < 1, then the value of µ̃ at this critical point is positive. Thus, for

small a (depending on 9
4r

2
sΛ, but with uniform estimates in compact subintervals

of (0, 1)), r± satisfying (6.2) still exist.

We next note that for a not necessarily zero, if (6.2) is satisfied then d2µ̃
dr2 =

2− 2
3Λa2 − 4Λr2 must have a positive zero, so we need

(6.3) 0 ≤ γ =
Λa2

3
< 1,

i.e. (6.2) implies (6.3).
Physically, Λ is the cosmological constant, rs = 2M the Schwarzschild radius,

with M being the mass of the black hole, a the angular momentum. Thus, de Sitter-
Schwarzschild space is the particular case with a = 0, while further de Sitter space
is the case when rs = 0 in which limit r− goes to the origin and simply ‘disappears’,
and Schwarzschild space is the case when Λ = 0, in which case r+ goes to infinity,
and ‘disappears’, creating an asymptotically Euclidean end. On the other hand,
Kerr is the special case Λ = 0, with again r+ →∞, so the structure near the event
horizon is unaffected, but the de Sitter end is replaced by a different, asymptotically
Minkowski, end. One should note, however, that of the limits Λ → 0, a → 0 and
rs → 0, the only non-degenerate one is a → 0; in both other cases the geometry
changes drastically corresponding to the disappearance of the de Sitter, resp. the
black hole, ends. Thus, arguably, from a purely mathematical point of view, de
Sitter-Schwarzschild space-time is the most natural limiting case. Perhaps the best
way to follow this section then is to keep de Sitter-Schwarzschild space in mind.
Since our methods are stable, this automatically gives the case of small a; of course
working directly with a gives better results.

In fact, from the point of view of our setup, all the relevant features are sym-
bolic (in the sense of principal symbols), including dependence on the Hamiltonian



MICROLOCAL ASYMPTOTICALLY HYPERBOLIC AND KERR-DE SITTER 79

dynamics. Thus, the only not completely straightforward part in showing that our
abstract hypotheses are satisfied is the semi-global study of dynamics. The dy-
namics of the rescaled Hamilton flow depends smoothly on a, so it is automatically
well-behaved for finite times for small a if it is such for a = 0; here rescaling is un-

derstood on the fiber-radially compactified cotangent bundle T
∗
Xδ (so that one has

a smooth dynamical system whose only non-compactness comes from that of the
base variables). The only place where dynamics matters for unbounded times are

critical points or trapped orbits of the Hamilton vector field. In S∗Xδ = ∂T
∗
Xδ,

one can analyze the structure easily for all a, and show that for a specific range
of a, given below implicitly by (6.13), the only critical points/trapping is at fiber-
infinity SN∗Y of the conormal bundle of the event horizon Y . We also analyze the

semiclassical dynamics (away from S∗Xδ = ∂T
∗
Xδ) directly for a satisfying (6.27),

which allows a to be comparable to rs. We show that in this range of a (subject
to (6.2) and (6.13)), the only trapping is hyperbolic trapping, which was analyzed
by Wunsch and Zworski [61]; further, we also show that the trapping is normally
hyperbolic for small a, and is thus structurally stable then.

In summary, apart from the full analysis of semiclassical dynamics, we work with
arbitrary a for which (6.2) and (6.13) holds, which are both natural constraints,
since it is straightforward to check the requirements of Section 2 in this generality.
Even in the semiclassical setting, we work under the relatively large a bound, (6.27),
to show hyperbolicity of the trapping, and it is only for normal hyperbolicity that
we deal with (unspecified) small a.

We now put the metric (6.1) into a form needed for the analysis. Since the metric

is not smooth b-type in terms of r, θ, φ̃, e−t̃, in order to eliminate the µ̃−1 terms we
let

(6.4) t = t̃+ h(r), φ = φ̃+ P (r)

with

(6.5) h′(r) = ∓1 + γ

µ̃
(r2 + a2)∓ c±, P ′(r) = ∓1 + γ

µ̃
a

near r±. Here c = c± = c±(r) is a smooth function of r (unlike µ̃−1!), that is to
be specified. One also needs to specify the behavior in µ̃ > 0 bounded away from
0, much like we did so in the asymptotically hyperbolic setting. This only affects
semiclassical properties when σ away from the reals, however; so the choice is not
relevant for most purposes.

We at first focus on the ‘classical’ problem. Then the dual metric becomes

G = −ρ−2
(
µ̃
(
∂r ∓ c∂t

)2 ∓ 2(1 + γ)(r2 + a2)
(
∂r ∓ c∂t

)
∂t

∓ 2(1 + γ)a
(
∂r ∓ c∂t

)
∂φ + κ∂2

θ +
(1 + γ)2

κ sin2 θ
(a sin2 θ∂t + ∂φ)2

)
.

We write τ = e−t, so −τ∂τ = ∂t, and b-covectors as

ξ dr + σ
dτ

τ
+ η dθ + ζ dφ,

so

ρ2G = −µ̃
(
ξ ± cσ

)2 ∓ 2(1 + γ)(r2 + a2)
(
ξ ± cσ

)
σ

± 2(1 + γ)a
(
ξ ± cσ

)
ζ − κη2 − (1 + γ)2

κ sin2 θ
(−a sin2 θσ + ζ)2.
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Note that the sign of ξ here is the opposite of the sign in our de Sitter discussion
in Section 4 where it was the dual variable (thus the symbol of Dµ) of µ, which is

r−2µ̃ in the present notation, since dµ̃
dr < 0 at the de Sitter end, r = r+.

A straightforward calculation shows det g = (detG)−1 = −(1 + γ)−4ρ4 sin2 θ, so
apart from the usual polar coordinate singularity at θ = 0, π, which is an artifact of
the spherical coordinates and is discussed below, we see at once that g is a smooth
Lorentzian b-metric. In particular, it is non-degenerate, so the d’Alembertian �g =
d∗d is a well-defined b-operator, and

σb,2(ρ2�g) = ρ2G.

Factoring out ρ2 does not affect any of the statements below but simplifies some
formulae, see Footnote 12 and Footnote 19 for general statements; one could also
work with G directly.

6.2. The ‘spatial’ problem: the Mellin transform. The Mellin transform, Pσ,
of ρ2�g has the same principal symbol, including in the high energy sense,

pfull = σfull(Pσ) =− µ̃
(
ξ ± cσ

)2 ∓ 2(1 + γ)(r2 + a2)
(
ξ ± cσ

)
σ

± 2(1 + γ)a
(
ξ ± cσ

)
ζ − p̃full

(6.6)

with

p̃full = κη2 +
(1 + γ)2

κ sin2 θ
(−a sin2 θσ + ζ)2,

so p̃full ≥ 0 for real σ. Thus,

Hpfull
=
(
− 2µ̃

(
ξ ± cσ

)
∓ 2(1 + γ)(r2 + a2)σ ± 2(1 + γ)aζ

)
∂r

−
(
− ∂µ̃

∂r

(
ξ ± cσ

)2 ∓ 4r(1 + γ)σ
(
ξ ± cσ

)
± ∂c

∂r
c̃σ
)
∂ξ

± 2(1 + γ)a
(
ξ ± cσ

)
∂φ − Hp̃full

,

c̃ = −2µ̃
(
ξ ± cσ

)
∓ 2(1 + γ)(r2 + a2)σ ± 2(1 + γ)aζ.

To deal with q+ given by θ = 0 (q− being similar), let

y = sin θ sinφ, z = sin θ cosφ, so cos2 θ = 1− (y2 + z2).

We can then perform a similar calculation yielding that if λ is the dual variable to
y and ν is the dual variable to z then

ζ = zλ− yν

and

p̃full = (1 + γ cos2 θ)−1
(

(1 + γ)2(λ2 + ν2) + p̃′′
)

+ p̃]full,

p̃]full = (1 + γ cos2 θ)−1(1 + γ)2(a sin2 θσ − 2ζ)aσ,

with p̃′′ smooth, independent of σ and vanishing quadratically at the origin. Cor-
respondingly, by (6.6), Pσ is indeed smooth at q±. Thus, one can perform all
symbol calculations away from q±, since the results will extend smoothly to q±,
and correspondingly from now on we do not emphasize these two poles.
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In the sense of ‘classical’ microlocal analysis, we thus have:

p = σ2(Pσ) = −µ̃ξ2 ± 2(1 + γ)aξζ − p̃, p̃ = κη2 +
(1 + γ)2

κ sin2 θ
ζ2 ≥ 0,

Hp =
(
− 2µ̃ξ ± 2(1 + γ)aζ

)
∂r ± 2(1 + γ)aξ∂φ +

∂µ̃

∂r
ξ2∂ξ − Hp̃.

(6.7)

6.3. Microlocal geometry of Kerr-de Sitter space-time. As already stated
in Section 2, it is often convenient to consider the fiber-radial compactification

T
∗
Xδ of the cotangent bundle T ∗Xδ, with S∗Xδ considered as the boundary at

fiber-infinity of T
∗
Xδ.

