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Abstract. In this paper we develop a general, systematic, microlocal frame-
work for the Fredholm analysis of non-elliptic problems, including high energy

(or semiclassical) estimates, which is stable under perturbations. This frame-
work, described in Section 2, resides on a compact manifold without boundary,
hence in the standard setting of microlocal analysis.

Many natural applications arise in the setting of non-Riemannian b-metrics

in the context of Melrose’s b-structures. These include asymptotically de
Sitter-type metrics on a blow-up of the natural compactification, Kerr-de
Sitter-type metrics, as well as asymptotically Minkowski metrics.

The simplest application is a new approach to analysis on Riemannian or

Lorentzian (or indeed, possibly of other signature) conformally compact spaces
(such as asymptotically hyperbolic or de Sitter spaces), including a new con-
struction of the meromorphic extension of the resolvent of the Laplacian in the

Riemannian case, as well as high energy estimates for the spectral parameter
in strips of the complex plane. These results are also available in a follow-up
paper which is more expository in nature, [52].

The appendix written by Dyatlov relates his analysis of resonances on exact

Kerr-de Sitter space (which then was used to analyze the wave equation in that
setting) to the more general method described here.

1. Introduction

In this paper we develop a general microlocal framework which in particular
allows us to analyze the asymptotic behavior of solutions of the wave equation on
asymptotically Kerr-de Sitter and Minkowski space-times, as well as the behavior of
the analytic continuation of the resolvent of the Laplacian on so-called conformally
compact spaces. This framework is non-perturbative, and works, in particular, for
black holes, for relatively large angular momenta (the restrictions come purely from
dynamics, and not from methods of analysis of PDE), and also for perturbations
of Kerr-de Sitter space, where ‘perturbation’ is only relevant to the extent that it
guarantees that the relevant structures are preserved. In the context of analysis on
conformally compact spaces, our framework establishes a Riemannian-Lorentzian
duality; in this duality the spaces of different signature are smooth continuations of
each other across a boundary at which the differential operator we study has some
radial points in the sense of microlocal analysis.
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Since it is particularly easy to state, and only involves Riemannian geometry, we
start by giving a result on manifolds with even conformally compact metrics. These
are Riemannian metrics g0 on the interior of a compact manifold with boundary
X0 such that near the boundary Y , with a product decomposition nearby and a
defining function x, they are of the form

g0 =
dx2 + h

x2
,

where h is a family of metrics on ∂X0 depending on x in an even manner, i.e. only
even powers of x show up in the Taylor series. (There is a much more natural way
to phrase the evenness condition, see [28, Definition 1.2].) We also write X0,even

for the manifold X0 when the smooth structure has been changed so that x2 is a
boundary defining function; thus, a smooth function on X0 is even if and only if
it is smooth when regarded as a function on X0,even. The analytic continuation of
the resolvent in this category (but without the evenness condition) was obtained
by Mazzeo and Melrose [36], with possibly some essential singularities at pure
imaginary half-integers as noticed by Borthwick and Perry [6]. Using methods
of Graham and Zworski [26], Guillarmou [28] showed that for even metrics the
latter do not exist, but generically they do exist for non-even metrics. Further,
if the manifold is actually asymptotic to hyperbolic space (note that hyperbolic
space is of this form in view of the Poincaré model), Melrose, Sá Barreto and Vasy
[40] showed high energy resolvent estimates in strips around the real axis via a
parametrix construction; these are exactly the estimates that allow expansions for
solutions of the wave equation in terms of resonances. Estimates just on the real
axis were obtained by Cardoso and Vodev for more general conformal infinities
[7, 55]. One implication of our methods is a generalization of these results.

Below Ċ∞(X0) denotes ‘Schwartz functions’ on X0, i.e. C∞ functions vanishing
with all derivatives at ∂X0, and C−∞(X0) is the dual space of ‘tempered distribu-
tions’ (these spaces are naturally identified for X0 and X0,even), while Hs(X0,even)
is the standard Sobolev space on X0,even (corresponding to extension across the
boundary, see e.g. [31, Appendix B], where these are denoted by H̄s(X◦

0,even)) and
Hs

h(X0,even) is the standard semiclassical Sobolev space, so for h > 0 fixed this is
the same as Hs(X0,even); see [17, 21].

Theorem. (See Theorem 4.3 for the full statement.) Suppose that X0 is an (n −
1)-dimensional manifold with boundary Y with an even Riemannian conformally
compact metric g0. Then the inverse of

∆g0 −
(
n− 2

2

)2

− σ2,

written as R(σ) : L2 → L2, has a meromorphic continuation from Imσ ≫ 0 to C,

R(σ) : Ċ∞(X0) → C−∞(X0),

with poles with finite rank residues. If in addition (X0, g0) is non-trapping, then
non-trapping estimates hold in every strip | Imσ| < C, |Reσ| ≫ 0: for s > 1

2 + C,

(1.1) ‖x−(n−2)/2+ıσR(σ)f‖Hs

|σ|−1
(X0,even) ≤ C̃|σ|−1‖x−(n+2)/2+ıσf‖Hs−1

|σ|−1
(X0,even)

.

If f has compact support in X◦
0 , the s− 1 norm on f can be replaced by the s− 2

norm.
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Further, as stated in Theorem 4.3, the resolvent is semiclassically outgoing with
a loss of h−1, in the sense of recent results of Datchev and Vasy [15] and [16]. This
means that for mild trapping (where, in a strip near the spectrum, one has polyno-
mially bounded resolvent for a compactly localized version of the trapped model)
one obtains resolvent bounds of the same kind as for the above-mentioned trapped
models, and lossless estimates microlocally away from the trapping. In particular,
one obtains logarithmic losses compared to non-trapping on the spectrum for hy-
perbolic trapping in the sense of [58, Section 1.2], and polynomial losses in strips,
since for the compactly localized model this was recently shown by Wunsch and
Zworski [58].

For conformally compact spaces, without using wave propagation as motivation,
our method is to change the smooth structure, replacing x by µ = x2, conjugate
the operator by an appropriate weight as well as remove a vanishing factor of
µ, and show that the new operator continues smoothly and non-degenerately (in
an appropriate sense) across µ = 0, i.e. Y , to a (non-elliptic) problem which we
can analyze utilizing by now almost standard tools of microlocal analysis. These
steps are reflected in the form of the estimate (1.1); µ shows up in the evenness,
conjugation due to the presence of x−n/2+ıσ, and the two halves of the vanishing
factor of µ being removed in x±1 on the left and right hand sides. This approach is
explained in full detail in the more expository and self-contained follow-up article,
[52].

However, it is useful to think of a wave equation motivation — then (n − 1)-
dimensional hyperbolic space shows up (essentially) as a model at infinity inside a
backward light cone from a fixed point q+ at future infinity on n-dimensional de

Sitter space M̂ , see [51, Section 7], where this was used to construct the Poisson
operator. More precisely, the light cone is singular at q+, so to desingularize it,

consider [M̂ ; {q+}]. After a Mellin transform in the defining function of the front
face; the model continues smoothly across the light cone Y inside the front face of
[M̂ ; {q+}]. The inside of the light cone corresponds to (n−1)-dimensional hyperbolic
space (after conjugation, etc.) while the exterior is (essentially) (n−1)-dimensional
de Sitter space; Y is the ‘boundary’ separating them. Here Y should be thought of
as the event horizon in black hole terms (there is nothing more to event horizons
in terms of local geometry!).

The resulting operator Pσ has radial points at the conormal bundle N∗Y \ o
of Y in the sense of microlocal analysis, i.e. the Hamilton vector field is radial
at these points, i.e. is a multiple of the generator of dilations of the fibers of the
cotangent bundle there. However, tools exist to deal with these, going back to
Melrose’s geometric treatment of scattering theory on asymptotically Euclidean
spaces [38]. Note that N∗Y \ o consists of two components, Λ+, resp. Λ−, and in
S∗X = (T ∗X \ o)/R+ the images, L+, resp. L−, of these are sinks, resp. sources,
for the Hamilton flow. At L± one has choices regarding the direction one wants to
propagate estimates (into or out of the radial points), which directly correspond to
working with strong or weak Sobolev spaces. For the present problem, the relevant
choice is propagating estimates away from the radial points, thus working with the
‘good’ Sobolev spaces (which can be taken to have as positive order as one wishes;
there is a minimum amount of regularity imposed by our choice of propagation
direction, cf. the requirement s > 1

2 + C above (1.1)). All other points are either
elliptic, or microhyperbolic. It remains to either deal with the non-compactness
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of the ‘far end’ of the (n − 1)-dimensional de Sitter space — or instead, as is
indeed more convenient when one wants to deal with more singular geometries,
adding complex absorbing potentials, in the spirit of works of Nonnenmacher and
Zworski [43] and Wunsch and Zworski [58]. In fact, the complex absorption could be
replaced by adding a space-like boundary, see Remark 2.5, but for many microlocal
purposes complex absorption is more desirable, hence we follow the latter method.
However, crucially, these complex absorbing techniques (or the addition of a space-
like boundary) already enter in the non-semiclassical problem in our case, as we are
in a non-elliptic setting.

One can reverse the direction of the argument and analyze the wave equation
on an (n − 1)-dimensional even asymptotically de Sitter space X ′

0 by extending
it across the boundary, much like the the Riemannian conformally compact space
X0 is extended in this approach. Then, performing microlocal propagation in the
opposite direction, which amounts to working with the adjoint operators that we
already need in order to prove existence of solutions for the Riemannian spaces1,
we obtain existence, uniqueness and structure results for asymptotically de Sitter
spaces, recovering a large part2 of the results of [51]. Here we only briefly indicate
this method of analysis in Remark 4.6.

In other words, we establish a Riemannian-Lorentzian duality, that will have
counterparts both in the pseudo-Riemannian setting of higher signature and in
higher rank symmetric spaces, though in the latter the analysis might become
more complicated. Note that asymptotically hyperbolic and de Sitter spaces are
not connected by a ‘complex rotation’ (in the sense of an actual deformation); they
are smooth continuations of each other in the sense we just discussed.

To emphasize the simplicity of our method, we list all of the microlocal techniques
(which are relevant both in the classical and in the semiclassical setting) that we
use on a compact manifold without boundary; in all cases only microlocal Sobolev
estimates matter (not parametrices, etc.):

(i) Microlocal elliptic regularity.
(ii) Microhyperbolic propagation of singularities.
(iii) Rough analysis at a Lagrangian invariant under the Hamilton flow which

roughly behaves like a collection of radial points, though the internal struc-
ture does not matter, in the spirit of [38, Section 9].

(iv) Complex absorbing ‘potentials’ in the spirit of [43] and [58].

These are almost ‘off the shelf’ in terms of modern microlocal analysis, and thus
our approach, from a microlocal perspective, is quite simple. We use these to
show that on the continuation across the boundary of the conformally compact
space we have a Fredholm problem, on a perhaps slightly exotic function space,
which however is (perhaps apart from the complex absorption) the simplest possi-
ble coisotropic function space based on a Sobolev space, with order dictated by the
radial points. Also, we propagate the estimates along bicharacteristics in different
directions depending on the component Σ± of the characteristic set under consider-
ation; correspondingly the sign of the complex absorbing ‘potential’ will vary with

1This adjoint analysis also shows up for Minkowski space-time as the ‘original’ problem.
2Though not the parametrix construction for the Poisson operator, or for the forward funda-

mental solution of Baskin [1]; for these we would need a parametrix construction in the present

compact boundaryless, but analytically non-trivial (for this purpose), setting.
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Σ±, which is perhaps slightly unusual. However, this is completely parallel to solv-
ing the standard Cauchy, or forward, problem for the wave equation, where one
propagates estimates in opposite directions relative to the Hamilton vector field in
the two components.

The complex absorption we use modifies the operator Pσ outside X0,even. How-
ever, while (Pσ − ıQσ)

−1 depends on Qσ, its behavior on X0,even, and even near
X0,even, is independent of this choice; see the proof of Proposition 4.2 for a detailed
explanation. In particular, although (Pσ − ıQσ)

−1 may have resonances other than
those of R(σ), the resonant states of these additional resonances are supported out-
side X0,even, hence do not affect the singular behavior of the resolvent in X0,even.

While the results are stated for the scalar equation, analogous results hold for
operators on natural vector bundles, such as the Laplacian on differential forms.
This is so because the results work if the principal symbol of the extended problem
is scalar with the demanded properties, and the imaginary part of the subprincipal
symbol is either scalar at the ‘radial sets’, or instead satisfies appropriate estimates
(as an endomorphism of the pull-back of the vector bundle to the cotangent bundle)
at this location; see Remark 2.1. The only change in terms of results on asymptot-
ically hyperbolic spaces is that the threshold (n− 2)2/4 is shifted; in terms of the
explicit conjugation of Subsection 4.9 this is so because of the change in the first
order term in (4.29).

While here we mostly consider conformally compact Riemannian or Lorentzian
spaces (such as hyperbolic space and de Sitter space) as appropriate boundary
values (Mellin transform) of a blow-up of de Sitter space of one higher dimension,
they also show up as a boundary value of Minkowski space. This is related to Wang’s
work on b-regularity [57], though Wang worked on a blown up version of Minkowski
space-time; she also obtained her results for the (non-linear) Einstein equation
there. It is also related to the work of Fefferman and Graham [22] on conformal
invariants by extending an asymptotically hyperbolic manifold to Minkowski-type
spaces of one higher dimension. We discuss asymptotically Minkowski spaces briefly
in Section 5.

Apart from trapping — which is well away from the event horizons for black holes
that do not rotate too fast — the microlocal structure on de Sitter space is exactly
the same as on Kerr-de Sitter space, or indeed Kerr space near the event horizon.
(Kerr space has a Minkowski-type end as well; although Minkowski space also fits
into our framework, it does so a different way than Kerr at the event horizon, so the
result there is not immediate; see the comments below.) This is to be understood
as follows: from the perspective we present here (as opposed to the perspective of
[51]), the tools that go into the analysis of de Sitter space-time suffice also for Kerr-
de Sitter space, and indeed a much wider class, apart from the need to deal with
trapping. The trapping itself was analyzed by Wunsch and Zworski [58]; their work
fits immediately with our microlocal methods. Phenomena such as the ergosphere
are mere shadows of dynamics in the phase space which is barely changed, but
whose projection to the base space (physical space) undergoes serious changes. It
is thus of great value to work microlocally, although it is certainly possible that for
some non-linear purposes it is convenient to rely on physical space to the maximum
possible extent, as was done in the recent (linear) works of Dafermos and Rodnianski
[13, 14].
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Below we state theorems for Kerr-de Sitter space time. However, it is impor-
tant to note that all of these theorems have analogues in the general microlocal
framework discussed in Section 2. In particular, analogous theorems hold on conju-
gated, re-weighted, and even versions of Laplacians on conformally compact spaces
(of which one example was stated above as a theorem), and similar results apply
on ‘asymptotically Minkowski’ spaces, with the slight twist that it is adjoints of
operators considered here that play the direct role there.

We now turn to Kerr-de Sitter space-time and give some history. In exact Kerr-de
Sitter space and for small angular momentum, Dyatlov [20, 19] has shown exponen-
tial decay to constants, even across the event horizon. This followed earlier work of
Melrose, Sá Barreto and Vasy [39], where this was shown up to the event horizon
in de Sitter-Schwarzschild space-times or spaces strongly asymptotic to these (in
particular, no rotation of the black hole is allowed), and of Dafermos and Rodnian-
ski in [11] who had shown polynomial decay in this setting. These in turn followed
up pioneering work of Sá Barreto and Zworski [46] and Bony and Häfner [5] who
studied resonances and decay away from the event horizon in these settings. (One
can solve the wave equation explicitly on de Sitter space using special functions, see
[44] and [59]; on asymptotically de Sitter spaces the forward fundamental solution
was constructed as an appropriate Lagrangian distribution by Baskin [1].)

Also, polynomial decay on Kerr space was shown recently by Tataru and To-
haneanu [49, 48] and Dafermos and Rodnianski [13, 14], after pioneering work of
Kay and Wald in [32] and [56] in the Schwarzschild setting. (There was also recent
work by Marzuola, Metcalf, Tataru and Tohaneanu [35] on Strichartz estimates,
and by Donninger, Schlag and Soffer [18] on L∞ estimates on Schwarzschild black
holes, following L∞ estimates of Dafermos and Rodnianski [12, 10], of Blue and
Soffer [4] on non-rotating charged black holes giving L6 estimates, and Finster,
Kamran, Smoller and Yau [23, 24] on Dirac waves on Kerr.) While some of these
papers employ microlocal methods at the trapped set, they are mostly based on
physical space where the phenomena are less clear than in phase space (unstable
tools, such as separation of variables, are often used in phase space though). We
remark that Kerr space is less amenable to immediate microlocal analysis to attack
the decay of solutions of the wave equation due to the singular/degenerate behav-
ior at zero frequency, which will be explained below briefly. This is closely related
to the behavior of solutions of the wave equation on Minkowski space-times. Al-
though our methods also deal with Minkowski space-times, this holds in a slightly
different way than for de Sitter (or Kerr-de Sitter) type spaces at infinity, and
combining the two ingredients requires some additional work. On perturbations of
Minkowski space itself, the full non-linear analysis was done in the path-breaking
work of Christodoulou and Klainerman [9], and Lindblad and Rodnianski simplified
the analysis [33, 34], Bieri [2, 3] succeeded in relaxing the decay conditions, while
Wang [57] obtained additional, b-type, regularity as already mentioned. Here we
only give a linear result, but hopefully its simplicity will also shed new light on the
non-linear problem.

As already mentioned, a microlocal study of the trapping in Kerr or Kerr-de
Sitter was performed by Wunsch and Zworski in [58]. This is particularly important
to us, as this is the only part of the phase space which does not fit directly into
a relatively simple microlocal framework. Our general method is to use microlocal
analysis to understand the rest of the phase space (with localization away from
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trapping realized via a complex absorbing potential), then use the gluing result of
Datchev and Vasy [15] to obtain the full result.

Slightly more concretely, in the appropriate (partial) compactification of space-
time, near the boundary of which space-time has the form Xδ × [0, τ0)τ , where
Xδ denotes an extension of the space-time across the event horizon. Thus, there
is a manifold with boundary X0, whose boundary Y is the event horizon, such
that X0 is embedded into Xδ, a (non-compact) manifold without boundary. We
write X+ = X◦

0 for ‘our side’ of the event horizon and X− = Xδ \X0 for the ‘far
side’. Then the Kerr or Kerr-de Sitter d’Alembertians are b-operators in the sense
of Melrose [42] that extend smoothly across the event horizon Y . Recall that in
the Riemannian setting, b-operators are usually called ‘cylindrical ends’, see [42]
for a general description; here the form at the boundary (i.e. ‘infinity’) is similar,
modulo ellipticity (which is lost). Our results hold for small smooth perturbations
of Kerr-de Sitter space in this b-sense. Here the role of ‘perturbations’ is simply
to ensure that the microlocal picture, in particular the dynamics, has not changed
drastically. Although b-analysis is the right conceptual framework, we mostly work
with the Mellin transform, hence on manifolds without boundary, so the reader
need not be concerned about the lack of familiarity with b-methods. However, we
briefly discuss the basics in Section 3.

We immediatelyMellin transform in the defining function of the boundary (which
is temporal infinity, though is not space-like everywhere) — in Kerr and Kerr-
de Sitter spaces this is operation is ‘exact’, corresponding to τ∂τ being a Killing
vector field, i.e. is not merely at the level of normal operators, but this makes little
difference (i.e. the general case is similarly treatable). After this transform we get
a family of operators that e.g. in de Sitter space is elliptic on X+, but in Kerr space
ellipticity is lost there. We consider the event horizon as a completely artificial
boundary even in the de Sitter setting, i.e. work on a manifold that includes a
neighborhood of X0 = X+, hence a neighborhood of the event horizon Y .

As already mentioned, one feature of these space-times is some relatively mild
trapping in X+; this only plays a role in high energy (in the Mellin parameter, σ),
or equivalently semiclassical (in h = |σ|−1) estimates. We ignore a (semiclassical)
microlocal neighborhood of the trapping for a moment; we place an absorbing ‘po-
tential’ there. Another important feature of the space-times is that they are not
naturally compact on the ‘far side’ of the event horizon (inside the black hole), i.e.
X−, and bicharacteristics from the event horizon (classical or semiclassical) prop-
agate into this region. However, we place an absorbing ‘potential’ (a second order
operator) there to annihilate such phenomena which do not affect what happens
on ‘our side’ of the event horizon, X+, in view of the characteristic nature of the
latter. This absorbing ‘potential’ could easily be replaced by a space-like boundary,
in the spirit of introducing a boundary t = t1, where t1 > t0, when one solves the
Cauchy problem from t0 for the standard wave equation; note that such a boundary
does not affect the solution of the equation in [t0, t1]t. Alternatively, if X− has a
well-behaved infinity, such as in de Sitter space, the analysis could be carried out
more globally. However, as we wish to emphasize the microlocal simplicity of the
problem, we do not touch on these issues.

All of our results are in a general setting of microlocal analysis explained in Sec-
tion 2, with the Mellin transform and Lorentzian connection explained in Section 3.
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However, for the convenience of the reader here we state the results for perturba-
tions of Kerr-de Sitter spaces. We refer to Section 6 for details. First, the general
assumption is that

Pσ, σ ∈ C, is either the Mellin transform of the d’Alembertian
�g for a Kerr-de Sitter spacetime, or more generally the Mellin
transform of the normal operator of the d’Alembertian �g for a
small perturbation, in the sense of b-metrics, of such a Kerr-de
Sitter space-time;

see Section 3 for an explanation of these concepts. Note that for such perturbations
the usual ‘time’ Killing vector field (denoted by ∂t̃ in Section 6; this is indeed time-
like in X+ × [0, ǫ)t̃ sufficiently far from ∂X+) is no longer Killing. Our results
on these space-times are proved by showing that the hypotheses of Section 2 are
satisfied. We show this in general (under the conditions (6.2), which corresponds
to 0 < 9

4Λr
2
s < 1 in de Sitter-Schwarzschild spaces, and (6.12), which corresponds

to the lack of classical trapping in X+; see Section 6), except where semiclassical
dynamics matters. As in the analysis of Riemannian conformally compact spaces,
we use a complex absorbing operator Qσ; this means that its principal symbol in the
relevant (classical, or semiclassical) sense has the correct sign on the characteristic
set; see Section 2.

When semiclassical dynamics does matter, the non-trapping assumption with an
absorbing operator Qσ, σ = h−1z, is

in both the forward and backward directions, the bicharacteristics
from any point in the semiclassical characteristic set of Pσ either
enter the semiclassical elliptic set of Qσ at some finite time, or tend
to L±;

see Definition 2.11. Here, as in the discussion above, L± are two components
of the image of N∗Y \ o in S∗X. (As L+ is a sink while L− is a source, even
semiclassically, outside L± the ‘tending’ can only happen in the forward, resp.
backward, directions.) Note that the semiclassical non-trapping assumption (in
the precise sense used below) implies a classical non-trapping assumption, i.e. the
analogous statement for classical bicharacteristics, i.e. those in S∗X. It is important
to keep in mind that the classical non-trapping assumption can always be satisfied
with Qσ supported in X−, far from Y .

In our first result in the Kerr-de Sitter type setting, to keep things simple,
we ignore semiclassical trapping via the use of Qσ; this means that Qσ will have
support in X+. However, in X+, Qσ only matters in the semiclassical, or high
energy, regime, and only for (almost) real σ. If the black hole is rotating relatively
slowly, e.g. α satisfies the bound (6.22), the (semiclassical) trapping is always far
from the event horizon, and one can make Qσ supported away from there. Also,
the Klein-Gordon parameter λ below is ‘free’ in the sense that it does not affect
any of the relevant information in the analysis (principal and subprincipal symbol;
see below). Thus, we drop it in the following theorems for simplicity.

Theorem 1.1. Let Qσ be an absorbing formally self-adjoint operator such that the
semiclassical non-trapping assumption holds. Let σ0 ∈ C, and

X s = {u ∈ Hs : (Pσ0
− ıQσ0

)u ∈ Hs−1}, Ys = Hs−1,

‖u‖2X s = ‖u‖2Hs + ‖(Pσ0
− ıQσ0

)u‖2Hs−1 .
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Let β± > 0 be given by the geometry at conormal bundle of the black hole (−),
resp. de Sitter (+) event horizons, see Subsection 6.1, and in particular (6.9). For
s ∈ R, let3 β = max(β+, β−) if s ≥ 1/2, β = min(β+, β−) if s < 1/2. Then, for
λ ∈ C,

Pσ − ıQσ − λ : X s → Ys

is an analytic family of Fredholm operators on

(1.2) Cs = {σ ∈ C : Imσ > β−1(1− 2s)}

and has a meromorphic inverse,

R(σ) = (Pσ − ıQσ − λ)−1,

which is holomorphic in an upper half plane, Imσ > C. Moreover, given any
C ′ > 0, there are only finitely many poles in Imσ > −C ′, and the resolvent satisfies
non-trapping estimates there, which e.g. with s = 1 (which might need a reduction
in C ′ > 0) take the form

‖R(σ)f‖2L2 + |σ|−2‖dR(σ)‖2L2 ≤ C ′′|σ|−2‖f‖2L2 .

The analogous result also holds on Kerr space-time if we suppress the Euclidean
end by a complex absorption.

Dropping the semiclassical absorption in X+, i.e. if we make Qσ supported only
in X−, we have4

Theorem 1.2. Let Pσ, β, Cs be as in Theorem 1.1, and let Qσ be an absorbing
formally self-adjoint operator supported in X− which is classically non-trapping.
Let σ0 ∈ C, and

X s = {u ∈ Hs : (Pσ0
− ıQσ0

)u ∈ Hs−1}, Ys = Hs−1,

with

‖u‖2X s = ‖u‖2Hs + ‖P̃ u‖2Hs−1 .

Then,

Pσ − ıQσ : X s → Ys

is an analytic family of Fredholm operators on Cs, and has a meromorphic inverse,

R(σ) = (Pσ − ıQσ)
−1,

which for any ǫ > 0 is holomorphic in a translated sector in the upper half plane,
Imσ > C + ǫ|Reσ|. The poles of the resolvent are called resonances. In addition,
taking s = 1 for instance, R(σ) satisfies non-trapping estimates, e.g. with s = 1,

‖R(σ)f‖2L2 + |σ|−2‖dR(σ)‖2L2 ≤ C ′|σ|−2‖f‖2L2

in such a translated sector.

3This means that we require the stronger of Imσ > β−1
±

(1−2s) to hold in (1.2). If we perturb
Kerr-de Sitter space time, we need to increase the requirement on Imσ slightly, i.e. the size of the
half space has to be slightly reduced.

4Since we are not making a statement for almost real σ, semiclassical trapping, discussed in

the previous paragraph, does not matter.
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It is in this setting that Qσ could be replaced by working on a manifold with
boundary, with the boundary being space-like, essentially as a time level set men-
tioned above, since it is supported in X−.

Now we make the assumption that the only semiclassical trapping is due to
hyperbolic trapping with trapped set Γz, σ = h−1z, with hyperbolicity understood
as in the ‘Dynamical Hypotheses’ part of [58, Section 1.2], i.e.

in both the forward and backward directions, the bicharacteristics
from any point in the semiclassical characteristic set of Pσ either
enter the semiclassical elliptic set of Qσ at some finite time, or tend
to L± ∪ Γz.

We remark that just hyperbolicity of the trapped set suffices for the results of [58],
see Section 1.2 of that paper; however, if one wants stability of the results under
perturbations, one needs to assume that Γz is normally hyperbolic. We refer to [58,
Section 1.2] for a discussion of these concepts. We show in Section 6 that for black
holes satisfying (6.22) (so the angular momentum can be comparable to the mass)
the operators Qσ can be chosen so that they are supported in X− (even quite far
from Y ) and the hyperbolicity requirement is satisfied. Further, we also show that
for slowly rotating black holes the trapping is normally hyperbolic. Moreover, the
(normally) hyperbolic trapping statement is purely in Hamiltonian dynamics, not
regarding PDEs. It might be known for an even larger range of rotation speeds,
but the author is not aware of this.