We let

Λ+ = N∗{µ̃ = 0} ∩ {∓ξ > 0}, Λ− = N∗{µ̃ = 0} ∩ {±ξ > 0},
with the sign inside the braces corresponding to that of r±. This is consistent with
our definition of Λ± in the de Sitter case. We let L± = ∂Λ± ⊂ S∗Xδ. Since Λ+∪Λ−
is given by η = ζ = 0, µ̃ = 0, Λ± are preserved by the classical dynamics (i.e. with
σ = 0), but they are not radial (everywhere) if a 6= 0. Note that the special
structure of p̃ is irrelevant for the purposes of this observation; only the quadratic
vanishing at L± matters. Even for other local aspects of analysis, considered below,
the only relevant part69, is that Hpp̃ vanishes cubically at L±, which in some sense
reflects the behavior of the linearization of p̃.
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Figure 8. The cotangent bundle near the event horizon S = {µ̃ =
0}. It is drawn in a fiber-radially compactified view. Σ± are the
components of the (classical) characteristic set containing L±. The
characteristic set crosses the event horizon on both components;
here the part near L+ is hidden from view. The projection of this
region to the base space is the ergoregion. Semiclassically, i.e. the

interior of T
∗
Xδ, for z = h−1σ > 0, only Σ~,+ can enter µ̃ > a2,

see the paragraph after (6.15).

To analyze the dynamics near L± on the characteristic set, starting with the
classical dynamics, we note that

Hp̃r = 0, Hp̃ξ = 0, Hpζ = 0, Hp̃p̃ = 0, Hpp̃ = 0;

69This could be relaxed: quadratic behavior with small leading term would be fine as well;

quadratic behavior follows from Hp being tangent to Λ±; smallness is needed so that Hp|ξ|−1 can
be used to dominate this in terms of homogeneous dynamics, so that the dynamical character of

L± (sink/source) is as desired.
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note that Hpp̃ = 0 and Hpζ = 0 correspond to the integrability of the Hamiltonian
dynamical system; these were observed by Carter [8] in the Kerr setting. Further-
more, with |ξ|−1 = ρ̃ in the notation of Subsection 2.2,

(6.8) Hp|ξ|−1|S∗Xδ = −(sgn ξ)
∂µ̃

∂r
,

so at ∂N∗{µ̃ = 0} it is given by ±(sgn ξ)z±, so β0 = z± which is bounded away
from 0. We note that, with ρ0 = |ξ|−2p̃ in the notation of Subsection 2.2,

(6.9) |ξ|−1Hp(|ξ|−2p̃)|S∗Xδ = −2(sgn ξ)
∂µ̃

∂r
p̃|ξ|−2.

Since p̃ = 0 and µ̃ 6= 0 implies ξ = 0 on the classical characteristic set (i.e. when we
take σ = 0), which cannot happen on S∗X (we are away from the zero section!), this
shows that the Hamilton vector field is non-radial except possibly at Λ±. Moreover,

Hp

(
µ̃∓ 2(1 + γ)a

ζ

ξ

)
|S∗Xδ = −2|ξ|

(
µ̃∓ 2(1 + γ)a

ζ

ξ

)
(sgn ξ)

∂µ̃

∂r
;

as usual, this corresponds to p̂ = |ξ|−2p at L±. Finally, the imaginary part of the
subprincipal symbol at L± is

((sgn ξ)
∂µ̃

∂r
)(β± Imσ)|ξ|, where

β± = ∓2

(
dµ̃

dr

)−1

(1 + γ)(r2 + a2)|r=r± = 2z−1
± (1 + γ)(r2

± + a2) > 0;

(6.10)

here (sgn ξ)∂µ̃∂r was factored out in view of (6.8), (2.5) and (2.3), so β̃ at r± is β±.
Thus, L+ is a sink, L− a source. Furthermore, in the classical sense, ξ = 0 is

disjoint from the characteristic set in the region of validity of the form (6.6) of the
operator, as well as at the poles of the sphere (i.e. the only issue is when r is farther
from r±), so the characteristic set has two components there with L± lying in
different components. We note that that as γ < 1, κ sin2 θ = sin2 θ(1 + γ)− γ sin4 θ
has its maximum in [0, π]θ at θ = π/2, where it is 1. Since on the characteristic set

(6.11) a2ξ2 + (1 + γ)2ζ2 ≥ ±2(1 + γ)aξζ = p̃+ µ̃ξ2 ≥ η2 + (1 + γ)2ζ2 + µ̃ξ2

and ξ 6= 0, we conclude that

(6.12) µ̃ ≤ a2

there, so this form of the operator remains valid, and the characteristic set can
indeed be divided into two components, separating L±.

Next, we note that if a is so large that at r = r0 with dµ̃
dr (r0) = 0, one has

µ̃(r0) = a2, then letting η0 = 0, θ0 = π
2 , ξ0 6= 0, ζ0 = ± a

1+γ ξ0, the bicharacteristics

through (r0, θ0, φ0, ξ0, η0, ζ0) are stationary for any φ0, so the operator is classically
trapping in the strong sense that not only is the Hamilton vector field radial, but it
vanishes. Since such vanishing means that weights cannot give positivity in positive
commutator estimates, see Section 2, it is natural to impose the restriction on a
that

(6.13) r0 ∈ (r+, r−),
dµ̃

dr
(r0) = 0⇒ a2 < µ̃(r0).

Under this assumption, by (6.12), the ergoregions from the two ends do not inter-
sect.
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Finally, we show that bicharacteristics leave the region µ̃ > µ̃0, where µ̃0 < 0
is such that dµ̃

dr is bounded away from 0 on [µ̃0, (1 + ε)a2]µ̃ for some ε > 0, which
completes checking the hypotheses in the classical sense. Note that by (6.2) and
(6.13) such µ̃0 and ε exists. To see this, we use p̃ to measure the size of the
characteristic set over points in the base. Using 2ab ≤ (1 + ε)a2 + b2/(1 + ε) and
κ sin2 θ ≤ 1, we note that on the characteristic set

(1 + ε)a2ξ2 +
(1 + γ)2

1 + ε
ζ2 ≥ p̃+ µ̃ξ2 ≥ ε

1 + ε
p̃+

(1 + γ)2

1 + ε
ζ2 + µ̃ξ2,

so

((1 + ε)a2 − µ̃) ≥ ε

1 + ε
|ξ|−2p̃,

where now both sides are homogeneous of degree zero, or equivalently functions on
S∗Xδ. Note that p̃ = 0 implies that ξ 6= 0 on S∗Xδ, so our formulae make sense. By
(6.9), using that ∂µ̃

∂r is bounded away from 0, |ξ|−2p̃ is growing exponentially in the
forward/backward direction along the flow as long as the flow remains in a region
µ̃ ≥ µ̃0, where the form of the operator is valid (which is automatic in this region,
as farther on ‘our side’ of the event horizon, X+, where the form of the operator
is not valid, it is elliptic), which shows that the bicharacteristics have to leave this
region. As noted already, this proves that the operator fits into our framework in
the classical sense.

6.4. Semiclassical behavior. The semiclassical principal symbol is

p~,z =− µ̃
(
ξ ± cz

)2 ∓ 2(1 + γ)(r2 + a2)
(
ξ ± cz

)
z ± 2(1 + γ)a

(
ξ ± cz

)
ζ − p̃~,z

(6.14)

with

p̃~,z = κη2 +
(1 + γ)2

κ sin2 θ
(−a sin2 θz + ζ)2.

Recall now that Mδ = Xδ × [0,∞)τ , and that, due to Section 7, when we want to
consider Imσ bounded away from 0, we need to choose c in our definition of τ so
that dτ

τ is time-like with respect to G. But

〈dτ
τ
,
dτ

τ
〉G = −µ̃c2 − 2c(1 + γ)(r2 + a2)− a2(1 + γ)2 sin2 θ

κ
,

and as this must be positive for all θ, we need to arrange that

(6.15) µ̃c2 + 2c(1 + γ)(r2 + a2) + a2(1 + γ)2 < 0,

and this in turn suffices. Note that c = −µ̃−1(1+γ)(r2 +a2) automatically satisfies
this in µ̃ > 0; this would correspond to undoing our change of coordinates in (6.5)
(which is harmless away from µ̃ = 0, but of course c needs to be smooth at µ̃ = 0).
At µ̃ = 0, (6.15) gives a (negative) upper bound for c; for µ̃ > 0 we have an
interval of possible values of c; for µ̃ < 0 large negative values of c always work.
Thus, we may choose a smooth function c such that (6.15) is satisfied everywhere,
and we may further arrange that c = −µ̃−1(1 + γ)(r2 + a2) for µ̃ > µ̃1 where µ̃1

is an arbitrary positive constant; in this case, as discussed in Section 7, p~,z is
semiclassically elliptic when Im z 6= 0.

Note also that, as discussed in Subsection 3.2, there is only one component of
the characteristic set in µ̃ > a2 by (6.12), namely Σ~,sgn z.

It remains to discuss trapping. Note that the dynamics depends continuously
on a, with a = 0 being the de Sitter-Schwarzschild case, when there is no trapping
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near the event horizon, so the same holds for Kerr-de Sitter with slow rotation.
Below we first describe the dynamics in de Sitter-Schwarzschild space explicitly,
and then, in (6.27), give an explicit range of a in which the non-trapping dynamical
assumption of Section 2, apart from hyperbolic trapping, is satisfied.

First, on de Sitter-Schwarzschild space, recalling that c = c± is irrelevant for
the dynamics for real z, we may take c± = 0, at least away from r∓ (i.e. otherwise
we would simply change this calculation by the effect of a symplectomorphism,
corresponding to a conjugation, which we note does not affect the ‘base’ variables
on the cotangent bundle). Further, if we take a well-defined function on T ∗Xδ

(independently of c), such as r or ζ, and we consider objects such as Hp~,zr and

H2
p~,z

r, and whether the vanishing of the former on the characteristic set implies
the positivity or negativity of the latter, any choice of c± can be used. Then

p~,z = −µ̃ξ2 ∓ 2r2ξz − p̃~,z, p̃~,z = η2 +
ζ2

sin2 θ
,

so

Hp~,z = −2(µ̃ξ ± r2z)∂r +

(
∂µ̃

∂r
ξ2 ± 4rzξ

)
∂ξ − Hp̃~,z ,

hence Hp~,zr = −2(µ̃ξ± r2z), and so Hp~,zr = 0 implies ∓z = r−2µ̃ξ. We first note
that Hp~,zr cannot vanish in T ∗Xδ in µ̃ ≤ 0 (though it can vanish at fiber infinity
at L±) since (for z 6= 0)

(6.16) µ̃ ≤ 0 and Hp~,zr = 0⇒ µ̃ξ 6= 0 and p~,z = µ̃ξ2 − p̃~,z < 0.

It remains to consider Hp~,zr = 0 in µ̃ > 0. At such a point

H2
p~,z

r = −2µ̃Hp~,zξ = −2µ̃ξ2

(
∂µ̃

∂r
− 4r−1µ̃

)
= −2µ̃ξ2r4 ∂(r−4µ̃)

∂r
,

so as ∓z = r−2µ̃ξ, so ξ 6= 0, by the discussion after (6.2),

µ̃ > 0, ±(r − 3

2
rs) > 0, Hp~,zr = 0⇒ ±H2

p~,z
r > 0,

and thus the gluing hypotheses of [15] are satisfied arbitrarily close to70 r = 3
2rs.

Furthermore, as p~,z = −µ̃−1(µ̃ξ ± r2z)2 + µ̃−1r4z2 − p̃~,z, if r = 3
2rs, Hp~,zr = 0

and p~,z = 0 then p̃~,z = µ̃−1r4z2, so with

Γz = {r =
3

2
rs, µ̃ξ ± r2z = 0, p̃~,z = µ̃−1r4z2},

we have

(6.17) p~,z($) = 0, µ̃($) > 0, $ /∈ Γz, (Hp~,zr)($) = 0⇒ (±H2
p~,z

r)($) > 0,

with ± corresponding to whether r > 3
2rs or r < 3

2rs. In particular, taking into
account (6.16), r gives rise to an escape function in T ∗Xδ \ Γz as discussed in
Footnote 34, and Γz is the only possible trapping. (In this statement L± does not
count as trapping.) To make this concrete, note that
(6.18)

F̃ = (r−3

2
rs)

2 ⇒ Hp~,z F̃ = 2(r−3

2
rs)Hp~,zr, H

2
p~,z

F̃ = 2(Hp~,zr)
2+2(r−3

2
rs)H

2
p~,z

r.

In particular, if Hp~,z F̃ = 0 then either r = 3
2rs, in which case H2

p~,z
F̃ = 2(Hp~,zr)

2,

which is positive unless Hp~,zr = 0, or Hp~,zr = 0 in which case H2
p~,z

F̃ = 2(r −

70Or far from, in µ̃ > 0.
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3
2rs)H

2
p~,z

r, which is positive on Σ~ unless r = 3
2rs. Thus, p~,z = 0 and Hp~,z F̃ = 0

imply that either the point in question is in Γz, or alternatively H2
p~,z

F̃ > 0. In

particular, for any (null-)bicharacteristic γ outside Γz, any critical point of F̃ ◦ γ
is necessarily a strict local minimum, and in both the future or the past directions
any bicharacteristic either escapes r = r± in finite time, tends to L±

71, or tends to
Γz. Moreover, it cannot tend to Γz in both directions without reaching r± since

then F̃ ◦ γ would have a local maximum. This shows that Γz is the only trapping
in [r−, r+], and indeed nearby as already discussed. As shown in Footnote 35, one
can construct an escape function near Γz once it is known that Γz only exhibits
normally hyperbolic trapping, which we prove below; further, with O and K as
in the footnote, i.e. K the compact closure of a small neighborhood of Γz, O a
small neighborhood of this, the dynamical parts of the semiclassical mild trapping
hypotheses (namely (i) of the local definition plus the global flow assumptions stated
after this) are satisfied in view of what we just showed regarding bicharacteristics
outside Γz, once q~,z is appropriately arranged in the next subsection.72

Since in [61, Section 2] Wunsch and Zworski only check normal hyperbolicity in
Kerr space-times with sufficiently small angular momentum, in order to use their
general results for normally hyperbolic trapped sets, we need to check that Kerr-de
Sitter space-times are still normally hyperbolic. For this, with small a, we follow
[61, Section 2], and note that for a = 0 the linearization of the flow at Γz in the
normal variables r − 3

2rs and µ̃ξ ± r2z is[
r − 3

2rs
µ̃ξ ± r2z

]′
=

[
0 −2

−2( 3
2rs)

4z2(µ̃|−1
r= 3

2 rs
) 0

] [
r − 3

2rs
µ̃ξ ± r2z

]
+O((r−3

2
rs)

2+(µ̃ξ±r2z)2),

so the eigenvalues of the linearization are λ = ±3
√

3rsz
(
1− 9

4Λr2
s

)−1/2
, in agreement

with the result of [61] when Λ = 0. The rest of the arguments concerning the flow
in [61, Section 2] go through. In particular, when analyzing the flow within Γ =
∪z>0Γz, the pull backs of both dp and dζ are exactly as in the Schwarzschild setting
(unlike the normal dynamics, which has different eigenvalues), so the arguments of

71By compactness considerations, eCF̃Hp~,z F̃ is an escape function outside Γz for C > 0
large, cf. Footnote 34, i.e. its Hp~,z is bounded below by a positive constant on compact subsets

of T ∗X0 \ Γz . Correspondingly, in either the future or the past direction, bicharacteristics must
either reach r = r± in finite time, or have a sequence of points tending to L± or Γz . In the

latter two cases the whole bicharacteristic is easily seen to be tending to these in view of the local

dynamics at L± (source/sink), and in case of Γz since F̃ ◦ γ cannot have local maxima. Indeed, if

there is a sequence, say, tn → +∞ with γ(tn) → Γz then F̃ (γ(t)) → 0 as t → +∞; if γ does not
tend to Γz , then there is a sequence sn → +∞ with γ(sn) bounded away from Γz , one can take a

subsequence along which γ(sn) converges to a limit α, which is thus a point at which F̃ = 0; then

γ|[sn,sn+1] converges to the bicharacteristic through this point (along the subsequence), which

is impossible since F̃ would have to be zero along this segment, but it can only have strict local

minima away from Γz .
72A different way of phrasing the argument is to regard a compact interval I in (r−,

3
2
rs) ∪

( 3
2
rs, r+) as the gluing region, for sufficiently small a, for r ∈ I, Hp~,z r = 0 still implies ±H2

p~,z r >

0, and [15] is applicable. This concretely means that one uses Theorem 1 of [61] with an absorbing

potential in the de Sitter-Schwarzschild setting with K = Γz in the notation there, where it applies

equally well given our observations regarding the dynamics, including normal hyperbolicity. If
instead one works with compact subsets of {µ̃ > 0} \ Γz , one has non-trapping dynamics for a

small, and the results still apply.
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[61, Proof of Proposition 2.1] go through unchanged, giving normal hyperbolicity
for small a by the structural stability.

We now check the hyperbolic nature of trapping for larger values of a. With
c = 0, as above,

p~,z = −µ̃ξ2∓2(1+γ)
(
(r2+a2)z−aζ

)
ξ−p̃~.z, p̃~,z = κη2+

(1 + γ)2

κ sin2 θ
(−a sin2 θz+ζ)2,

and in the region µ̃ > 0 this can be rewritten as
(6.19)

p~,z = −µ̃
(
ξ ± 1 + γ

µ̃

(
(r2 + a2)z − aζ

))2

+
(1 + γ)2

µ̃

(
(r2 + a2)z − aζ

)2 − p̃~.z;
note that the first term would be just −µ̃ξ2 in the original coordinates (6.1) which
are valid in µ̃ > 0. This explicitly shows that (r2 + a2)z − aζ cannot vanish on
Σ~ in µ̃ > 0, for if it did then p̃~,z would vanish as well at the same point, thus

ζ = a sin2 θz, hence (r2 + a2)z − a2 sin2 θz = 0, which is impossible (as z 6= 0,
r > 0). Further,

(6.20) µ̃ > 0 and p~,z = 0⇒
(
(r2 + a2)z − aζ

)2 − µ̃

κ sin2 θ
(−a sin2 θz + ζ)2 ≥ 0,

so considering the last expression as a quadratic polynomial in ζ, we see that the
inequality (ignoring the restriction p~,z = 0) can only hold between its roots if the

coefficient a2 − µ̃
κ sin2 θ

of ζ2 is negative, and outside the roots if the coefficient is
positive, and has to be below (az > 0) or above (az < 0) the unique root if this
coefficient vanishes (since the coefficient of ζ is the negative of that of az then).