Under this assumption, one can combine Theorem 1.1 with the results of Wun-
sch and Zworski [58] about hyperbolic trapping and the gluing results of Datchev
and Vasy [15] to obtain a better result for the merely spatially localized problem,
Theorem 1.2:

Theorem 1.3. Let Pσ, Qσ, β, Cs, X s and Ys be as in Theorem 1.2, and assume
that the only semiclassical trapping is due to hyperbolic trapping. Then,

Pσ − ıQσ : X s → Ys

is an analytic family of Fredholm operators on Cs, and has a meromorphic inverse,

R(σ) = (Pσ − ıQσ)
−1,

which is holomorphic in an upper half plane, Imσ > C. Moreover, there exists
C ′ > 0 such that there are only finitely many poles in Imσ > −C ′, and the resolvent
satisfies polynomial estimates there as |σ| → ∞, |σ|κ, for some κ > 0, compared to
the non-trapping case, with merely a logarithmic loss compared to non-trapping for
real σ, e.g. with s = 1:

‖R(σ)f‖2L2 + |σ|−2‖dR(σ)‖2L2 ≤ C ′′|σ|−2(log |σ|)2‖f‖2L2 .

Farther, there are approximate lattices of poles generated by the trapping, as
studied by Sá Barreto and Zworski in [46], and further by Bony and Häfner in [5],
in the exact De Sitter-Schwarzschild and Schwarzschild settings, and in ongoing
work by Dyatlov in the exact Kerr-de Sitter setting.

Theorem 1.3 immediately and directly gives the asymptotic behavior of solutions
of the wave equation across the event horizon. Namely, the asymptotics of the
wave equation depends on the finite number of resonances; their precise behavior
depends on specifics of the space-time, i.e. on these resonances. This is true even
in arbitrarily regular b-Sobolev spaces – in fact, the more decay we want to show,
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the higher Sobolev spaces we need to work in. Thus, a forteriori, this gives L∞

estimates. We state this formally as a theorem in the simplest case of slow rotation;
in the general case one needs to analyze the (finite!) set of resonances along the
reals to obtain such a conclusion, and for the perturbation part also to show normal
hyperbolicity (which we only show for slow rotation):

Theorem 1.4. Let Mδ be the partial compactification of Kerr-de Sitter space as in
Section 6, with τ the boundary defining function. Suppose that g is either a slowly
rotating Kerr-de Sitter metric, or a small perturbation as a symmetric bilinear
form on bTMδ. Then there exist C ′ > 0, κ > 0 such that for 0 < ǫ < C ′ and
s > (1 + βǫ)/2 solutions of �gu = f with f ∈ τ ǫHs−1+κ

b (Mδ) vanishing in τ > τ0,
and with u vanishing in τ > τ0, satisfy that for some constant c0,

u− c0 ∈ τ ǫHs
b,loc(Mδ).

In special geometries (without the ability to add perturbations) such decay has
been described by delicate separation of variables techniques, again see Bony-Häfner
[5] in the De Sitter-Schwarzschild and Schwarzschild settings, but only away from
the event horizons, and by Dyatlov [20, 19] in the Kerr-de Sitter setting. Thus,
in these settings, we recover in a direct manner Dyatlov’s result across the event
horizon [19], modulo a knowledge of resonances near the origin contained in [20]. In
fact, for small angular momenta one can use the results from de Sitter-Schwarzschild
space directly to describe these finitely many resonances, as exposed in the works
of Sá Barreto and Zworski [46], Bony and Häfner [5] and Melrose, Sá Barreto and
Vasy [39], since 0 is an isolated resonance with multiplicity 1 and eigenfunction
1; this persists under small deformations, i.e. for small angular momenta. Thus,
exponential decay to constants, Theorem 1.4, follows immediately.

One can also work with Kerr space-time, apart from issues of analytic continu-
ation. By using weighted spaces and Melrose’s results from [38] as well as those of
Vasy and Zworski in the semiclassical setting [54], one easily gets an analogue of
Theorem 1.2 in Imσ > 0, with smoothness and the almost non-trapping estimates
corresponding to those of Wunsch and Zworski [58] down to Imσ = 0 for |Reσ|
large. Since a proper treatment of this would exceed the bounds of this paper, we
refrain from this here. Unfortunately, even if this analysis were carried out, low
energy problems would still remain, so the result is not strong enough to deduce
the wave expansion. As already alluded to, Kerr space-time has features of both
Minkowski and de Sitter space-times; though both of these fit into our framework,
they do so in different ways, so a better way of dealing with the Kerr space-time,
namely adapting our methods to it, requires additional work.

While de Sitter-Schwarzschild space (the special case of Kerr-de Sitter space
with vanishing rotation), via the same methods as those on de Sitter space which
give rise to the hyperbolic Laplacian and its continuation across infinity, gives rise
essentially to the Laplacian of a conformally compact metric, with similar structure
but different curvature at the two ends (this was used by Melrose, Sá Barreto and
Vasy [39] to do analysis up to the event horizon there), the analogous problem for
Kerr-de Sitter is of edge-type in the sense of Mazzeo’s edge calculus [37] apart from
a degeneracy at the poles corresponding to the axis of rotation, though it is not
Riemannian. Note that edge operators have global properties in the fibers; in this
case these fibers are the orbits of rotation. A reasonable interpretation of the ap-
pearance of this class of operators is that the global properties in the fibers capture
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non-constant (or non-radial) bicharacteristics (in the classical sense) in the conor-
mal bundle of the event horizon, and also possibly the (classical) bicharacteristics
entering X+. This suggests that the methods of Melrose, Sá Barreto and Vasy [39]
would be much harder to apply in the presence of rotation.

It is important to point out that the results of this paper are stable under small
C∞ perturbations5 of the Lorentzian metric on the b-cotangent bundle at the cost of
changing the function spaces slightly; this follows from the estimates being stable in
these circumstances. Note that the function spaces depend on the principal symbol
of the operator under consideration, and the range of σ depends on the subprincipal
symbol at the conormal bundle of the event horizon; under general small smooth
perturbations, defining the spaces exactly as before, the results remain valid if the
range of σ is slightly restricted.

In addition, the method is stable under gluing: already Kerr-de Sitter space be-
haves as two separate black holes (the Kerr and the de Sitter end), connected by
semiclassical dynamics; since only one component (say Σ~,+) of the semiclassical
characteristic set moves far into X+, one can easily add as many Kerr black holes
as one wishes by gluing beyond the reach of the other component, Σ~,−. Theo-
rems 1.1 and 1.2 automatically remain valid (for the semiclassical characteristic set
is then irrelevant), while Theorem 1.3 remains valid provided that the resulting
dynamics only exhibits mild trapping (so that compactly localized models have at
most polynomial resolvent growth), such as normal hyperbolicity, found in Kerr-de
Sitter space.

Since the specifics of Kerr-de Sitter space-time are, as already mentioned, irrel-
evant in the microlocal approach we take, we start with the abstract microlocal
discussion in Section 2, which is translated into the setting of the wave equation
on manifolds with a Lorentzian b-metric in Section 3, followed by the description
of de Sitter, Minkowski and Kerr-de Sitter space-times in Sections 4, 5 and 6.
Theorems 1.1-1.4 are proved in Section 6 by showing that they fit into the ab-
stract framework of Section 2; the approach is completely analogous to de Sitter
and Minkowski spaces, where the fact that they fit into the abstract framework is
shown in Sections 4 and 5. As another option, we encourage the reader to read the
discussion of de Sitter space first, which also includes the discussion of conformally
compact spaces, presented in Section 4, as well as Minkowski space-time presented
in the section afterwards, to gain some geometric insight, then the general microlo-
cal machinery, and finally the Kerr discussion to see how that space-time fits into
our setting. Finally, if the reader is interested how conformally compact metrics
fit into the framework and wants to jump to the relevant calculation, a reasonable
place to start is Subsection 4.9. We emphasize that for the conformally compact
results, only Section 2 and Section 4.4-4.9, starting with the paragraph of (4.8), are
strictly needed.

2. Microlocal framework

We now develop a setting which includes the geometry of the ‘spatial’ model of de
Sitter space near its ‘event horizon’, as well as the model of Kerr and Kerr-de Sitter
settings near the event horizon, and the model at infinity for Minkowski space-time
near the light cone (corresponding to the adjoint of the problem described below in

5Certain kinds of perturbations conormal to the boundary, in particular polyhomogeneous

ones, would only change the analysis and the conclusions slightly.
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the last case). As a general reference for microlocal analysis, we refer to [31], while
for semiclassical analysis, we refer to [17, 21]; see also [47] for the high-energy (or
large parameter) point of view.

2.1. Notation. We recall the basic conversion between these frameworks. First,
Sk(Rp;Rℓ) is the set of C∞ functions on Rp

z × Rℓ
ζ satisfying uniform bounds

|Dα
z D

β
ζ a| ≤ Cαβ〈ζ〉k−|β|, α ∈ N

p, β ∈ N
ℓ.

If O ⊂ Rp and Γ ⊂ Rℓ
ζ are open, we define Sk(O; Γ) by requiring6 these estimates to

hold only for z ∈ O and ζ ∈ Γ. The class of classical (or one-step polyhomogeneous)
symbols is the subset Sk

cl(R
p;Rℓ) of Sk(Rp;Rℓ) consisting of symbols possessing an

asymptotic expansion

a(z, rω) ∼
∑

aj(z, ω)r
k−j ,

where aj ∈ C∞(Rp × Sℓ−1). Then on Rn
z , pseudodifferential operators A ∈ Ψk(Rn)

are of the form

A = Op(a); Op(a)u(z) = (2π)−n

∫

Rn

ei(z−z′)·ζa(z, ζ)u(z′) dζ dz′,

u ∈ S(Rn), a ∈ Sk(Rn;Rn);

understood as an oscillatory integral. Classical pseudodifferential operators, A ∈
Ψk

cl(R
n), form the subset where a is a classical symbol. The principal symbol σk(A)

of A ∈ Ψk(Rn) is the equivalence class [a] of a in Sk(Rn;Rn)/Sk−1(Rn;Rn). For
classical a, one can instead consider a0(z, ω)r

k as the principal symbol; it is a C∞

function on Rn × (Rn \ {0}), which is homogeneous of degree k with respect to the
R+-action given by dilations in the second factor, Rn \ {0}.

Differential operators on Rn form the subset of Ψ(Rn) in which a is polynomial
in the second factor, Rn

ζ , so locally

A =
∑

|α|≤k

aα(z)D
α
z , σk(A) =

∑

|α|=k

aα(z)ζ
α.

If X is a manifold, one can transfer these definitions to X by localization and
requiring that the Schwartz kernels are C∞ densities away from the diagonal in
X2 = X × X; then σk(A) is in Sk(T ∗X)/Sk−1(T ∗X), resp. Sk

hom(T
∗X \ o) when

A ∈ Ψk(X), resp.A ∈ Ψk
cl(X); here o is the zero section, and hom stands for symbols

homogeneous with respect to the R+ action. If A is a differential operator, then
the classical (i.e. homogeneous) version of the principal symbol is a homogeneous
polynomial in the fibers of the cotangent bundle of degree k. We can also work
with operators depending on a parameter λ ∈ O by replacing a ∈ Sk(Rn;Rn) by
a ∈ Sk(Rn ×O;Rn), with Op(aλ) ∈ Ψk(Rn) smoothly dependent on λ ∈ O. In the
case of differential operators, aα would simply depend smoothly on the parameter
λ.

The large parameter, or high energy, version of this, with the large parameter
denoted by σ, is that

A(σ) = Op(σ)(a), Op(σ)(a)u(z) = (2π)−n

∫

Rn

ei(z−z′)·ζa(z, ζ, σ)u(z′) dζ dz′,

u ∈ S(Rn), a ∈ Sk(Rn;Rn
ζ × Ωσ),

6Another possibility would be to require uniform estimates on compact subsets; this makes no

difference here.
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where Ω ⊂ C, with C identified with R2; thus there are joint symbol estimates in ζ
and σ. The high energy principal symbol now should be thought of as an equivalence
class of functions on Rn

z ×Rn
ζ ×Ωσ, or invariantly on T ∗X×Ω. Differential operators

with polynomial dependence on σ now take the form

(2.1) A(σ) =
∑

|α|+j≤k

aα,j(z)σ
jDα

z , σ
(σ)
k (A) =

∑

|α|+j=k

aα,j(z)σ
jζα.

Note that the principal symbol includes terms that would be subprincipal with A(σ)

considered as a differential operator for a fixed value of σ.
The semiclassical operator algebra7, Ψ~(R

n), is given by

Ah = Op~(a); Op~(a)u(z) = (2πh)−n

∫

Rn

ei(z−z′)·ζ/ha(z, ζ, h)u(z′) dζ dz′,

u ∈ S(Rn), a ∈ C∞([0, 1)h;S
k(Rn;Rn

ζ ));

its classical subalgebra, Ψ~,cl(R
n) corresponds to a ∈ C∞([0, 1)h;S

k
cl(R

n;Rn
ζ )). The

semiclassical principal symbol is now σ~,k(A) = a|h=0 ∈ Sk(T ∗X). We can again
add an extra parameter λ ∈ O, so a ∈ C∞([0, 1)h;S

k(Rn × O;Rn
ζ )); then in the

invariant setting the principal symbol is a|h=0 ∈ Sk(T ∗X×O). Note that if A(σ) =

Op(σ)(a) is a classical operator with a large parameter, then for λ ∈ O ⊂ C, O
compact, 0 /∈ O,

hk Op(h
−1λ)(a) = Op~(ã), ã(z, ζ, h) = hka(z, h−1ζ, h−1λ),

and ã ∈ C∞([0, 1)h;S
k
cl(R

n × Oλ;R
n
ζ )). The converse is not quite true: roughly

speaking, the semiclassical algebra is a blow-up of the large parameter algebra;
to obtain an equivalence, we would need to demand in the definition of the large
parameter algebra merely that a ∈ Sk(Rn; [Rn

ζ × Ωσ; ∂Rn
ζ × {0}]), so in particular

for bounded σ, a is merely a family of symbols depending smoothly on σ (not
jointly symbolic); we do not discuss this here further. Note, however, that it is
the (smaller, i.e. stronger) large parameter algebra that arises naturally when one
Mellin transforms in the b-setting, see Subsection 3.1.

Differential operators now take the form

(2.2) Ah,λ =
∑

|α|≤k

aα(z, λ;h)(hDz)
α.

Such a family has two principal symbols, the standard one (but taking into account
the semiclassical degeneration, i.e. based on (hDz)

α rather thanDα
z ), which depends

on h and is homogeneous, and the semiclassical one, which is at h = 0, and is not
homogeneous:

σk(Ah,λ) =
∑

|α|=k

aα(z, λ;h)ζ
α,

σ~(Ah,λ) =
∑

|α|≤k

aα(z, λ; 0)ζ
α.

However, the restriction of σk(Ah,λ) to h = 0 is the principal part of σ~(Ah,λ).
In the special case in which σk(Ah,λ) is independent of h (which is true in the

7We adopt the convention that ~ denotes semiclassical objects, while h is the actual semiclas-

sical parameter.
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setting considered below), one can simply regard the usual principal symbol as the
principal part of the semiclassical symbol. Note that for A(σ) as in (2.1),

hkA(h−1λ) =
∑

|α|+j≤k

hk−j−|α|aα,j(z)λ
j(hDz)

α,

which is indeed of the form (2.2), with polynomial dependence on both h and λ.
Note that in this case the standard principal symbol is independent of h and λ.

2.2. General assumptions. Let X be a compact manifold and ν a smooth non-
vanishing density on it; thus L2(X) is well-defined as a Hilbert space (and not
only up to equivalence). We consider operators Pσ ∈ Ψk

cl(X) on X depending on
a complex parameter σ, with the dependence being analytic (i.e. the coefficients
depend analytically on σ). We also consider a complex absorbing ‘potential’, Qσ ∈
Ψk

cl(X) which is formally self-adjoint. The operators we study are Pσ − ıQσ and
P ∗
σ + ıQσ; P

∗
σ depends on the choice of the density ν.

Typically we shall be interested in Pσ on an open subset U of X, and have Qσ

supported in the complement of U , such that over some subset K of X \ U , Qσ is
elliptic on the characteristic set of Pσ. In the Kerr-de Sitter setting, we would have
X+ ⊂ U . However, this is not part of the general set-up.

It is often convenient to work with the fiber-radial compactification T
∗
X of T ∗X,

in particular when discussing semiclassical analysis; see for instance [38, Sections 1

and 5]. Thus, S∗X should be considered as the boundary of T
∗
X. When one is

working with homogeneous objects, as is the case in classical microlocal analysis,

one can think of S∗X as (T
∗
X \ o)/R+, but this is not a useful point of view

in semiclassical analysis8. Thus, if ρ̃ is a non-vanishing homogeneous degree −1

function on T ∗X \o, it is a defining function of S∗X in T
∗
X \o; if the homogeneity

requirement is dropped it can be modified near the zero section to make it a defining

function of S∗X in T
∗
X. The principal symbols p, q of Pσ, Qσ are homogeneous

degree k functions on T ∗X \o, so ρ̃kp, ρ̃kq are homogeneous degree 0 there, thus are

functions9 on T
∗
X near its boundary, S∗X, and in particular on S∗X. Moreover,

Hp is homogeneous degree k − 1 on T ∗X \ o, thus ρ̃k−1
Hp a smooth vector field

tangent to the boundary on T
∗
X (defined near the boundary), and in particular

induces a smooth vector field on S∗X.
We assume that the principal symbol p, resp. q, of Pσ, resp. Qσ, are real, are

independent of σ, p = 0 implies dp 6= 0. We assume that the characteristic set of
Pσ is of the form

Σ = Σ+ ∪ Σ−, Σ+ ∩ Σ− = ∅,

8In fact, even in classical microlocal analysis it is better to keep at least a ‘shadow’ of the interior

of S∗X by working with T ∗X \ o considered as a half-line bundle over S∗X with homogeneous
objects on it; this keeps the action of the Hamilton vector field on the fiber-radial variable, i.e.

the defining function of S∗X in T
∗
X, non-trivial, which is important at radial points.

9This depends on choices unless k = 0; they are naturally sections of a line bundle that encodes
the differential of the boundary defining function at S∗X. However, the only relevant notion here
is ellipticity, and later the Hamilton vector field up to multiplication by a positive function, which

is independent of choices. In fact, we emphasize that all the requirements listed for p, q and later
p~,z and q~,z , except possibly (2.5)-(2.6), are also fulfilled if Pσ − ıQσ is replaced by any smooth
positive multiple, so one may factor out positive factors at will. This is useful in the Kerr-de Sitter

space discussion. For (2.5)-(2.6), see Footnote 12.
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Σ± are relatively open10 in Σ, and

∓q ≥ 0 near Σ±.

We assume that there are conic submanifolds Λ± ⊂ Σ± of T ∗X\o, outside which the
Hamilton vector field Hp is not radial, and to which the Hamilton vector field Hp is
tangent. Here Λ± are typically Lagrangian, but this is not needed11. The properties
we want at Λ± are (probably) not stable under general smooth perturbations;
the perturbations need to have certain properties at Λ±. However, the estimates
we then derive are stable under such perturbations. First, we want that for a
homogeneous degree −1 defining function ρ̃ of S∗X near L±, the image of Λ± in
S∗X,

(2.3) ρ̃k−2
Hpρ̃|L± = ∓β0, β0 ∈ C∞(L±), β0 > 0.

Next, we require the existence of a non-negative homogeneous degree zero qua-
dratic defining function ρ0, of Λ± (i.e. it vanishes quadratically at Λ±, and is
non-degenerate) and β1 > 0 such that

(2.4) ∓ρ̃k−1
Hpρ0 − β1ρ0

is ≥ 0 modulo cubic vanishing terms at Λ±. (The precise behavior of ∓ρ̃k−1
Hpρ0,

or of linear defining functions, is irrelevant, because we only need a relatively weak
estimate. It would be relevant if one wanted to prove Lagrangian regularity.) Under
these assumptions, L− is a source and L+ is a sink for the Hp-dynamics in the sense
that nearby bicharacteristics tend to L± as the parameter along the bicharacteristic
goes to ±∞. Finally, we assume that the imaginary part of the subprincipal symbol
at Λ±, which is the symbol of 1

2ı (Pσ − P ∗
σ ) ∈ Ψk−1

cl (X) as p is real, is12

(2.5) ±β̃β0(Imσ)ρ̃−k+1, β̃ ∈ C∞(L±),

β̃ is positive along L±, and write

(2.6) βsup = sup β̃, βinf = inf β̃ > 0.

If β̃ is a constant, we may write

(2.7) β = βinf = βsup.

The results take a little nicer form in this case since depending on various signs,
sometimes βinf and sometimes βsup is the relevant quantity.

We make the following non-trapping assumption. For α ∈ S∗X, let γ+(α), resp.
γ−(α) denote the image of the forward, resp. backward, half-bicharacteristic from
α. We write γ±(α) → L± (and say γ±(α) tends to L±) if given any neighborhood
O of L±, γ±(α) ∩ O 6= ∅; by the source/sink property this implies that the points

10Thus, they are connected components in the extended sense that they may be empty.
11An extreme example would be Λ± = Σ±. Another extreme is if one or both are empty.
12If Hp is radial at L±, this is independent of the choice of the density ν. Indeed, with respect

to fν, the adjoint of Pσ is f−1P ∗
σf , with P ∗

σ denoting the adjoint with respect to ν. This is

P ∗
σ + f−1[P ∗

σ , f ], and the principal symbol of f−1[P ∗
σ , f ] ∈ Ψk−1

cl (X) vanishes at L± as Hpf = 0.

In general, we can only change the density by factors f with Hpf |L±
= 0, which in Kerr-de Sitter

space-times would mean factors independent of φ at the event horizon. A similar argument shows
the independence of the condition from the choice of f when one replaces Pσ by fPσ , under the

same conditions: either radiality, or just Hpf |L±
= 0.
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Figure 1. The components Σ± of the characteristic set in the
cosphere bundle S∗X. The submanifolds L± are points here, with
L− a source, L+ a sink. The thin lined parabolic regions near the
edges show the absorbing region, i.e. the support of q. For Pσ −
ıQσ,the estimates are always propagated away from L± towards
the support of q, so in the direction of the Hamilton flow in Σ−, and
in the direction opposite of the Hamilton flow in Σ+; for P

∗
σ + ıQσ,

the directions are reversed.

on the curve are in O for sufficiently large (in absolute value) parameter values. We
assume that, with ell(Qσ) denoting the elliptic set of Qσ,

(2.8)

α ∈ Σ− \ L− ⇒
(
γ−(α) → L− or γ−(α) ∩ ell(Qσ) 6= ∅

)
and γ+(α) ∩ ell(Qσ) 6= ∅,

α ∈ Σ+ \ L+ ⇒
(
γ+(α) → L+ or γ+(α) ∩ ell(Qσ) 6= ∅

)
and γ−(α) ∩ ell(Qσ) 6= ∅.

That is, all forward and backward half-(null)bicharacteristics of Pσ either enter the
elliptic set of Qσ, or go to Λ±, i.e. L± in S∗X. The point of the assumptions
regarding Qσ and the flow is that we are able to propagate estimates forward near
where q ≥ 0, backward near where q ≤ 0, so by our hypotheses we can always
propagate estimates for Pσ − ıQσ from Λ± towards the elliptic set of Qσ, and also
if both ends of a bicharacteristic go to the elliptic set of Qσ then we can propagate
the estimates from one of the directions. On the other hand, for P ∗

σ + ıQσ, we can
propagate estimates from the elliptic set of Qσ towards Λ±, and again if both ends
of a bicharacteristic go to the elliptic set of Qσ then we can propagate the estimates
from one of the directions. This behavior of Pσ − ıQσ vs. P ∗

σ + ıQσ is important
for duality reasons.

Remark 2.1. For simplicity of notation we have not considered vector bundles on
X. However, if E is a vector bundle on X with a positive definite inner product
on the fibers and Pσ, Qσ ∈ Ψk

cl(X;E) with scalar principal symbol p, and in case

of Pσ the imaginary part of the subprincipal symbol is of the form (2.5) with β̃ a
bundle-endomorphism satisfying an inequality in (2.6) as a bundle endomorphism,
the arguments we present go through.
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2.3. Elliptic and microhyperbolic points. We now turn to analysis. First, by
the usual elliptic theory, on the elliptic set of Pσ − ıQσ, so both on the elliptic set
of Pσ and on the elliptic set of Qσ, one has elliptic estimates13: for all s and N ,
and for all B,G ∈ Ψ0(X) with G elliptic on WF′(B),

(2.9) ‖Bu‖Hs ≤ C(‖G(Pσ − ıQσ)u‖Hs−k + ‖u‖H−N ),

with the estimate also holding for P ∗
σ + ıQσ. By propagation of singularities, in

Σ\ (WF′(Qσ)∪L+∪L−), one can propagate regularity estimates either forward or
backward along bicharacteristics, i.e. for all s and N , and for all A,B,G ∈ Ψ0(X)
such that WF′(G) ∩ WF′(Qσ) = ∅, and forward (or backward) bicharacteristics
from WF′(B) reach the elliptic set of A, while remaining in the elliptic set of G,
one has estimates

(2.10) ‖Bu‖Hs ≤ C(‖GPσu‖Hs−k+1 + ‖Au‖Hs + ‖u‖H−N ).

Here Pσ can be replaced by Pσ − ıQσ or P ∗
σ + ıQσ by the condition on WF′(G);

namely GQσ ∈ Ψ−∞(X), and can thus be absorbed into the ‖u‖H−N term. As
usual, there is a loss of one derivative compared to the elliptic estimate, i.e. the
assumption on Pσu is Hs−k+1, not Hs−k, and one needs to make Hs assumptions
on Au, i.e. regularity propagates.

2.4. Analysis near Λ±. At Λ±, for s ≥ m > (k − 1 − β Imσ)/2, β given by the
subprincipal symbol at Λ±, we can propagate estimates away from Λ±:

Proposition 2.2. For Imσ ≥ 0, let14 β = βinf , for Imσ < 0, let β = βsup. For all
N , for s ≥ m > (k−1−β Imσ)/2, and for all A,B,G ∈ Ψ0(X) such that WF′(G)∩
WF′(Qσ) = ∅, A elliptic at Λ±, and forward (or backward) bicharacteristics from
WF′(B) tend to Λ±, with closure in the elliptic set of G, one has estimates

(2.11) ‖Bu‖Hs ≤ C(‖GPσu‖Hs−k+1 + ‖Au‖Hm + ‖u‖H−N ),

in the sense that if u ∈ H−N , Au ∈ Hm and GPσu ∈ Hs−k+1, then Bu ∈ Hs, and
(2.11) holds. In fact, Au can be dropped from the right hand side (but one must
assume Au ∈ Hm):

(2.12) Au ∈ Hm ⇒ ‖Bu‖Hs ≤ C(‖GPσu‖Hs−k+1 + ‖u‖H−N ),

where u ∈ H−N and GPσu ∈ Hs−k+1 is considered implied by the right hand side.
Note that Au does not appear on the right hand side, hence the display before the
estimate.

This is completely analogous to Melrose’s estimates in asymptotically Euclidean
scattering theory at the radial sets [38, Section 9]. Note that the Hs regularity
of Bu is ‘free’ in the sense that we do not need to impose Hs assumptions on u
anywhere; merely Hm at Λ± does the job; of course, on Pσu one must make the
Hs−k+1 assumption, i.e. the loss of one derivative compared to the elliptic setting.
At the cost of changing regularity, one can propagate estimate towards Λ±. Keeping
in mind that for P ∗

σ the subprincipal symbol becomes βσ, we have the following:

13Our convention in estimates such as (2.9) and (2.10) is that if one assumes that all the
quantities on the right hand side are in the function spaces indicated by the norms then so is the
quantity on the left hand side, and the estimate holds. As we see below, at Λ± not all relevant

function space statements appear in the estimate, so we need to be more explicit there.
14Note that this is consistent with (2.7).
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Proposition 2.3. For Imσ > 0, let15 β = βsup, for Imσ ≤ 0, let β = βinf . For
s < (k− 1−β Imσ)/2, for all N , and for all A,B,G ∈ Ψ0(X) such that WF′(G)∩
WF′(Qσ) = ∅, B,G elliptic at Λ±, and forward (or backward) bicharacteristics
from WF′(B) \Λ± reach WF′(A), while remaining in the elliptic set of G, one has
estimates

(2.13) ‖Bu‖Hs ≤ C(‖GP ∗
σu‖Hs−k+1 + ‖Au‖Hs + ‖u‖H−N ).