The roots of the polynomial (when a2 − µ̃
κ sin2 θ

6= 0) are73

ζ± = a sin2 θz +
(r2 + a2 cos2 θ)z

a±
√
µ̃√

κ sin θ

,

at which points

(6.21) (r2 + a2)z − aζ± =
(r2 + a2 cos2 θ)z

1∓ a
√
κ sin θ√
µ̃

;

so in particular when µ̃ ≥ a2κ sin2 θ then (r2 + a2)z− aζ has the same sign as z on
Σ~ as74 it is in the interval between the two stated values of (r2 + a2)z − aζ.

Next,

(6.22) Hp~.zr = −2
(
µ̃ξ ± (1 + γ)

(
(r2 + a2)z − aζ

))
,

shows that

µ̃ ≤ 0, Hp~,zr = 0⇒ p~,z = µ̃ξ2 − p̃~.z ≤ 0,

and equality on the right hand side implies ζ = a sin2 θz, so Hp~,zr = ∓2(1+γ)(r2 +

a2 cos2 θ)z 6= 0, a contradiction, showing that in µ̃ ≤ 0, Hp~,zr cannot vanish on
the characteristic set.

73Note that one of the roots tends to −∞ if az > 0 and µ̃↘ a2κ sin2 θ, and to +∞ if az < 0

and µ̃↘ a2κ sin2 θ.
74The other component, Σ~,− sgn z does intersect µ̃ = a2κ sin2 θ, but only does so at fiber

infinity which was already analyzed for the classical dynamics. This corresponds to the root of
the quadratic polynomial in ζ that escaped to ∓∞ and reemerges from ±∞ at µ̃ = a2κ sin2 θ,
depending on the sign of az.
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We now turn to µ̃ > 0, where

Hp~,zr = 0⇒ H2
p~,z

r = −2µ̃Hp~,zξ = 2µ̃(1 + γ)2 ∂

∂r

(
µ̃−1

(
(r2 + a2)z − aζ

)2)
.

Thus, we are interested in critical points of

Φ = µ̃−1
(
(r2 + a2)z − aζ

)2
in µ̃ > 0 which lie at points with p~,z = 0 and Hp~,zr = 0, and whether these are
non-degenerate. Note that

(6.23)
∂Φ

∂r
= −

(
(r2 + a2)z − aζ

)
µ̃−2f, f =

(
(r2 + a2)z − aζ

)∂µ̃
∂r
− 4rµ̃z,

so as (r2 + a2)z − aζ 6= 0 when p~,z vanishes in µ̃ > 0,

(6.24)
p~,z = 0 and µ̃ > 0⇒

(∂Φ

∂r
= 0⇔ f = 0

)
;

∂Φ

∂r
= 0 and p~,z = 0 and µ̃ > 0⇒ ∂2Φ

∂r2
= −

(
(r2 + a2)z − aζ

)
µ̃−2 ∂f

∂r
.

Also, from (6.23),

µ̃ > 0, f = 0⇒ ∂µ̃

∂r
6= 0,

and further, if ∂µ̃
∂r < 0 and µ̃ > a2κ sin2 θ then f cannot vanish since (r2 + a2)z− ζ

and z have the same sign. Thus H2
p~,z

r cannot vanish on Σ~ when µ̃ > a2κ sin2 θ,
∂µ̃
∂r < 0 and Hp~,zr = 0. Now

(6.25)
∂f

∂r
=
(
(r2 + a2)z − aζ

)∂2µ̃

∂r2
− 4µ̃z − 2rz

∂µ̃

∂r
,

and
∂Φ

∂r
= 0⇒ (r2 + a2)z − aζ =

4rµ̃z
∂µ̃
∂r

,

so substituting into (6.25),

(6.26)
∂µ̃

∂r

∂f

∂r
= 4rµ̃z

∂2µ̃

∂r2
− 4zµ̃

∂µ̃

∂r
− 2rz

(
∂µ̃

∂r

)2

.

Thus,

∂µ̃

∂r

∂f

∂r
= 2z

(
2µ̃

(
r
∂2µ̃

∂r2
− 3

∂µ̃

∂r

)
− (r

∂µ̃

∂r
− 4µ̃)

∂µ̃

∂r

)
,

so taking into account

r
∂µ̃

∂r
− 4µ̃ = −2

(
1− Λa2

3

)
r2 + 3rsr − 4a2,

r
∂2µ̃

∂r2
− 3

∂µ̃

∂r
= −4

(
1− Λa2

3

)
r + 3rs,

r
∂2µ̃

∂r2
− 3

∂µ̃

∂r
=

2

r

(
r
∂µ̃

∂r
− 4µ̃

)
− 3rs +

8a2

r
,

we obtain

∂µ̃

∂r

∂f

∂r
= 2z

(
−1

r

(
r
∂µ̃

∂r
− 4µ̃

)2

− 2µ̃

r
(3rsr − 8a2)

)
.
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We claim that if |a| < rs/2 then r− > rs/2. To see this, note that for r = rs/2,

µ̃(r) =

(
r2
s

4
+ a2

)(
1− Λr2

s

12

)
− r2

s

2
< 0;

since at a = 0, r− > rs/2, we deduce that r− > rs/2 for |a| < rs/2. Making the
slightly stronger assumption,

(6.27) |a| <
√

3

4
rs,

we obtain that for µ̃ > 0, r > r−, 3rsr − 8a2 > 3
2r

2
s − 8a2 > 0, so, when ∂Φ

∂r = 0,

z
∂µ̃

∂r

∂f

∂r
< 0.

Thus, when ∂Φ
∂r = 0, using (6.24),

(6.28)
∂2Φ

∂r2
= −

(
(r2 + a2)z − aζ

)
µ̃−2 ∂f

∂r
= − 4r

µ̃
(
∂µ̃
∂r

)2 z
∂µ̃

∂r

∂f

∂r
> 0,

so critical points of Φ are all non-degenerate and are minima. Correspondingly,
as Φ → +∞ as µ̃ → 0 in µ̃ > 0, the critical point rc of Φ exists and is unique
in (r−, r+) (when ζ is fixed), depends smoothly on ζ, and ∂Φ

∂r > 0 if r > rc, and
∂Φ
∂r < 0 if r < rc. Thus,

µ̃ > 0, ±(r − rc) > 0, Hp~,zr = 0⇒ ±H2
p~,z

r > 0,

giving the natural generalization of (6.17), allowing the application of the results
of [15]. Since Hp~,zr cannot vanish in µ̃ ≤ 0 (apart from fiber infinity, which is
understood already), we conclude that r gives rise to an escape function, as in
Footnote 34, away from

Γz = {$ :
∂Φ

∂r
($) = 0, (Hp~,zr)($) = 0, p~,z($) = 0},

which is a smooth submanifold as the differentials of the defining functions are
linearly independent on it in view of (6.28), (6.22), and the definition of p̃~,z (as
the latter is independent of r and ξ).

The linearization of the Hamilton flow at Γz is[
r − rc

µ̃ξ ± (1 + γ)
(
(r2 + a2)z − aζ

)]′
=

[
0 −2

−µ̃(1 + γ)2 ∂2Φ
∂r2 0

] [
r − rc

µ̃ξ ± (1 + γ)
(
(r2 + a2)z − aζ

)]
+O

(
(r − rc)2 +

(
µ̃ξ ± (1 + γ)

(
(r2 + a2)z − aζ

))2)
,

so by (6.28), the linearization is non-degenerate, and is indeed hyperbolic. This
suffices for the resolvent estimates of [61] for exact Kerr-de Sitter space, but for
stability one also needs to check normal hyperbolicity. While it is quite straightfor-
ward to check that the only degenerate location is η = 0, θ = π

2 , the computation of
the Morse-Bott non-degeneracy in the spirit of [61, Proof of Proposition 2.1], where
it is done for Kerr spaces with small angular momentum, is rather involved, so we
do not pursue this here (for small angular momentum in Kerr-de Sitter space, the
de Sitter-Schwarzschild calculation above implies normal hyperbolicity already).
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One has the following analogue of (6.18) in the Kerr-de Sitter setting, using that
Hp~,zζ = 0, rc = rc(ζ),

F̃ = (r − rc)2 ⇒ Hp~,z F̃ = 2(r − rc)Hp~,zr, H2
p~,z

F̃ = 2(Hp~,zr)
2 + 2(r − rc)H2

p~,z
r.

All the arguments after (6.18) apply, showing that indeed Kerr-de Sitter space
satisfies the dynamical parts of the semiclassical mild trapping property (namely
(i) of the local definition plus the global flow assumptions stated after this).