Proof of Propositions 2.2-2.3. It suffices to prove that there exist Oj open with
L± ⊂ Oj+1 ⊂ Oj , ∩∞

j=1Oj = L±, and Aj , Bj , Gj with WF′ in Oj , Bj elliptic on L±,
such that the statements of the propositions hold. Indeed, in case of Proposition 2.2
the general case follows by taking j such that A,G are elliptic on Oj , use the
estimate for Aj , Bj , Gj , where the right hand side then can be estimated by A and
G, and then use microlocal ellipticity, propagation of singularities and a covering
argument to prove the proposition. In case of Proposition 2.3, the general case
follows by taking j such that G,B are elliptic on Oj , so all forward (or backward)
bicharacteristics from Oj\Λ± reach WF′(A), thus microlocal ellipticity, propagation
of singularities and a covering argument proves ‖Aju‖Hs ≤ C(‖GP ∗

σu‖Hs−k+1 +
‖Au‖Hs+‖u‖H−N ), and then the special case of the proposition for this Oj gives an
estimate for ‖Bju‖Hs in terms of the same quantities. The full estimate for ‖Bu‖Hs

is then again a straightforward consequence of microlocal ellipticity, propagation of
singularities and a covering argument.

We now consider commutants C∗
ǫCǫ with Cǫ ∈ Ψs−(k−1)/2−δ(X) for ǫ > 0,

uniformly bounded in Ψs−(k−1)/2(X) as ǫ → 0; with the ǫ-dependence used to
regularize the argument. More precisely, let

c = φ(ρ0)ρ̃
−s+(k−1)/2, cǫ = c(1 + ǫρ̃−1)−δ,

where φ ∈ C∞
c (R) is identically 1 near 0, φ′ ≤ 0 and φ is supported sufficiently close

to 0 so that

(2.14) ρ0 ∈ supp dφ ⇒ ∓ρ̃k−1
Hpρ0 > 0;

such φ exists by (2.4). Note that the sign of Hpρ̃
−s+(k−1)/2 depends on the sign of

−s+(k−1)/2 which explains the difference between s > (k−1)/2 and s < (k−1)/2
in Propositions 2.2-2.3 when there are no other contributions to the threshold value
of s. The contribution of the subprincipal symbol, however, shifts the critical value
(k − 1)/2.

Now let C ∈ Ψs−(k−1)/2(X) have principal symbol c, and have WF′(C) ⊂
suppφ ◦ ρ0, and let Cǫ = CSǫ, Sǫ ∈ Ψ−δ(X) uniformly bounded in Ψ0(X) for

ǫ > 0, converging to Id in Ψδ′(X) for δ′ > 0 as ǫ → 0, with principal symbol
(1 + ǫρ̃−1)−δ. Thus, the principal symbol of Cǫ is cǫ.

First, consider (2.11). Then

σ2s(ı(P
∗
σC

∗
ǫCǫ − C∗

ǫCǫPσ)) = σk−1(ı(P
∗
σ − Pσ))c

2
ǫ + 2cǫHpcǫ

= ∓2

(
−β̃ Imσβ0φ+ β0

(
−s+

k − 1

2

)
φ∓ (ρ̃k−1

Hpρ0)φ
′ + δβ0

ǫ

ρ̃+ ǫ
φ

)

φρ̃−2s(1 + ǫρ̃−1)−δ,

15Note the switch compared to Proposition 2.2! Also, β does not matter when Imσ = 0; we
define it here so that the two Propositions are consistent via dualization, which reverses the sign

of the imaginary part.
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so

∓σ2s(ı(P
∗
σC

∗
ǫCǫ − C∗

ǫCǫPσ))

≤ −2β0

(
s− k − 1

2
+ β̃ Imσ − δ

)
ρ̃−2s(1 + ǫρ̃−1)−δφ2

+ 2(∓ρ̃k−1
Hpρ0)ρ̃

−2s(1 + ǫρ̃−1)−δφ′φ.

(2.15)

Here the first term on the right hand side is negative if s−(k−1)/2+β Imσ−δ > 0

(since β̃ Imσ ≥ β Imσ by our definition of β), and this is the same sign as that
of φ′ term; the presence of δ (needed for the regularization) is the reason for the
appearance of m in the estimate. To avoid using the sharp G̊arding inequality, we
choose φ so that

√−φφ′ is C∞, and then

ı(P ∗
σC

∗
ǫCǫ − C∗

ǫCǫPσ) = −S∗
ǫ (B

∗B +B∗
1B1 +B∗

2,ǫB2,ǫ)Sǫ + Fǫ,

with B,B1, B2,ǫ ∈ Ψs(X), B2,ǫ uniformly bounded in Ψs(X) as ǫ → 0, Fǫ uniformly
bounded in Ψ2s−1(X), and σs(B) an elliptic multiple of φ(ρ0)ρ̃

−s. Computing the
pairing, using an extra regularization (insert a regularizer Λr ∈ Ψ−1(X), uniformly
bounded in Ψ0(X), converging to Id in Ψδ(X) to justify integration by parts, and
use that [Λr, P

∗
σ ] is uniformly bounded in Ψ1(X), converging to 0 strongly, cf. [50,

Lemma 17.1] and its use in [50, Lemma 17.2]) yields

〈ı(P ∗
σC

∗
ǫCǫ − C∗

ǫCǫPσ)u, u〉 = 〈ıC∗
ǫCǫu, Pσu〉 − 〈ıPσ, C

∗
ǫCǫu〉.

Using Cauchy-Schwartz on the right hand side, a standard functional analytic ar-
gument (see, for instance, Melrose [38, Proof of Proposition 7 and Section 9]) gives
an estimate for Bu, showing u is in Hs on the elliptic set of B, provided u is mi-
crolocally in Hs−δ. A standard inductive argument, starting with s − δ = m and
improving regularity by ≤ 1/2 in each step proves (2.11).

For (2.13), the argument is similar, but we want to change the sign of the first
term on the right hand side of (2.15), i.e. we want it to be positive. This is satisfied

if s − (k − 1)/2 + β Imσ − δ < 0 (since β̃ Imσ ≤ β Imσ by our definition of β in
Proposition 2.3), hence (as δ > 0) if s− (k− 1)/2+ β Imσ < 0, so regularization is
not an issue. On the other hand, φ′ now has the wrong sign, so one needs to make
an assumption on supp dφ, which is the Au term in (2.13). Since the details are
standard, see [38, Section 9], we leave these to the reader. �

Remark 2.4. Fixing a φ, it follows from the proof that the same φ works for (small)
smooth perturbations of Pσ, even if those perturbations do not preserve the event
horizon, namely even if (2.4) does not hold any more: only its implication, (2.14),
on supp dφ matters, which is stable under perturbations. Moreover, as the rescaled
Hamilton vector field ρ̃k−1

Hp is a smooth vector field tangent to the boundary of
the fiber-compactified cotangent bundle, i.e. a b-vector field, and as such depends
smoothly on the principal symbol, and it is non-degenerate radially by (2.3), the
weight, which provides the positivity at the radial points in the proof above, still
gives a positive Hamilton derivative for small perturbations. Since this proposition
thus holds for C∞ perturbations of Pσ (indeed, even pseudodifferential ones), and
this proposition is the only delicate estimate we use, and it is only marginally so,
we deduce that all the other results below also hold in this generality.



MICROLOCAL ASYMPTOTICALLY HYPERBOLIC AND KERR-DE SITTER 21

2.5. Complex absorption. Finally, one has propagation estimates for complex
absorbing operators, requiring a sign condition. (See for instance [43] and [15] in
the semiclassical setting; the changes are minor in the ‘classical’ setting.) First,
one can propagate regularity to WF′(Qσ) (of course, in the elliptic set of Qσ one
has a priori regularity). Namely, for all s and N , and for all A,B,G ∈ Ψ0(X) such
that q ≤ 0, resp. q ≥ 0, on WF′(G), and forward, resp. backward, bicharacteristics
of Pσ from WF′(B) reach the elliptic set of A, while remaining in the elliptic set of
G, one has the usual propagation estimates

‖Bu‖Hs ≤ C(‖G(Pσ − ıQσ)u‖Hs−k+1 + ‖Au‖Hs + ‖u‖H−N ).

Thus, for q ≥ 0 one can propagate regularity in the forward direction along the
Hamilton flow, while for q ≤ 0 one can do so in the backward direction.

On the other hand, one can propagate regularity away from the elliptic set of Qσ.
Namely, for all s and N , and for all B,G ∈ Ψ0(X) such that q ≤ 0, resp. q ≥ 0, on
WF′(G), and forward, resp. backward, bicharacteristics of Pσ from WF′(B) reach
the elliptic set of Qσ, while remaining in the elliptic set of G, one has the usual
propagation estimates

‖Bu‖Hs ≤ C(‖G(Pσ − ıQσ)u‖Hs−k+1 + ‖u‖H−N ).

Again, for q ≥ 0 one can propagate regularity in the forward direction along the
Hamilton flow, while for q ≤ 0 one can do so in the backward direction. At the
cost of reversing the signs of q, this also gives that for all s and N , and for all
B,G ∈ Ψ0(X) such that q ≥ 0, resp. q ≤ 0, on WF′(G), and forward, resp.
backward, bicharacteristics of Pσ from WF′(B) reach the elliptic set of Qσ, while
remaining in the elliptic set of G, one has the usual propagation estimates

‖Bu‖Hs ≤ C(‖G(P ∗
σ + ıQσ)u‖Hs−k+1 + ‖u‖H−N ).

Remark 2.5. As mentioned in the introduction, these complex absorption methods
could be replaced in specific cases, including all the specific examples we discuss
here, by adding a boundary Ỹ instead, provided that the Hamilton flow is well-
behaved relative to the base space, namely inside the characteristic set Hp is not
tangent to T ∗

Ỹ
X with orbits crossing T ∗

Ỹ
X in the opposite directions in Σ± in the

following way. If Ỹ is defined by ỹ which is positive on ‘our side’ U with U as
discussed at the beginning of Subsection 2.2, we need ±Hpỹ|Ỹ > 0 on Σ±. Then
the functional analysis described in [31, Proof of Theorem 23.2.2], see also [53,
Proof of Lemma 4.14], can be used to prove analogues of the results we give below

on X+ = {ỹ ≥ 0}. For instance, if one has a Lorentzian metric on X near Ỹ ,

and Ỹ is space-like, then (up to the sign) this statement holds with Σ± being the
two components of the characteristic set. However, in the author’s opinion, this
detracts from the clarity of the microlocal analysis by introducing projection to
physical space in an essential way.

2.6. Global estimates. Recall now that q ≥ 0 near Σ−, and q ≤ 0 on Σ+, and
recall our non-trapping assumptions, i.e. (2.8). Thus, we can piece together the es-
timates described earlier (elliptic, microhyperbolic, radial points, complex absorp-
tion) to propagate estimates forward in Σ− and backward in Σ+, thus away from Λ±

(as well as from one end of a bicharacteristic which intersects the elliptic set of q in
both directions). This yields that for any N , and for any s ≥ m > (k−1−β Imσ)/2,
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and for any A ∈ Ψ0(X) elliptic at Λ+ ∪ Λ−,

‖u‖Hs ≤ C(‖(Pσ − ıQσ)u‖Hs−k+1 + ‖Au‖Hm + ‖u‖H−N ).

This implies that for any s > m > (k − 1− β Imσ)/2,

(2.16) ‖u‖Hs ≤ C(‖(Pσ − ıQσ)u‖Hs−k+1 + ‖u‖Hm).

On the other hand, recalling that the adjoint switches the sign of the imaginary
part of the principal symbol and also that of the subprincipal symbol at the radial
sets, propagating the estimates in the other direction, i.e. backward in Σ− and
forward in Σ+, thus towards Λ±, from the elliptic set of q, we deduce that for any
N (which we take to satisfy s′ > −N) and for any s′ < (k − 1 + β Imσ)/2,

(2.17) ‖u‖Hs′ ≤ C(‖(P ∗
σ + ıQσ)u‖Hs′−k+1 + ‖u‖H−N ).

Note that the dual of Hs, s > (k−1−β Imσ)/2, is H−s = Hs′−k+1, s′ = k−1− s,
so s′ < (k − 1 + β Imσ)/2, while the dual of Hs−k+1, s > (k − 1 − β Imσ)/2, is

Hk−1−s = Hs′ , with s′ = k − 1 − s < (k − 1 + β Imσ)/2 again. Thus, the spaces
(apart from the residual spaces, into which the inclusion is compact) in the left,
resp. right, side of (2.17), are exactly the duals of those on the right, resp. left, side
of (2.16). Thus, by a standard functional analytic argument, see e.g. [31, Proof of
Theorem 26.1.7], namely dualization and using the compactness of the inclusion

Hs′ → H−N for s′ > −N , this gives the solvability of

(Pσ − ıQσ)u = f, s > (k − 1− β Imσ)/2,

for f in the annihilator in Hs−k+1 (via the duality between Hs−k+1 and H−s+k−1

induced by the L2-pairing) of the finite dimensional subspace Ker(Pσ + ıQ∗
σ) of

H−s+k−1 = Hs′ , and indeed elements of this finite dimensional subspace have wave
front set in Λ+ ∪Λ− and lie in ∩s′<(k−1+β Imσ)/2H

s′ . Thus, there is the usual real
principal type loss of one derivative relative to the elliptic problem, and in addition,
there are restrictions on the orders for which is valid.

In addition, one also has almost uniqueness by a standard compactness argument
(using the compactness of the inclusion of Hs into Hm for s > m), by (2.16),
namely not only is the space of f in the space as above is finite codimensional, but
the nullspace of Pσ − ıQσ on Hs, s > (k− 1− β Imσ)/2, is also finite dimensional,
and its elements are in C∞(X).

In order to analyze the σ-dependence of solvability of the PDE, we reformulate
our problem as a more conventional Fredholm problem. Thus, let P̃ be any operator
with principal symbol p− ıq; e.g. P̃ is Pσ0

− ıQσ0
for some σ0. Then consider

(2.18) X s = {u ∈ Hs : P̃ u ∈ Hs−k+1}, Ys = Hs−k+1,

with
‖u‖2X s = ‖u‖2Hs + ‖P̃ u‖2Hs−k+1 .

Note that X s only depends on the principal symbol of P̃ . Moreover, C∞(X) is
dense in X s; this follows by considering Rǫ ∈ Ψ−∞(X), ǫ > 0, such that Rǫ → Id in
Ψδ(X) for δ > 0, Rǫ uniformly bounded in Ψ0(X); thus Rǫ → Id strongly (but not
in the operator norm topology) onHs andHs−k+1. Then for u ∈ X s, Rǫu ∈ C∞(X)

for ǫ > 0, Rǫu → u in Hs and P̃Rǫu = RǫP̃ u + [P̃ , Rǫ]u, so the first term on the

right converges to P̃ u in Hs−k+1, while [P̃ , Rǫ] is uniformly bounded in Ψk−1(X),
converging to 0 in Ψk−1+δ(X) for δ > 0, so converging to 0 strongly as a map

Hs → Hs−k+1. Thus, [P̃ , Rǫ]u → 0 in Hs−k+1, and we conclude that Rǫu → u in
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X s. (In fact, X s is a first-order coisotropic space, more general function spaces of
this nature are discussed by Melrose, Vasy and Wunsch in [41, Appendix A].)

With these preliminaries,

Pσ − ıQσ : X s → Ys

is Fredholm for each σ with s ≥ m > (k − 1− β Imσ)/2, and is an analytic family
of bounded operators in this half-plane of σ’s.

Theorem 2.6. Let Pσ, Qσ be as above, and X s, Ys as in (2.18). If k−1−2s > 0,
let β = βinf , if k − 1− 2s < 0, let β = βsup. Then

Pσ − ıQσ : X s → Ys

is an analytic family of Fredholm operators on

(2.19) Cs = {σ ∈ C : Imσ > β−1(k − 1− 2s)}.
Thus, analytic Fredholm theory applies, giving meromorphy of the inverse pro-

vided the inverse exists for a particular value of σ.

Remark 2.7. Note that the Fredholm property means that P ∗
σ+ıQσ is also Fredholm

on the dual spaces; this can also be seen directly from the estimates. The analogue
of this remark also applies to the semiclassical discussion below.

2.7. Semiclassical estimates. For this reason, and also for wave propagation, we
also want to know the |σ| → ∞ asymptotics of Pσ−ıσ and P ∗

σ+ıQσ; here Pσ, Qσ are
operators with a large parameter. As discussed earlier, this can be translated into
a semiclassical problem, i.e. one obtains families of operators Ph,z, with h = |σ|−1,
and z corresponding to σ/|σ| in the unit circle in C. As usual, we multiply through
by hk for convenient notation when we define Ph,z:

Ph,z = hkPh−1z ∈ Ψk
~,cl(X).

From now on, we merely require Ph,z, Qh,z ∈ Ψk
~,cl(X). Then the semiclassical

principal symbol p~,z, z ∈ O ⊂ C, 0 /∈ O compact, which is a function on T ∗X, has
limit p at infinity in the fibers of the cotangent bundle, so is in particular real in
the limit. More precisely, as in the classical setting, but now ρ̃ made smooth at the
zero section as well (so is not homogeneous there), we consider

ρ̃kp~,z ∈ C∞(T
∗
X ×O);

then ρ̃kp~,z|S∗X×O = ρ̃kp, where S∗X = ∂T
∗
X. We assume that p~,z is real

when z is real. We shall be interested in Im z ≥ −Ch, which corresponds to
Imσ ≥ −C (recall that Imσ ≫ 0 is where we expect holomorphy). Note that when
Im z = O(h), Im p~,z still vanishes, as the contribution of Im z is semiclassically
subprincipal in view of the order h vanishing.

We write the semiclassical characteristic set of p~,z as Σ~; assume that

Σ~ = Σ~,+ ∪ Σ~,−, Σ~,+ ∩ Σ~,− = ∅,
Σ~,± are relatively open in Σ~, and

± Im p~,z ≥ 0 and ∓ q~,z ≥ 0 near Σ~,±.

Microlocal results analogous to the classical results also exist in the semiclassical

setting. In the interior of T
∗
X, i.e. in T ∗X, only the microlocal elliptic, microhyper-

bolic and complex absorption estimates are relevant. At L± ⊂ S∗X we in addition
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Figure 2. The components Σ~,± of the semiclassical characteris-

tic set in T
∗
X, which are now two-dimensional in the figure. The

cosphere bundle is the horizontal plane at the bottom of the pic-
ture; the intersection of this figure with the cosphere bundle is
what is shown on Figure 1. The submanifolds L± are still points,
with L− a source, L+ a sink. The red lines are bicharacteristics,

with the thick ones inside S∗X = ∂T
∗
X. The blue regions near

the edges show the absorbing region, i.e. the support of q. For
Ph,z − ıQh,z, the estimates are always propagated away from L±

towards the support of q, so in the direction of the Hamilton flow
in Σ~,−, and in the direction opposite of the Hamilton flow in Σ~,+;
for P ∗

h,z + ıQh,z, the directions are reversed.

need the analogue of Propositions 2.2-2.3. As these are the only non-standard es-
timates, though they are very similar to estimates of [54], where, however, only
global estimates were stated, we explicitly state these here and indicate the very
minor changes needed in the proof compared to Propositions 2.2-2.3.

Proposition 2.8. For all N , for s ≥ m > (k − 1 − β Imσ)/2, σ = h−1z, and for
all A,B,G ∈ Ψ0

~
(X) such that WF′

h(G) ∩ WF′
h(Qσ) = ∅, A elliptic at L±, and

forward (or backward) bicharacteristics from WF′
h(B) tend to L±, with closure in

the elliptic set of G, one has estimates

(2.20) Au ∈ Hm
h ⇒ ‖Bu‖Hs

h
≤ C(h−1‖GPh,zu‖Hs−k+1

h
+ h‖u‖H−N

h
),

where, as usual, GPh,zu ∈ Hs−k+1
h and u ∈ H−N

h are assumptions implied by the
right hand side.

Proposition 2.9. For s < (k − 1 − β Imσ)/2, for all N , σ = h−1z, and for all
A,B,G ∈ Ψ0

~
(X) such that WF′

h(G) ∩ WF′
h(Qσ) = ∅, B,G elliptic at L±, and

forward (or backward) bicharacteristics from WF′
h(B) \ L± reach WF′

h(A), while
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remaining in the elliptic set of G, one has estimates

(2.21) ‖Bu‖Hs
h
≤ C(h−1‖GP ∗

h,zu‖Hs−k+1

h
+ ‖Au‖Hs

h
+ h‖u‖H−N

h
).

Proof. We just need to localize in ρ̃ in addition to ρ0; such a localization in the
classical setting is implied by working on S∗X or with homogeneous symbols. We
achieve this by modifying the localizer φ in the commutant constructed in the proof
of Propositions 2.2-2.3. As already remarked, the proof is much like at radial points
in semiclassical scattering on asymptotically Euclidean spaces, studied by Vasy and
Zworski [54], but we need to be more careful about localization in ρ0 and ρ̃ as we
are assuming less about the structure.

First, note that L± is defined by ρ̃ = 0, ρ0 = 0, so ρ̃2+ρ0 is a quadratic defining
function of L±. Thus, let φ ∈ C∞

c (R) be identically 1 near 0, φ′ ≤ 0 and φ supported
sufficiently close to 0 so that

ρ̃2 + ρ0 ∈ supp dφ ⇒ ∓ρ̃k−1(Hpρ0 + 2ρ̃Hpρ̃) > 0

and

ρ̃2 + ρ0 ∈ suppφ ⇒ ∓ρ̃k−2
Hpρ̃ > 0.

Such φ exists by (2.3) and (2.4) as

∓ρ̃(Hpρ0 + 2ρ̃Hpρ̃) ≥ β1ρ0 + 2β0ρ̃
2 −O((ρ̃2 + ρ0)

3/2).

Then let c be given by

c = φ(ρ0 + ρ̃2)ρ̃−s+(k−1)/2, cǫ = c(1 + ǫρ̃−1)−δ.

The rest of the proof proceeds exactly as for Propositions 2.2-2.3. �

We first show that under extra assumptions, giving semiclassical ellipticity for
Im z bounded away from 0, we have non-trapping estimates. So assume that for
| Im z| > ǫ > 0, p~,z is semiclassically elliptic on T ∗X (but not necessarily at S∗X =

∂T
∗
X, where the standard principal symbol p already describes the behavior). Also

assume that ± Im p~,z ≥ 0 near the classical characteristic set Σ~,± ⊂ S∗X. Then
the semiclassical version of the classical results (with ellipticity in T ∗X making
these trivial except at S∗X) apply. Let Hs

h denote the usual semiclassical function
spaces. Then, on the one hand, for any s ≥ m > (k − 1− β Im z/h)/2, h < h0,

(2.22) ‖u‖Hs
h
≤ Ch−1(‖(Ph,z − ıQh,z)u‖Hs−k+1

h
+ h2‖u‖Hm

h
),

and on the other hand, for any N and for any s < (k − 1 + β Im z/h)/2, h < h0,

(2.23) ‖u‖Hs
h
≤ Ch−1(‖(P ∗

h,z + ıQh,z)u‖Hs−k+1

h
+ h2‖u‖H−N

h
).

The h2 term can be absorbed in the left hand side for sufficiently small h, so we
automatically obtain invertibility of Ph,z − ıQh,z.

In particular, Ph,z− ıQh,z is invertible for z = ı and h small, i.e. Pσ− ıQσ is such
for σ pure imaginary with large positive imaginary part, proving the meromorphy
of Pσ − ıQσ under these extra assumptions. Note also that for instance

‖u‖2H1

|σ|−1
= ‖u‖2L2 + |σ|−2‖du‖2L2 , ‖u‖H0

|σ|−1
= ‖u‖L2 ,

(with the norms with respect to any positive definite inner product).
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Theorem 2.10. Let Pσ, Qσ, β, Cs be as above, and X s, Ys as in (2.18). Then,
for σ ∈ Cs,

Pσ − ıQσ : X s → Ys

has a meromorphic inverse

R(σ) : Ys → X s.

Moreover, for all ǫ > 0 there is C > 0 such that it is invertible in Imσ > C+ǫ|Reσ|,
and non-trapping estimates hold:

‖R(σ)f‖Hs

|σ|−1
≤ C ′|σ|−k+1‖f‖Hs−1

|σ|−1
.

To deal with estimates for z (almost) real, we need additional assumptions. We
make the non-trapping assumption into a definition:

Definition 2.11. We say that p~,z − ıq~,z is semiclassically non-trapping if the
bicharacteristics from any point in Σ~ \ (L+ ∪L−) flow to ell(q~,z)∪L+ (i.e. either
enter ell(q~,z) at some finite time, or tend to L+) in the forward direction, and to
ell(q~,z) ∪ L− in the backward direction.

Remark 2.12. The part of the semiclassically non-trapping property on S∗X is
just the classical non-trapping property; thus, the point is its extension into to the

interior T ∗X of T
∗
X. Since the classical principal symbol is assumed real, there

did not need to be any additional restrictions on Im p~,z there.

The semiclassical version of all of the above estimates are then applicable for
Im z ≥ −Ch, and one obtains on the one hand that for any s ≥ m > (k − 1 −
β Im z/h)/2, h < h0,

(2.24) ‖u‖Hs
h
≤ Ch−1(‖(Ph,z − ıQh,z)u‖Hs−k+1

h
+ h2‖u‖Hm

h
),

On the other hand, for any N and for any s < (k − 1 + β Im z/h)/2, h < h0,

(2.25) ‖u‖Hs
h
≤ Ch−1(‖(P ∗

h,z + ıQh,z)u‖Hs−k+1

h
+ h2‖u‖H−N

h
),

The h2 term can again be absorbed in the left hand side for sufficiently small h, so
we automatically obtain invertibility of Ph,z − ıQh,z.

Translated into the classical setting this gives

Theorem 2.13. Let Pσ, Qσ, Cs, β be as above, in particular semiclassically non-
trapping, and X s, Ys as in (2.18). Let C > 0. Then there exists σ0 such that

R(σ) : Ys → X s,

is holomorphic in {σ : Imσ > −C, |Reσ| > σ0}, assumed to be a subset of Cs,
and non-trapping estimates

‖R(σ)f‖Hs

|σ|−1
≤ C ′|σ|−k+1‖f‖Hs−k+1

|σ|−1

hold. For s = 1, k = 2 this states that for |Reσ| > σ0, Imσ > −C,

‖R(σ)f‖2L2 + |σ|−2‖dR(σ)‖2L2 ≤ C ′′|σ|−2‖f‖2L2 .

Analogous results work for other Sobolev spaces; H1
h was chosen above for sim-

plicity.
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Remark 2.14. We emphasize that if semiclassical non-trapping assumptions are
made, but not ellipticity for z non-real, meromorphy still follows by taking h small
and z > 0, say, to get a point of invertibility. This is useful because one can
eliminate the need to conjugate by a factor to induce such ellipticity when the
resulting estimate is irrelevant. (Mostly estimates in strips for h−1z, i.e. O(h)
estimates for z, matter.) However, there is a cost: while only finitely many poles
can lie in any strip | Imσ| < C, there is no need for this statement to hold if we
allow Imσ > −C. Since, for the application to the wave equation, Imσ depends
on the a priori growth rate of the solution u which we are Mellin transforming, this
would mean that depending on the a priori growth rate one could get more (faster
growing) terms in the expansion of u if one relaxes the growth condition on u.

While we stated just the global results here, of course one has microlocal esti-
mates for the solution. In particular we have the following, stated in the semiclas-
sical language, as immediate from the estimates used to derive from the Fredholm
property:

Theorem 2.15. Let Pσ, Qσ, β be as above, in particular semiclassically non-
trapping, and X s, Ys as in (2.18).

For Re z > 0 and s′ > s, the resolvent Rh,z is semiclassically outgoing with a loss

of h−1 in the sense that if α ∈ T
∗
X∩Σ~,±, and if for the forward (+), resp. backward

(−), bicharacteristic γ±, from α, WFs′−k+1
h (f) ∩ γ± = ∅ then α /∈ WFs′

h (hRh,zf).

In fact, for any s′ ∈ R, the resolvent Rh,z extends to f ∈ Hs′

h (X), with non-
trapping bounds, provided that WFs

h(f) ∩ (L+ ∪ L−) = ∅. The semiclassically
outgoing with a loss of h−1 result holds for such f and s′ as well.

Proof. The only part that is not immediate by what has been discussed is the last
claim. This follows immediately, however, by microlocal solvability in arbitrary
ordered Sobolev spaces away from the radial points (i.e. solvability modulo C∞,
with semiclassical estimates), combined with our preceding results to deal with this
smooth remainder plus the contribution near L+ ∪L−, which are assumed to be in
Hs

h(X). �

This result is needed for gluing constructions as in [15], namely polynomially
bounded trapping with appropriate microlocal geometry can be glued to our re-
solvent. Furthermore, it gives non-trapping estimates microlocally away from the
trapped set provided the overall (trapped) resolvent is polynomially bounded as
shown by Datchev and Vasy [16].