In addition, in view of an overall sign difference between our convention and that
of [61] for the operator we are considering, [61] requires the positivity of z ∂

∂zp~,z for
z 6= 0. (Note that the notation for z is also different; our z is 1 + z in the notation
of [61], so our z being near 1 corresponds to the z of [61] being near 0.) Unlike
the flow, whose behavior is independent of c when z is real, this fact does depend
on the choice of c. Note that in the high energy version, this corresponds to the
positivity of σ ∂

∂σpfull. Now, pfull = 〈σ dτ
τ +$,σ dτ

τ +$〉G, with $ ∈ Π, the ‘spatial’

hyperplane, identified with T ∗X in bT ∗M̄ , so

σ∂σpfull = 2〈σ dτ
τ
, σ

dτ

τ
〉G + 2〈σ dτ

τ
,$〉G

= σ2〈dτ
τ
,
dτ

τ
〉G + 〈σ dτ

τ
+$,σ

dτ

τ
+$〉G − 〈$,$〉G.

Thus, if non-zero elements of Π are space-like and dτ
τ is time-like, σ∂σpfull > 0 for

σ 6= 0 on the characteristic set of pfull. If c is such that c = −µ̃−1(1+γ)(r2+a2) near
the projection of Γz to the base space X, which as we mentioned can be arranged,
and which corresponds to undoing our change of coordinates in (6.5), then directly
from (6.1) the time-like statement holds; the space-like statement holds outside the
ergoregion, i.e. when µ̃ > a2κ sin2 θ (dφ ceases to be spacelike in the ergoregion).
For small |a|, Γz does not intersect the ergoregion, and thus the hypotheses of [61]
are satisfied. Thus, to complete checking the hypotheses of [61] in general we need
to show that even in 0 < µ̃ ≤ a2κ sin2 θ, z∂zp~,z > 0 at Γz. Now,

∂zp~,z = 2(1 + γ)2
(r2 + a2

µ̃

(
(r2 + a2)z − aζ

)
+
a

κ
(ζ − a sin2 θz)

)
.

Further, on Σ~ (in µ̃ > 0) by (6.20),

|(r2 + a2)z − aζ
∣∣ ≥ √

µ̃√
κ sin θ

|ζ − a sin2 θz|,

so, with the first inequality below due to (r2 + a2)2 > µ̃a2 by the definition of µ̃,

r2 + a2

µ̃
>
|a|√
µ̃
≥ |a|√

µ̃
√
κ

sin θ

shows that ∂zp~,z has the same sign as (r2 + a2)z − aζ in µ̃ > 0. Notice that by

(6.23) z((r2 + a2)z − aζ) and ∂µ̃
∂r have the same sign on Γz; thus we only need

to show that ∂µ̃
∂r cannot be negative75 on Γz. In view of (6.21), the negativity of

z((r2 + a2)z − aζ), together with µ̃ ≤ a2κ sin2 θ and being on Σ~ would mean that

z((r2 + a2)z − aζ) <
(r2 + a2 cos2 θ)z2

1− |a|
√
κ sin θ√
µ̃

.

75We already remarked this outside the ergoregion, but here we need to consider the ergoregion.
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Using (6.23) to substitute in for (r2 + a2)z − aζ, we get

4rµ̃
∂µ̃
∂r

<
(r2 + a2 cos2 θ)

1− |a|
√
κ sin θ√
µ̃

,

or multiplying through by ∂µ̃
∂r (1− |a|

√
κ sin θ√
µ̃

) > 0,

4rµ̃(1− |a|
√
κ sin θ√
µ̃

) < (r2 + a2 cos2 θ)
∂µ̃

∂r
,

or equivalently

0 < 4r
√
µ̃|a|√κ sin θ + r2 ∂µ̃

∂r
− 4rµ̃+ a2 cos2 θ

∂µ̃

∂r

= 4r
√
µ̃|a|√κ sin θ + r6 ∂

∂r
(r−4(µ̃− a2))− 4ra2 + a2 cos2 θ

∂µ̃

∂r

= r6 ∂

∂r
(r−4(µ̃− a2))− 4r|a|(|a| −

√
µ̃
√
κ sin θ) + a2 cos2 θ

∂µ̃

∂r
.

As soon as we show that ∂
∂r (r−4(µ̃ − a2)) < 0 in the ergoregion where ∂µ̃

∂r < 0,
we conclude that the right hand side is negative, providing a contradiction. To
see this final claim we notice that r−4(µ̃ − a2) has two zeros by assumption76 in
(r−, r+), hence its derivative has a zero between these zeros, which is thus outside

the ergoregions77. Further, this derivative is −2r−3(1− Λa2

3 ) + 3rsr
−4 which has a

single root, r = 3rs
2(1−Λa2

3 )
, which thus lies outside the ergoregions, and thus in the

ergoregion near r+, where ∂µ̃
∂r < 0, we have ∂

∂r (r−4(µ̃ − a2)) < 0 (since it cannot
change sign), providing the desired contradiction. This shows that z∂zp~,z > 0 on
Γz, completing our checking of the hypotheses of [61]. Wunsch and Zworski add
a complex absorbing potential supported away from the projection of the trapped
set, Γz, in the statement of Theorem 1; we can do so similarly78 or we can use a
pseudodifferential absorber, which is elliptic outside a neighborhood of Γz, including
at fiber infinity. In summary, the result of Wunsch and Zworski is applicable for
Kerr-de Sitter space-times with angular momenta satisfying (6.27).

6.5. Complex absorption. The final step of fitting Pσ into a general microlocal
framework is moving the problem to a compact manifold, and adding a complex
absorbing second order operator. This section is almost completely parallel to Sub-
section 4.7 in the de Sitter case; the only change is that absorption needs to be
added at the trapped set as well.

We thus consider a compact manifold without boundary X for which Xδ is
identified as an open subset with smooth boundary; we can again take X to be the
double of Xδ. As in the de Sitter case, we discuss the ‘classical’ and ‘semiclassical’
cases separately, for in the former setting trapping does not matter, while in the
latter it does.

76By (6.13) there are at least two zeros; in view of µ̃ having a single critical point between

(r−, r+), there are exactly two zeros.
77Since in the ergoregions r−4(µ̃− a2) < 0.
78There is a slight complication if the projection of Γz enters the ergoregion as the operator

ceases to be elliptic, though the latter is assumed by Wunsch and Zworski; in this case one needs

a pseudodifferential absorber, which however barely affects their arguments.
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We then introduce a complex absorbing operator Qσ ∈ Ψ2
cl(X) with principal

symbol q, such that h2Qh−1z ∈ Ψ2
~,cl(X) with semiclassical principal symbol q~,z,

and such that p ± ıq is elliptic near ∂Xδ, i.e. near µ̃ = µ̃0, the Schwartz kernel of
Qσ is supported in µ̃ < µ̃0 + ε′ for some sufficiently small ε′ > 0, and which satisfies
that ±q ≥ 0 on Σ∓. Having done this, we extend Pσ and Qσ to X in such a way
that p ± ıq are elliptic near X \ Xδ; the region we added is thus irrelevant. In
particular, as the event horizon is characteristic for the wave equation, the solution
in the exterior of the event horizons is unaffected by thus modifying Pσ, i.e. working
with Pσ and Pσ − ıQσ is equivalent for this purpose.

As in de Sitter space, an alternative to this extension is adding a boundary at
µ̃ = µ̃0; this is easy to do since this is a space-like hypersurface, see Remark 2.6.

For the semiclassical problem, when z is real we need to increase the requirements
on Qσ. As in the de Sitter setting, discussed in Subsection 4.7, we need in addition,
in the semiclassical notation, semiclassical ellipticity near µ̃ = µ̃0, i.e. that p~,z ±
ıq~,z are elliptic near ∂Xδ, i.e. near µ̃ = µ̃0, and which satisfies that ±q~,z ≥ 0 on
Σ~,∓. Following the general prescription of Subsection 3.2, as well as the discussion
of Subsection 4.7, this can be achieved by taking Qσ the (standard) quantization
of

(6.29) −〈ξ dr+σ
dτ

τ
+η dθ+ζ dφ,

dτ

τ
〉G (‖ξ dr+η dθ+ζ dφ‖2j

H̃
+σ2j+C2j)1/2jχ(µ),

where H̃ is a Riemannian dual metric on X, χ ≥ 0 as in Subsection 4.7 supported
near µ̃ = µ̃0, C > 0 is chosen suitably large, and the branch of the 2jth root as in
Subsection 4.7. One can again combine p with a Riemannian metric function ‖.‖2

H̃
,

to replace p by χ1p− χ2p̂~,z, p̂~,z = (‖.‖2j
H̃

+ z2j)1/j , as in Subsection 4.7.