Definition 2.16. Suppose K± ⊂ T ∗X is compact, and O± is a neighborhood of
K with compact closure and O± ∩ Σ~ ⊂ Σ~,±. We say that p~,z is semiclassically
locally mildly trapping of order κ in a C0-strip if

(i) there is a function16 F ∈ C∞(T ∗X), F ≥ 2 on K±, F ≤ 1 on T ∗X \ O±,
and for α ∈ (O± \K±) ∩ Σ~,±, (Hp~,z

F )(α) = 0 implies (H2
p~,z

F )(α) < 0;
and

16 For ǫ > 0, such a function F provides an escape function, F̃ = e−CF
Hp~,z

F on the set

where 1 + ǫ ≤ F ≤ 2 − ǫ. Namely, by taking C > 0 sufficiently large, Hp~,z
F̃ < 0 there; thus,

every bicharacteristic must leave the compact set F−1([1 + ǫ, 2− ǫ]) in finite time. However, the
existence of such an F is a stronger statement than that of an escape function: a bicharacteristic
segment cannot leave F−1([1 + ǫ, 2 − ǫ]) via the boundary F = 2 − ǫ in both directions since F

cannot have a local minimum. This is exactly the way this condition is used in [15].
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(ii) there exists Q̃h,z ∈ Ψ~(X) with WF′
h(Q̃h,z)∩K± = ∅, ∓q̃~,z ≥ 0 near Σ~,±,

q̃~,z elliptic on Σ~ \ (O+ ∪ O−) and h0 > 0 such that if Im z > −C0h and
h < h0 then

(2.26) ‖(Ph,z − ıQ̃h,z)
−1f‖Hs

h
≤ Ch−κ−1‖f‖Hs−k+1

h
, f ∈ Hs−k+1

h .

We say that p~,z − ıq~,z is semiclassically mildly trapping of order κ in a C0-
strip if it is semiclassically locally mildly trapping of order κ in a C0-strip and if the
bicharacteristics from any point in Σ~,+ \ (L+ ∪K+) flow to {q~,z < 0}∪O+ in the
backward direction and to {q~,z < 0}∪O+ ∪L+ in the forward direction, while the
bicharacteristics from any point in Σ~,− \ (L− ∪K−) flow to {q~,z > 0} ∪O− ∪L−

in the backward direction and to {q~,z > 0} ∪O− in the forward direction.

An example17 of locally mild trapping is hyperbolic trapping, studied by Wunsch
and Zworski [58], which is of order κ for some κ > 0. Note that (i) states that the
sets Kc = {F ≥ c}, 1 < c < 2, are bicharacteristically convex in O±, for by (i) any
critical points of F along a bicharacteristic are strict local maxima.

As a corollary, we have:

Theorem 2.17. Let Pσ, Qσ, Cs, β be as above, satisfying mild trapping assump-
tions with order κ estimates in a C0-strip, and X s, Ys as in (2.18). Then there
exists σ0 such that

R(σ) : Ys → X s,

is holomorphic in {σ : Imσ > −C0, |Reσ| > σ0}, assumed to be a subset of Cs,
and

(2.27) ‖R(σ)f‖Hs

|σ|−1
≤ C ′|σ|κ−k+1‖f‖Hs−k+1

|σ|−1

.

Further, if one has logarithmic loss in (2.26), i.e. if h−κ can be replaced by log(h−1),
for σ ∈ R, (2.27) also holds with a logarithmic loss, i.e. |σ|κ can be replaced by
log |σ| for σ real.

Proof. This is an almost immediate consequence of [15]. To get into that setting,
we replace Qh,z by Q′

h,z with WF′
h(Qh,z − Q′

h,z) ⊂ O+ ∪ O− and Q′
h,z elliptic

on K+ ∪ K−, with ∓q′
~,z ≥ 0 on Σ~,±. Then Ph,z − ıQ′

h,z is semiclassically non-
trapping in the sense discussed earlier, so all of our estimates apply. With the
polynomial resolvent bound assumption on Ph,z − ıQ̃h,z, and the function F in
place of x used in [15], the results of [15] apply, taking into account Theorem 2.15
and [15, Lemma 5.1]. Note that the results of [15] are stated in a slightly different
context for convenience, namely the function x is defined on the manifold X and
not on T ∗X, but this is a minor issue: the results and proofs apply verbatim in our
setting. �

17Condition (i) follows by letting F̃ = ϕ2κ
+ + ϕ2κ

−
with the notation of [58, Lemma 4.1]; so

H
2
pF̃ = 4κ2

(

(c4+ − κ−1c+Hpc+)ϕ2κ
+ + 4κ2

(

(c4− + κ−1c−Hpc−)ϕ2κ
−

near the trapped set, ϕ+ = 0 = ϕ−. Thus, for sufficiently large κ, HpF̃ > 0 outside F̃ = 0. Since

F̃ = 0 defines the trapped set, in order to satisfy Definition 2.16, writing K and O instead of K±

and O±, one lets K = {F̃ ≤ α}, O = {F̃ < β} for suitable (small) α and β, α < β, and takes

F = G ◦ F̃ with G strictly decreasing, G|[0,α] > 2, G|[β,∞) < 1.
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3. Mellin transform and Lorentzian b-metrics

3.1. The Mellin transform. In this section we discuss the basics of Melrose’s
b-analysis on an n-dimensional manifold with boundary M̄ , where the boundary
is denoted by X. We refer to [42] as a general reference. In the main cases of
interest here, the b-geometry is trivial, and M̄ = X × [0,∞)τ with respect to
some (almost) canonical (to the problem) product decomposition. Thus, the reader
should feel comfortable in trivializing all the statements below with respect to
this decomposition. In this trivial case, the main result on the Mellin transform,
Lemma 3.1 is fairly standard, with possibly different notation of the function spaces;
we include it here for completeness.

First, recall that the Lie algebra of b-vector fields, Vb(M̄) consists of C∞ vector
fields on M̄ tangent to the boundary. In local coordinates (τ, y), such that τ is a

boundary defining function, they are of the form anτ∂τ +
∑n−1

j=1 aj∂yj
, with aj arbi-

trary C∞ functions. Correspondingly, they are the set of all smooth sections of a C∞

vector bundle, bTM̄ , with local basis τ∂τ , ∂y1
, . . . , ∂yn−1

. The dual bundle, bT ∗M̄ ,

thus has a local basis given by dτ
τ , dy1, . . . , dyn−1. All tensorial constructions, such

as form and density bundles, go through as usual.
The natural bundles related to the boundary are reversed in the b-setting. Thus,

the b-normal bundle of the boundary X is well-defined as the span of τ∂τ defined
using any coordinates, or better yet, as the kernel of the natural map ι : bTmM̄ →
TmM̄ , m ∈ X, induced via the inclusion Vb(M̄) → V(M̄), so

anτ∂τ +
n−1∑

j=1

aj∂yj
7→

n−1∑

j=1

aj∂yj
, aj ∈ R.

Its annihilator in bT ∗
mM̄ is called the b-cotangent bundle of the boundary; in local

coordinates (τ, y) it is spanned by dy1, . . . , dyn−1. Invariantly, it is the image of
T ∗
mM̄ in bT ∗

mM̄ under the adjoint of the tangent bundle map ι; as this has kernel
N∗

mX, bT ∗
mM̄ is naturally identified with T ∗

mX = T ∗
mM̄/N∗

mX.
The algebra of differential operators generated by Vb(M̄) over C∞(M̄) is denoted

Diffb(M̄); in local coordinates as above, elements of Diffk
b(M̄) are of the form

P =
∑

j+|α|≤k

ajα(τDτ )
jDα

y

in the usual multiindex notation, α ∈ Nn−1, with ajα ∈ C∞(M̄). Writing b-
covectors as

σ
dτ

τ
+

n−1∑

j=1

ηj dyj ,

we obtain canonically dual coordinates to (τ, y), namely (τ, y, σ, η) are local coor-
dinates on bT ∗M̄ . The principal symbol of P is

(3.1) p̃ = σb,k(P) =
∑

j+|α|=k

ajασ
jηα;

it is a C∞ function, which is a homogeneous polynomial of degree k in the fibers,
on bT ∗M̄ . Its Hamilton vector field, Hp̃, is a C∞ vector field, which is just the
extension of the standard Hamilton vector field from M̄◦, is homogeneous of degree
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k − 1, on bT ∗M̄ , and it is tangent to bT ∗
XM̄ . Explicitly, as a change of variables

shows, in local coordinates,

(3.2) Hp̃ = (∂σ p̃)(τ∂τ ) +
∑

j

(∂ηj
p̃)∂yj

− (τ∂τ p̃)∂σ −
∑

j

(∂yj
p̃)∂ηj

,

so the restriction of Hp̃ to τ = 0 is

(3.3) Hp̃|bT∗
X
M̄ =

∑

j

(∂ηj
p̃)∂yj

−
∑

j

(∂yj
p̃)∂ηj

,

and is thus tangent to the fibers (identified with T ∗X) of bT ∗
XM over bT ∗

XM/T ∗X
(identified with Rσ).

We next want to define normal operator18 of P ∈ Diffk
b(M̄), obtained by freezing

coefficients at X = ∂M̄ . To do this naturally, we want to extend the ‘frozen
operator’ to one invariant under dilations in the fibers of the inward pointing normal
bundle +N(X) of X; see [42, Equation (4.91)]. The latter can always be trivialized
by the choice of an inward-pointing vector field V , which in turn fixes the differential
of a boundary defining function τ at X by V τ |X = 1; given such a choice we can
identify +N(X) with a product

M̄∞ = X × [0,∞)τ ,

with the normal operator being invariant under dilations in τ . Then for m = (x, τ),
bTmM̄∞ is identified with bT(x,0)M̄ .

On M̄∞ operators of the form
∑

j+|α|≤k

ajα(y)(τDτ )
jDα

y ,

i.e. ajα ∈ C∞(X), are invariant under the R+-action on [0,∞)τ ; its elements are

denoted by Diffb,I(M̄∞). The normal operator of P ∈ Diffk
b(M̄) is given by freezing

the coefficients at X:

N(P) =
∑

j+|α|≤k

ajα(0, y)(τDτ )
jDα

y ∈ Diffk
b,I(M̄∞).

The normal operator family is then defined as

N̂(P)(σ) = Pσ =
∑

j+|α|≤k

ajα(0, y)σ
jDα

y ∈ Diffk
b,I(M̄∞).

Note also that we can identify a neighborhood of X in M̄ with a neighborhood of
X ×{0} in M̄∞ (this depends on choices), and then transfer P to an operator (still
denoted by P) on M̄∞, extended in an arbitrary smooth manner; then P−N(P) ∈
τDiffk

b(M̄∞).
The principal symbol p of the normal operator family, including in the high

energy (or, after rescaling, semiclassical) sense, is given by σb,k(P)|bT∗
X
M̄ . Corre-

spondingly, the Hamilton vector field, including in the high-energy sense, of p is
given by Hσb,k(P)|bT∗

X
M̄ ; see (3.3). It is useful to note that via this restriction we

drop information about Hσb,k(P) as a b-vector field, namely the τ∂τ component
is neglected. Correspondingly, the dynamics (including at high energies) for the
normal operator family is the same at radial points of the Hamilton flow regardless
of the behavior of the τ∂τ component, thus whether on bS∗M̄ = (bT ∗M̄ \ o)/R+,

18In fact, P ∈ Ψk
b(M̄) works similarly.
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with the τ variable included, we have a source/sink, or a saddle point, with the
other (stable/unstable) direction being transversal to the boundary. This is re-
flected by the same normal operator family showing up in both de Sitter space
and in Minkowski space, even though in de Sitter space (and also in Kerr-de Sitter
space) in the full b-sense the radial points are saddle points, while in Minkowski
space they are sources/sinks (with a neutral direction along the conormal bundle
of the event horizon/light cone inside the boundary in both cases).

We now translate our results to solutions of (P − ıQ)u = f when Pσ − ıQσ

is the normal operator family of the b-operator P − ıQ. A typical application is
when P = �g is the d’Alembertian of a Lorentzian b-metric on M̄ , discussed in
Subsection 3.2.

Thus, consider the Mellin transform in τ , i.e. consider the map

(3.4) M : u 7→ û(σ, .) =

∫ ∞

0

τ−ıσu(τ, .)
dτ

τ
,

with inverse transform

(3.5) M−1 : v 7→ v̌(τ, .) =
1

2π

∫

R+ıα

τ ıσv(σ, .) dσ,

with α chosen in the region of holomorphy. Note that for polynomially bounded
(in τ) u (with values in a space, such as C∞(X), L2(X), C−∞(X)), for u supported
near τ = 0, Mu is holomorphic in Imσ > C, C > 0 sufficiently large, with values
in the same space (such as C∞(X), etc). We discuss more precise statements below.
The Mellin transform is described in detail in [42, Section 5], but it is also merely
a renormalized Fourier transform, so the results below are simply those for the
Fourier transform (often of Paley-Wiener type) after suitable renormalization.

First, Plancherel’s theorem is that if ν is a smooth non-degenerate density on X
and rc denotes restriction to the line Imσ = c, then

(3.6) r−α ◦M : ταL2(X × [0,∞);
|dτ |
τ

ν) → L2(R;L2(X; ν))

is an isomorphism. We are interested in functions u supported near τ = 0, in which
case, with r(c1,c2) denoting restriction to the strip c1 < Imσ < c2, for N > 0,

r−α,−α+N ◦M : τα(1 + τ)−NL2(X × [0,∞);
|dτ |
τ

ν)

→
{
v : R× ı(−α,−α+N) ∋ σ → v(σ) ∈ L2(X; ν);

v is holomorphic in σ and sup
−α<r<−α+N

‖v(.+ ır, .)‖L2(R;L2(X;ν)) < ∞
}
,

(3.7)

see [42, Lemma 5.18]. Note that in accordance with (3.6), v in (3.7) extends con-
tinuously to the boundary values, r = −α and r = −α−N , with values in the same
space as for holomorphy. Moreover, for functions supported in, say, τ < 1, one can
take N arbitrary.