We recall that in the proof of Theorem 2.17 one also need to arrange semiclassical
ellipticity (i.e. define an appropriate Q′σ) for an appropriate perturbation of p~,z at
the trapped set (for z real, as usual), which is inX+; we now make this more explicit.
To achieve this, we want q′~,z elliptic on the trapped set; since this is in Σ~,sgn z,

we need q′~,z ≤ 0 there. To do so, we simply add a microlocal absorbing term

Q′σ supported microlocally near the trapping with h2Qh−1z having semiclassical
principal symbol q′~,z. We do not need to arrange that Q′σ is holomorphic in σ; thus

simply quantizing a q′~,z of compact support on T ∗X and with smooth dependence

on z ∈ R \ {0} suffices. Then with Qσ as above (so we do not change Qσ) Pσ− ıQσ
is holomorphic, and its inverse is meromorphic, with non-trapping large energy
estimates in closed cones disjoint from R in the upper half plane, corresponding to
the semiclassical estimates for non-real z given in Theorem 7.3. To see that large
energy estimates also hold for (Pσ − ıQσ)−1 near R, namely in Imσ > −C, one
considers (Pσ− ı(Qσ+Q′σ))−1, which enjoys such estimates but is not holomorphic,
and then use the semiclassical resolvent gluing of Datchev-Vasy [15] together with
the semiclassical normally hyperbolic trapping estimates of Wunsch-Zworski [61],
to conclude the same estimates for (Pσ − ıQσ)−1. For a as in (6.27), the dynamics
(away from the radial points) has only the hyperbolic trapping (and for small a, it
is normally hyperbolic); however, our results apply more generally, as long as the
dynamics has the same non-trapping character (so a might be even larger as (6.27)
may not be optimal). Note also that since the trapping is in a compact subset of
X+ = {µ̃ > 0}, we arranged that the complex absorption Qσ + Q′σ is the sum of
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two terms: one supported near the trapping in X+, the other in µ̃ < 0; this is useful
for relating our construction to that of Dyatlov [20] in the appendix.

This completes the setup. Now all of the results of Section 2 are applicable,
proving all the theorems stated in the introduction on Kerr-de Sitter spaces, Theo-
rems 1.1-1.4. Namely, Theorem 1.1 follows from Theorem 2.14, Theorem 1.2 follows
from Theorem 7.3, Theorem 1.3 follows from Theorem 2.17. Further, dµ̃ is time-like
in µ̃ < 0 (since pfull, considered as a quadratic form, evaluated at ξ = 1, σ = 0,
ζ = 0, η = 0, is positive then), so Proposition 3.9 is applicable. This, together
with Theorem 1.3, the Mellin transform result, Corollary 3.10, in the Kerr-de Sit-
ter setting, or the appropriately modified, as indicated in Remark 3.11, version of
Proposition 3.5 for general b-perturbations (so ∂t̃ may no longer be Killing, and
the space-time may no longer be stationary), keeping in mind Footnote 63 for the
zero-resonance, finally proves Theorem 1.4.

7. Large Imσ

In this section we discuss the extensions of the results to large Imσ, i.e. uniform
estimates when Imσ > C− > 0, which only enter in the semiclassical context.

7.1. Semiclassical estimates. We now assume Imσ > C− > 0; as before we
translate this into a semiclassical problem, i.e. obtain families of operators Ph,z,
with h = |σ|−1, and z corresponding to σ/|σ| in the unit circle in C. As usual, we
multiply through by hk for convenient notation when we define Ph,z:

Ph,z = hkPh−1z ∈ Ψk
~,cl(X).

Now z need not be real in the limit h → 0 since we dropped the upper bound on

Imσ. We still have p~,z, q~,z, z ∈ O ⊂ C, 0 /∈ O compact, real at S∗X = ∂T
∗
X,

but we do not assume reality on T ∗X. However, we assume that p~,z and q~,z are
real when z is real. We write the semiclassical characteristic set of Re p~,z as Σ~,z,
and sometimes drop the z dependence and write Σ~ simply; assume that

Σ~ = Σ~,+ ∪ Σ~,−, Σ~,+ ∩ Σ~,− = ∅,
Σ~,± are relatively open in Σ~, and

± Im p~,z ≥ 0 and ∓ Re q~,z ≥ 0 near Σ~,±.

The microlocal elliptic, real principal type and complex absorption (in which
one considers the bicharacteristics of Re p~,z) estimates apply. The radial point
estimates need a bit more care, however.

Proposition 7.1. For all N , for s ≥ m > (k − 1)/2 − β Imσ, σ = h−1z, and for
all A,B,G ∈ Ψ0

~(X) such that WF′h(G) ∩WF′h(Qσ) = ∅, A elliptic at L±, and
forward (or backward) bicharacteristics from WF′h(B) tend to L±, with closure in
the elliptic set of G, one has estimates

(7.1) Au ∈ Hm
h ⇒ ‖Bu‖Hsh ≤ C(h−1‖GPh,zu‖Hs−k+1

h
+ h‖u‖H−Nh ),

where, as usual, GPh,zu ∈ Hs−k+1
h and u ∈ H−Nh are assumptions implied by the

right hand side.

Proposition 7.2. For s < (k − 1)/2 + β Imσ, for all N , σ = h−1z, and for all
A,B,G ∈ Ψ0

~(X) such that WF′h(G) ∩WF′h(Qσ) = ∅, B,G elliptic at L±, and
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forward (or backward) bicharacteristics from WF′h(B) \ L± reach WF′h(A), while
remaining in the elliptic set of G, one has estimates

(7.2) ‖Bu‖Hsh ≤ C(h−1‖GP ∗h,zu‖Hs−k+1
h

+ ‖Au‖Hsh + h‖u‖H−Nh ).

Proof. For the sake of definiteness, we consider the proof of Proposition 7.1; the
changes relative to Propositions 2.10-2.11 in the two cases are completely analogous.

We follow Propositions 2.10-2.11; in particular the commutant family Cε, which

is bounded Ψ
s−(k−1)/2
~ (X), and its principal symbol cε, built using a functions

φ (on which we make a further assumption below, shrinking its support further)
and φ0, are defined as there; in the case of φ0 we take φ0(ρk Re p~,z) instead of
φ0(ρkp~,z) now. The difference in the rest of the proof is that 1

2ı (Ph,z − P ∗h,z) ∈
Ψk−1

~ (X) is not necessarily lower order in the semiclassical sense than Ph,z, i.e.

the semiclassical principal symbol of Ph,z is not real, though at S∗X = ∂T
∗
X it

is, so in the differential order sense it is still lower order than Ph,z. However, if
Im z > C ′h, C ′ > 0 fixed (to be determined later), which we may assume in view of
Propositions 2.10-2.11, we combine the argument of the proofs of Propositions 2.3-
2.4 with that of Subsection 2.5, writing

(7.3) ı(P ∗h,zC
∗
εCε − C∗εCεPh,z) = 2

1

2ı
(Ph,z − P ∗h,z)C∗εCε + ı[Ph,z, C

∗
εCε],

with the first term in Ψk−1
~ (X), the second in hΨk−1

~ (X). Denoting the semiclassical

principal symbol of 1
2ı (Ph,z−P ∗h,z) by p[~,z, we have p[~,z = ±β̃β0(Im z)ρ̃−k+1 at L+

by (2.5), so ±p[~,z is a positive elliptic multiple of Im z at L+. But p~,z is real for z

real, and thus ±p[~,z = (Im z)p̃[~,z, so p̃[~,z is positive elliptic at L+ and thus nearby.

Since the standard principal symbol of 1
2ı (Ph,z − P ∗h,z) is (2.5), we can write

1

2ı
(Ph,z − P ∗h,z) = ±(Im z)B̃∗h,zB̃h,z + hRh,z + Th,z,

Bh,z ∈ Ψ
(k−1)/2
~ (X), Rh,z ∈ Ψk−2

~ (X), Th,z ∈ Ψk−1
~ (X), WF′h(T ) ∩ L+ = ∅,

with

σ~,(k−1)/2(B0) =
√
p̃[~,z.

Now we write the right hand side of (7.3) as

(7.4)
± 2(Im z − C ′h)B̃∗h,zB̃h,zC

∗
εCε + 2Th,zC

∗
εCε

+
(
h(±2C ′B̃∗h,zB̃h,z +Rh,z)C

∗
εCε + ı[Ph,z, C

∗
εCε]

)
.

The ∓ of the first term in (7.4) is then negative when Im z > C ′h, the second term
is in h∞Ψ−∞~ (X) if φ and thus cε have sufficiently small support by the wave front
set property of Th,z (and is thus negligible), while the third term is in hΨ2s

~ (X)

uniformly. Now, ∓ of the third term has principal symbol in hΨk−1
~ (X), modulo

terms where φ or φ0 is differentiated (and which behave just as in the classical and
real z semiclassical settings), is

2h

(
−β̃β0C

′ ± r~,z + β0

(
−s+

k − 1

2

)
+ δβ0

ε

ρ̃+ ε

)
φ2φ2

0ρ̃
−2s(1 + ερ̃−1)−2δ.

Choosing C ′ > 0 sufficiently large, all other terms in the parentheses are dominated
by it on suppφ, and the argument can be finished as in Proposition 2.3. �



94 ANDRAS VASY

Without assuming semiclassical non-trapping (which is a real z property), but
under extra assumptions, giving semiclassical ellipticity for Im z bounded away from
0, we now show non-trapping estimates. So assume that for | Im z| > ε > 0, p~,z
is semiclassically elliptic on T ∗X (but not necessarily at S∗X = ∂T

∗
X, where the

standard principal symbol p already describes the behavior). In addition, assume
that ± Im p~,z ≥ 0 near the classical characteristic set Σ~,± ⊂ S∗X. Assume also
that p~,z− ıq~,z is elliptic79 on T ∗X for | Im z| > ε > 0, h−1z ∈ Ω, and ∓Re q~,z ≥ 0
near the classical characteristic set Σ~,± ⊂ S∗X. Then the semiclassical version of
the classical results (with ellipticity in T ∗X making these trivial except at S∗X)
apply. Let Hs

h denote the usual semiclassical function spaces. Then, on the one
hand, for any s ≥ m > (k − 1)/2− β Im z/h, h < h0,

(7.5) ‖u‖Hsh ≤ Ch
−1(‖(Ph,z − ıQh,z)u‖Hs−k+1

h
+ h2‖u‖Hmh ),

and on the other hand, for any N and for any s < (k − 1)/2 + β Im z/h, h < h0,

(7.6) ‖u‖Hsh ≤ Ch
−1(‖(P ∗h,z + ıQ∗h,z)u‖Hs−k+1

h
+ h2‖u‖H−Nh ).

The h2 term can be absorbed in the left hand side for sufficiently small h, so we
automatically obtain invertibility of Ph,z − ıQh,z.

In particular, Ph,z − ıQh,z is invertible for h−1z ∈ Ω with Im z > ε > 0 and h
small, i.e. Pσ − ıQσ is such for σ ∈ Ω in a cone bounded away from the real axis
with Imσ sufficiently large, proving the meromorphy of Pσ− ıQσ under these extra
assumptions80.

Theorem 7.3. Let Pσ, Qσ, β, Cs be as above, and X s, Ys as in (2.22). Then, for
σ ∈ Cs ∩ Ω,

Pσ − ıQσ : X s → Ys

has a meromorphic inverse

R(σ) : Ys → X s.
Moreover, for all ε > 0 there is C > 0 such that it is invertible in Imσ > C+ε|Reσ|,
σ ∈ Ω, and non-trapping estimates hold:

‖R(σ)f‖Hs
|σ|−1

≤ C ′|σ|−k+1‖f‖Hs−1

|σ|−1
.

Remark 7.4. We emphasize again that the large Imσ behavior of Pσ− ıQσ does not
matter for our main results, except the support conclusion of the existence part of
Lemma 3.1, and the analogous statement in its consequences, Proposition 3.5 and
Corollary 3.10. In particular, when the solution is known to exist in a weighted
b-Sobolev space, the large Imσ behavior is not used at all; for existence the only
loss would be that the solution would not have the stated support property (which
is desirable to have in the wave equation setting).

Theorem 2.14 has a generalization now under the non-trapping assumptions of
Definition 2.12, extending beyond a strip to a half-space:

79We need to assume this since p~,z , q~,z are not real, so the ellipticity of p~,z does not imply
this. Arranging this in the Lorentzian setting is the reason for an extended argument starting
with the paragraph of (3.17).

80Recall that we are not assuming semiclassical non-trapping here, which is the reason we
cannot simply quote the relevant part of Theorem 2.14 for the meromorphy.
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Theorem 7.5. Let Pσ, Qσ, Cs, β be as in Theorem 2.14, in particular semiclassi-
cally non-trapping, and X s, Ys as in (2.22). Let C > 0. Then there exists σ0 such
that

R(σ) : Ys → X s,
is holomorphic in {σ ∈ Ω : Imσ > −C, |Reσ| > σ0}, assumed to be a subset of
Cs, and non-trapping estimates hold:

‖R(σ)f‖Hs
|σ|−1

≤ C ′|σ|−k+1‖f‖Hs−k+1

|σ|−1
.

Remark 7.6. An advantage of the present theorem over Theorem 2.14 is that while
the former ensures that only finitely many poles can lie in any strip C− < Imσ <
C+, there is no need for this statement to hold if we allow Imσ > −C. Since, for the
application to the wave equation, Imσ depends on the a priori growth rate of the
solution u which we are Mellin transforming, this would mean that depending on
the a priori growth rate one could get more (faster growing) terms in the expansion
of u if one relaxes the growth condition on u.

Theorems 2.15 and 2.17 also have analogous extensions to a half-space.

7.2. Lorentzian metrics. As discussed in Subsection 3.2, whose notation we
adopt, the semiclassical principal symbol of Ph,z = h2Ph−1z is the dual metric
G on the complexified cotangent bundle b,CT ∗mM̄ , m = (x, τ), evaluated on covec-
tors $+z dττ , where $ is in the (real) span Π of the ‘spatial variables’ T ∗xX; thus Π

and dτ
τ are linearly independent. In general, by (3.15), for Im z 6= 0, the vanishing

of the imaginary part of this principal symbol states that 〈$ + Re z dττ ,
dτ
τ 〉G = 0;

the real part is the first two terms on the right hand side of (3.15).
In the setting of Subsection 7.1 we want that when Im z 6= 0 and Im p~,z vanishes

then Re p~,z does not vanish, i.e. that on the orthocomplement of the span of dττ the

metric should have the opposite sign as that of 〈dττ , dττ 〉G. For a Lorentzian metric

this is only possible if dτ
τ is time-like (note that $ + Re z dττ spans the whole fiber

of the b-cotangent bundle as Re z and $ ∈ Π vary), when, however, this is auto-
matically the case, namely the metric is negative definite on this orthocomplement.
From now on we always assume that dτ

τ is time-like for G.
Recalling (3.16), when Im z ≥ 0, the sign of the imaginary part of p~,z on Σ~,±

is given by ± Im p~,z ≥ 0, as needed for the propagation of estimates: in Σ~,+ we
can propagate estimates backwards, in Σ~,− we can propagate estimates forward.
For Im z ≤ 0, the direction of propagation is reversed.

We also need information about p~,z−ıq~,z, i.e. when the complex absorption has

been added, with q~,z defined for z in an open set Ω̃ ⊂ C. Here we need to choose
q~,z in such a way as to ensure that p~,z − ıq~,z does not vanish when Im z > 0,
but for real z 6= 0, q~,z is real and for z sufficiently close to R with Im z ≥ 0,
∓Re q~,z ≥ 0 on Σ~,±, and we also need ellipticity p~,z − ıq~,z where q~,z is to act
as absorption. We follow (3.17) and take

q~,z = −χfz〈$ + z
dτ

τ
,
dτ

τ
〉G, Re fz ≥ 0, z ∈ R⇒ fz is real,

χ ≥ 0, independent of z;
(7.7)

recall from the discussion after (3.17) that if in addition fz is bounded away from
0 when z is bounded away from 0 in R, then the above conditions for real z are
automatically satisfied, including ellipticity of p~,z − ıq~,z for z real where χ > 0,
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which includes ellipticity in the classical sense – the latter thus holds for all z since
the standard principal symbol is independent of z.

Thus, if we ensure that for Im z > 0,

(7.8) Im

(
〈$ + z

dτ

τ
,
dτ

τ
〉−1
G p~,z

)
> 0,

then Im(ıf) ≥ 0 shows that p~,z− ıq~,z 6= 0 as desired. We note that the imaginary

part of 〈$+ z dττ ,
dτ
τ 〉G is Im z〈dττ , dττ 〉G, and thus is non-zero as dτ

τ is time-like and
Im z > 0. But the expression inside the imaginary part on the left hand side of
(7.8) is a positive multiple of 〈$+z dττ ,

dτ
τ 〉Gp~,z, so it suffices to consider the latter,

whose imaginary part is, with β = $ + Re z dττ ,

− Im z〈dτ
τ
,
dτ

τ
〉G
(
〈β, β〉G − (Im z)2〈dτ

τ
,
dτ

τ
〉G
)

+ 〈β, dτ
τ
〉G(2 Im z)〈β, dτ

τ
〉G

= Im z

(
−〈β, β〉G〈

dτ

τ
,
dτ

τ
〉G + 2〈β, dτ

τ
〉2G + (Im z)2〈dτ

τ
,
dτ

τ
〉2G
)
.

(7.9)

As dτ
τ time-like, the first two terms inside the parentheses on the right hand side

give twice the positive definite stress-energy tensor; the positive definite character
is checked by writing β = γ + λdττ with81 〈γ, dττ 〉G = 0, for then these terms give

(7.10) 〈dτ
τ
,
dτ

τ
〉G
(
−〈γ, γ〉G + λ2〈dτ

τ
,
dτ

τ
〉G
)
,

and the Lorentzian character of G then implies that −G is positive definite on the
orthocomplement of the span of dτ

τ . In view of the third term, (Im z)2〈dττ , dττ 〉2G,
on the right hand side of (7.9), we actually conclude that (7.8) holds (i.e. the
inequality is strict) when Im z > 0.

In extending the discussion around (3.19) regarding the ellipticity of the extended
operator, p̃~,z − ıq~,z, to complex z, it remains to consider finite $ and non-real z,
and show that p̃~,z − ıq~,z does not vanish then; we have a priori that for K ⊂ Dj
compact (thus disjoint from the branch cuts), there exist C > 0 and δ > 0 such
that for z ∈ K either one of ‖$‖H̃ ≥ C, resp. | Im z| ≤ δ, implies non-vanishing of
p̃~,z − ıq~,z. To see the remaining cases, i.e. when both Im z > δ and ‖$‖H̃ < C,
first assume that χ2 = 1, so χ1 = 0. Then

p̃~,z − ıq~,z = fz

(
−χ2fz + ıχ〈$ + z

dτ

τ
,
dτ

τ
〉G
)
,

and the real part of the second factor on the right hand side is

−χ2 Re fz − (Im z)χ〈dτ
τ
,
dτ

τ
〉G,

which is < 0 as χ2 > 0 and Im z ≥ 0, showing ellipticity.
Now, if neither χ1 nor χ2 vanish, then χ > 0. First, suppose that, with β =

$ + Re z dττ as above, 〈β, dττ 〉G = 0, and thus 〈β, β〉 ≤ 0, with the inequality strict
if β 6= 0. Then

p̃~,z − ıq~,z = χ1〈β, β〉G − χ1(Im z)2〈dτ
τ
,
dτ

τ
〉G − χ2f

2
z − fzχ(Im z)〈dτ

τ
,
dτ

τ
〉G,

81This is possible for dτ
τ

time-like. Note further that typically γ is not in the ‘spatial’ slice

T ∗xX; the latter need even not be space-like.
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so if Re f2
z > 0, the real part is negative, thus showing ellipticity. On the other

hand, if 〈β, dττ 〉G 6= 0, then we compute

〈$ + z
dτ

τ
,
dτ

τ
〉G(p̃~,z − ıq~,z).

For the p~,z part this is the computation performed in (7.9) (with an extra factor,
χ1, now); on the other hand,

〈$ + z
dτ

τ
,
dτ

τ
〉G(−χ2p̂~,z − ıq~,z) =− χ2f

2
z

(
〈β, dτ

τ
〉G − ı Im z〈dτ

τ
,
dτ

τ
〉G
)

+ ıχfz

(
〈β, dτ

τ
〉2G + (Im z)2〈dτ

τ
,
dτ

τ
〉2G
)
.

Thus,

Im

(
〈$ + z

dτ

τ
,
dτ

τ
〉G(−χ2p̂~,z − ıq~,z)

)
= χ2 Re(f2

z ) Im z〈dτ
τ
,
dτ

τ
〉G − χ2 Im(f2

z )〈β, dτ
τ
〉G

+ χRe fz

(
〈β, dτ

τ
〉2G + (Im z)2〈dτ

τ
,
dτ

τ
〉2G
)

Combining this with (7.9) we note that the only term in

Im
(
〈$ + z

dτ

τ
,
dτ

τ
〉G(p̃~,z − ıq~,z)

)
that is not automatically non-negative provided Im z ≥ 0, Re fz > 0, Re(f2

z ) > 0 is
−χ2 Im(f2

z )〈β, dττ 〉G. Thus, if we arrange that

2|χ2| | Im fz| |〈β,
dτ

τ
〉G| <

z
2

(Im z)2〈dτ
τ
,
dτ

τ
〉2G,

which is guaranteed by choosing z > 0 sufficiently large as Im z > δ and β is in a
compact set, then in view of the actual positivity of χRe fz(Im z)2〈dττ , dττ 〉2G, this
imaginary part does not vanish, completing the proof of ellipticity.

In summary, we have shown that if dτ
τ is time-like then the assumptions on

imaginary part of p~,z, as well as on the ellipticity of p~,z − ıq~,z for non-real z,
in Section 2 are automatically satisfied in the Lorentzian setting if q~,z is given
by (3.17). Further, if we extend p~,z to a new symbol, p̃~,z across a hypersurface,
µ = µ1, in the manner (3.18), then with χ, χ1 and χ2 as discussed there, p̃~,z− ıq~,z
satisfies the requirements for p~,z−ıq~,z, and in addition it is elliptic in the extended
part of the domain. We usually write p~,z − ıq~,z for this extension. Thus, these
properties need not be checked individually in specific cases.

Appendix A. Comparison with cutoff resolvent constructions

By Semyon Dyatlov82

In this appendix, we will first examine the relation of the resolvent considered in
the present paper to the cutoff resolvent for slowly rotating Kerr–de Sitter metric
constructed in [20] using separation of variables and complex contour deformation

82S.D.’s address is Department of Mathematics, University of California, Berkeley, CA 94720-
3840, USA, and e-mail address is dyatlov@math.berkeley.edu.
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near the event horizons. Then, we will show how to extract information on the
resolvent beyond event horizons from information about the cutoff resolvent.

First of all, let us list some notation of [20] along with its analogues in the present
paper:

Present paper [20] Present paper [20]
X+ M rs 2M0

γ α µ̃ ∆r

κ ∆θ F± A±
t̃, φ̃ t, ϕ t, φ t∗, ϕ∗

ω σ e−iσh(r)Pσe
iσh(r) −Pg(σ)

Kδ MK

The difference between Pg(ω) and Pσ is due to the fact that Pg(ω) was defined
using Fourier transform in the t̃ variable and Pσ is defined using Fourier transform
in the variable t = t̃ + h(r). We will henceforth use the notation of the present
paper.

We assume that δ > 0 is small and fixed, and α is small depending on δ. Define

Kδ = (r− + δ, r+ − δ)r × S2.

Then [20, Theorem 2] gives a family of operators

Rg(σ) : L2(Kδ)→ H2(Kδ)

meromorphic in σ ∈ C and such that Pg(σ)Rg(σ)f = f on Kδ for each f ∈ L2(Kδ).

Proposition A.1. Assume that the complex absorbing operator Qσ satisfies the
assumptions of Section 6.5 in the ‘classical’ case and furthermore, its Schwartz
kernel is supported in (X \X+)2. Let Rg(σ) be the operator constructed in [20] and
R(σ) = (Pσ − iQσ)−1 be the operator defined in Theorem 1.2 of the present paper.
Then for each f ∈ C∞0 (Kδ),

(A.1) −eiσh(r)Rg(σ)e−iσh(r)f = R(σ)f |Kδ .
Proof. The proof follows [20, Proposition 1.2]. Denote by u1 the left-hand side
of (A.1) and by u2 the right-hand side. Without loss of generality, we may assume
that f lies in the kernel D′k of the operator Dφ − k, for some k ∈ Z; in this case,
by [20, Theorem 1], u1 can be extended to the whole X+ and solves the equation
Pσu1 = f there. Moreover, by [20, Theorem 3], u1 is smooth up to the event
horizons {r = r±}. Same is true for u2; therefore, the difference u = u1 − u2 solves
the equation Pσ(u) = 0 and is smooth up to the event horizons.

Since both sides of (A.1) are meromorphic, we may further assume that Imσ >
Ce, where Ce is a large constant. Now, the function ũ(t, ·) = e−itσu(·) solves the
wave equation �gũ = 0 and is smooth up to the event horizons in the coordinate
system (t, r, θ, φ); therefore, if Ce is large enough, by [20, Proposition 1.1] ũ cannot
grow faster than exp(Cet). Therefore, u = 0 as required. �

Now, we show how to express the resolvent R(σ) on the whole space in terms
of the cutoff resolvent Rg(σ) and the nontrapping construction in the present pa-
per. Let Qσ be as above, but with the additional assumption of semiclassical
ellipticity near ∂Xδ, and Q′σ ∈ Ψ−∞~ be an operator satisfying the assumptions
of Section 6.5 in the ‘semiclassical’ case on the trapped set. Moreover, we require
that the semiclassical wavefront set of |σ|−2Q′σ be compact and Q′σ = χQ′σ = Q′σχ,
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where χ ∈ C∞0 (Kδ). Such operators exist for α small enough, as the trapped set is
compact and located O(α) close to the photon sphere {r = 3rs/2} and thus is far
from the event horizons. Denote R′(σ) = (Pσ − iQσ − iQ′σ)−1; by Theorem 2.14
applied in the case of Section 6.5, for each C0 there exists a constant σ0 such that
for s large enough, Imσ > −C0, and |Reσ| > σ0,

‖R′(σ)‖Hs−1

|σ|−1→Hs|σ|−1
≤ C|σ|−1.

We now use the identity

(A.2) R(σ) = R′(σ)−R′(σ)(iQ′σ +Q′σ(χR(σ)χ)Q′σ)R′(σ).

(To verify it, multiply both sides of the equation by Pσ − iQσ − iQ′σ on the left
and on the right.) Combining (A.2) with the fact that for each N , Q′σ is bounded

H−N|σ|−1 → HN
|σ|−1 with norm O(|σ|2), we get for σ not a pole of χR(σ)χ,

(A.3) ‖R(σ)‖Hs−1

|σ|−1→Hs|σ|−1
≤ C(1 + |σ|2‖χR(σ)χ‖L2(Kδ)→L2(Kδ)).

Also, if σ0 is a pole of R(σ) of algebraic multiplicity j, then we can multiply the
identity (A.2) by (σ − σ0)j to get an estimate similar to (A.3) on the function
(σ − σ0)jR(σ), holomorphic at σ = σ0.

The discussion above in particular implies that the cutoff resolvent estimates
of [5] also hold for the resolvent R(σ). Using the Mellin transform, we see that the
resonance expansion of [5] is valid for any solution u to the forward time Cauchy
problem for the wave equation on the whole Mδ, with initial data in a high enough
Sobolev class; the terms of the expansion are defined and the remainder is estimated
on the whole Mδ as well.
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