Analogous results also hold for the b-Sobolev spaces Hs
b(X × [0,∞)). For s ≥ 0,

these can be defined as in [42, Equation (5.41)]:

r−α ◦M : ταHs
b(X × [0,∞);

|dτ |
τ

ν)

→
{
v ∈ L2(R;Hs(X; ν)) : v ∈ (1 + |σ|2)s/2v ∈ L2(R;L2(X; ν))

}
,
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with the analogue of (3.7) also holding; for s < 0 one needs to use the appropriate
dual statements. See also [42, Equations (5.41)-(5.42)] for differential versions for
integer order spaces.

If P − ıQ is invariant under dilations in τ on M̄∞ = X × [0,∞) then N(P − ıQ)
can be identified with P − ıQ and we have the following simple lemma:

Lemma 3.1. Suppose P − ıQ is invariant under dilations in τ for functions sup-
ported near τ = 0, and the normal operator family N̂(P−ıQ) is of the form Pσ−ıQσ

satisfying the conditions of Section 2, including semiclassical non-trapping. Let σj

be the poles of the meromorphic family (Pσ− ıQσ)
−1. Then for ℓ < β−1(2s−k+1),

ℓ 6= − Imσj for any j, (P − ıQ)u = f , u tempered, supported near τ = 0,

f ∈ τ ℓHs−k+1
b (M̄∞), u has an asymptotic expansion

(3.8) u =
∑

j

∑

κ≤mj

τ ıσj (log |τ |)κajκ + u′

with ajk ∈ C∞(X) and u′ ∈ τ ℓHs
b(M̄∞).

If instead N(P − ıQ) is semiclassically mildly trapping of order κ in a C0-strip

then for ℓ < C0 and f ∈ τ ℓHs−k+1+κ

b (M̄∞) one has

(3.9) u =
∑

j

∑

κ≤mj

τ ıσj (log |τ |)κajκ + u′

with ajk ∈ C∞(X) and u′ ∈ τ ℓHs
b(M̄∞).

Conversely, given f in the indicated spaces, with f supported near τ = 0, a
solution u of (P − ıQ)u = f of the form (3.8), resp. (3.9), supported near τ = 0
exists.

In either case, the coefficients ajκ are given by the Laurent coefficients of (P −
ıQ)−1 at the poles σj applied to f , with simple poles corresponding to mj = 0.

If f =
∑

j

∑
κ≤m′

j
ταj (log |τ |)κbjκ + f ′, with f ′ in the spaces indicated above for

f , and bjk ∈ Hs−k+1(X), analogous results hold when the expansion of f is added
to the form of (3.8) and (3.9), in the sense of the extended union of index sets, see
[42, Section 5.18].

For P∗ + ıQ in place of P − ıQ, analogous results apply, but we need ℓ <
−β−1(2s− k + 1).

Remark 3.2. Thus, for P − ıQ, the more terms we wish to obtain in an expansion,
the better Sobolev space we need to work in. For P∗+ ıQ, dually, we need to be in
a weaker Sobolev space under the same circumstances. However, these spaces only
need to be worse at the radial points, so under better regularity assumptions on
f we still get the expansion in better Sobolev spaces away from the radial points
— in particular in elliptic regions. This is relevant in our description of Minkowski
space.

Proof. First consider the expansion. Suppose α, r ∈ R are such that u ∈ ταHr
b(M̄∞)

and Pσ − ıQσ has no poles in Imσ ≥ −α; note that the vanishing of u for τ > 1
means that this can be arranged, and then also u ∈ τα(1+τ)−NHr

b(M̄∞) for all N .
The Mellin transform of the PDE, a priori in Imσ ≥ −α, is (Pσ − ıQσ)Mu = Mf .
Thus,

(3.10) Mu = (Pσ − ıQσ)
−1Mf
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there. If f ∈ τ ℓHs−k+1
b (M̄∞), then shifting the contour of integration to Imσ = −ℓ,

we obtain contributions from the poles of (Pσ−ıQσ)
−1, giving the expansion in (3.8)

and (3.9) by Cauchy’s theorem. The error term u′ is what one obtains by integrating
along the new contour in view of the high energy bounds on (Pσ − ıQσ)

−1 (which
differ as one changes one’s assumption from non-trapping to mild trapping), and
the assumptions on f .

Conversely, to obtain existence, let α < min(ℓ,− sup Imσj) and define u ∈
ταHs

b(M̄∞) by (3.10) using the inverse Mellin transform with Imσ = −α. Then u
solves the PDE, hence the expansion follows by the first part of the argument. The
support property of u follows from Paley-Wiener, taking into account holomorphy
in Imσ > −α, and the estimates on Mf and (Pσ − ıQσ)

−1 there. �

One can iterate this to obtain a full expansion even when P − ıQ is not dilation
invariant. Note that in most cases considered below, Lemma 3.1 suffices; the ex-
ception is if we allow general, non-stationary, b-perturbations of Kerr-de Sitter or
Minkowski metrics.

Proposition 3.3. Suppose (P − ıQ)u = f , and the normal operator family N̂(P −
ıQ) is of the form Pσ − ıQσ satisfying the conditions of Section 2, including semi-
classical non-trapping. Then for ℓ < β−1(2(s − |ℓ − α|) − k + 1), ℓ /∈ − Imσj + N

for any j, u ∈ ταHr
b(M̄∞) supported near 0, (P − ıQ)u = f , f ∈ τ ℓHs−k+1

b (M̄∞),
u has an asymptotic expansion

(3.11) u =
∑

j

∑

l

∑

κ≤mjl

τ ıσj+l(log |τ |)κajκl + u′

with ajk ∈ C∞(X) and u′ ∈ τ ℓH
s−[ℓ−α]
b (M̄∞), [ℓ−α] being the integer part of ℓ−α.

If instead N(P − ıQ) is semiclassically mildly trapping of order κ in a C0-strip

then for ℓ < C0 and f ∈ τ ℓHs−k+1+κ

b (M̄∞) one has

(3.12) u =
∑

j

∑

l

∑

κ≤mjl

τ ıσj+l(log |τ |)κajκl + u′

with ajkl ∈ C∞(X) and u′ ∈ τ ℓH
s−[ℓ−α]
b (M̄∞).

If f =
∑

j

∑
κ≤m′

j
ταj (log |τ |)κbjκ + f ′, with f ′ in the spaces indicated above for

f , and bjk ∈ Hs−k+1(X), analogous results hold when the expansion of f is added
to the form of (3.11) and (3.12) in the sense of the extended union of index sets,
see [42, Section 5.18].

If σb,k(P − ıQ) vanishes on the characteristic set of N(P − ıQ) to infinite order
in Taylor series at τ = 0, then there are no losses in the order of u′, i.e. one can

replace u′ ∈ τ ℓH
s−[ℓ−α]
b (M̄∞) by u′ ∈ τ ℓHs

b(M̄∞), and ℓ < β−1(2(s−|ℓ−α|)−k+1)
by ℓ < β−1(2s− k + 1), giving the same form as in Lemma 3.1.

Conversely, under the characteristic assumption in the previous paragraph, given
f in the indicated spaces, with f supported near τ = 0, a solution u of (P − ıQ)u =

f +f ♯ of the form (3.8), resp. (3.9), f ♯ ∈ τ∞Hs−k+1
b (M̄∞), resp. Hs−k+1+κ

b (M̄∞),
supported near τ = 0, exists.

Remark 3.4. The losses in the regularity of u′ without further assumptions are
natural due to the lack of ellipticity. Specifically, if, for instance, u is conormal to
a hypersurface S transversal to X, as is the case in many interesting examples, the
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orbits of the R+-action on M̄∞ must be tangent to S to avoid losses of regularity
in the Taylor series expansion.

In particular, there are no losses if (P − ıQ) − N(P − ıQ) ∈ τDiffk−1
b (M̄∞),

rather than merely in τDiffk
b(M̄∞).

We only stated the converse result under the extra characteristic assumption to
avoid complications with the Sobolev orders. Global solvability depends on more
than the normal operator, which is why we do not state such a result here.

Proof. One proceeds as in Lemma 3.1, Mellin transforming the problem, but re-
placing P − ıQ by N(P − ıQ). Note that (P − ıQ) − N(P − ıQ) ∈ τDiffk

b(M̄∞).
We treat

f̃ = ((P − ıQ)−N(P − ıQ))u

as part of the right hand side, subtracting it from f , so

N(P − ıQ)u = f − f̃ .

If u ∈ ταHr
b(M̄∞) is supported near 0, then f̃ ∈ τα+1Hr

b(M̄∞), so Lemma 3.1 is
applicable with ℓ replaced by min(ℓ, α+1). If ℓ ≤ α+1, we are done, otherwise we
repeat the argument. Indeed, we now know that u is given by an expansion giving
rise to poles of Mu in Imσ > α + 1 plus an element of τα+1Hs

b(M̄∞), so we also

have better information on f̃ , namely it is also given by a partial expansion, plus an
element of τα+2Hs−k

b (M̄∞), or indeed τα+2Hs−k+1
b (M̄∞) under the characteristic

assumption on P − ıQ. Using the f with a partial expansion part of Lemma 3.1 to
absorb the ũ terms, we can work with ℓ replaced by min(ℓ, α + 2). It is this step
that starts generating the sum over l in (3.11) and (3.12). The iteration stops in a
finite number of steps, completing the proof.

For the existence, define a zeroth approximation u0 to u using N(P − ıQ) in

Lemma 3.1, and iterate away the error f̃ = ((P − ıQ)u − N(P − ıQ))u0 − f in
Taylor series. �

3.2. Lorentzian metrics. We now review common properties of Lorentzian b-
metrics g on M̄ . Lorentzian b-metrics are symmetric non-degenerate bilinear forms
on bTmM̄ , m ∈ M̄ , of signature (1, n−1), i.e. the maximal dimension of a subspace
on which g is positive definite is exactly 1, which depend smoothly on m. In other
words, they are symmetric sections of bT ∗M̄ ⊗ bT ∗M̄ which are in addition non-
degenerate of Lorentzian signature. Usually it is more convenient to work with
the dual metric G, which is then a symmetric section of bTM̄ ⊗ bTM̄ which is in
addition non-degenerate of Lorentzian signature.

By non-degeneracy there is a nowhere vanishing b-density associated to the met-

ric, |dg|, which in local coordinates (τ, y) is given by
√
| det g| |dτ |τ |dy|, and which

gives rise to a Hermitian (positive definite!) inner product on functions. There is
also a non-degenerate, but not positive definite, inner product on the fibers of the
b-form bundle, bΛM̄ , and thus, when combined with the aforementioned Hermitian
inner product on functions, an inner product on differential forms which is not pos-
itive definite only due to the lack of definiteness of the fiber inner product. Thus,
A∗ is defined, as a formal adjoint, for any differential operator A ∈ Diffk

b(M̄ ; bΛM̄)
acting on sections of the b-form bundle, such as the exterior derivative, d. Thus, g
gives rise to the d’Alembertian,

�g = d∗d+ dd∗ ∈ Diff2
b(M̄ ; ΛM̄),
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which preserves form degrees. The d’Alembertian on functions is also denoted by
�g. The principal symbol of �g is

σb,2(�g) = G.

As discussed above, the normal operator of �g on M̄ is N(�g) ∈ Diffb,I(M̄∞),
M̄∞ = X × [0,∞)τ . If M̄ = M̄∞ (i.e. it is a product space to start with) and if
�g already has this invariance property under a product decomposition, then the
normal operator can be identified with �g itself. Taking the Mellin transform in τ ,
we obtain a family of operators, Pσ, on X, depending analytically on σ, the b-dual
variable of τ . The semiclassical principal symbol of Ph,z = h2Ph−1z is just the dual
metric G on the complexified cotangent bundle b,CT ∗

mM̄ , m = (x, τ), evaluated on
covectors ̟ + z dτ

τ , where ̟ is in the (real) span Π of the ‘spatial variables’ T ∗
xX;

thus Π and dτ
τ are linearly independent. In general,

〈̟ + z
dτ

τ
,̟ + z

dτ

τ
〉G

= 〈̟ +Re z
dτ

τ
,̟ +Re z

dτ

τ
〉G − (Im z)2〈dτ

τ
,
dτ

τ
〉G

+ 2ı Im z〈̟ +Re z
dτ

τ
,
dτ

τ
〉G.

(3.13)

For Im z 6= 0, the vanishing of the imaginary part states that 〈̟+Re z dτ
τ , dτ

τ 〉G = 0;
the real part is the first two terms on the right hand side of (3.13).

In the setting of Subsection 2.7 we want that when Im z 6= 0 and Im p~,z vanishes

then Re p~,z does not vanish, i.e. that on the orthocomplement of the span of dτ
τ

the metric should have the opposite sign as that of 〈dττ , dτ
τ 〉G. For a Lorentzian

metric this is only possible if dτ
τ is time-like (note that ̟+Re z dτ

τ spans the whole
fiber of the b-cotangent bundle as Re z and ̟ ∈ Π vary), when, however, this is
automatically the case, namely the metric is negative definite on this orthocomple-
ment.

Furthermore, for z real, non-zero, the characteristic set of p~,z cannot intersect

the hypersurface 〈̟ + Re z dτ
τ , dτ

τ 〉G = 0, for G is negative definite on covectors

satisfying this equality, so if the intersection were non-empty, ̟ + Re z dτ
τ would

vanish there, which cannot happen for ̟ ∈ Π since Re z 6= 0 by assumption.
Correspondingly, we can divide the semiclassical characteristic set in two parts by

(3.14) Σ~,± ∩ T ∗X = {̟ ∈ Σ~ ∩ T ∗X : ±〈̟ +Re z
dτ

τ
,
dτ

τ
〉G > 0};

note that by the definiteness of the quadratic form on this hypersurface, in fact

this separation holds on the fiber-compactified bundle, T
∗
X. In general, one of the

‘components’ Σ~,± may be empty. However, in any case, when Im z ≥ 0, the sign
of the imaginary part of p~,z on Σ~,± is given by ± Im p~,z ≥ 0, as needed for the
propagation of estimates: in Σ~,+ we can propagate estimates backwards, in Σ~,−

we can propagate estimates forward. For Im z ≤ 0, the direction of propagation is
reversed.

Moreover, for m ∈ M̄ , and with Π denoting the ‘spatial’ hyperplane in the real
cotangent bundle, bT ∗

mM̄ , the Lorentzian nature of G means that for z real and
non-zero, the intersection of Π + z dτ

τ with the zero-set of G in bT ∗
q M̄ , i.e. the

characteristic set, has two components if G|Π is Lorentzian, and one component if
it is negative definite (i.e. Riemannian, up to the sign). Further, in the second case,
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on the only component 〈̟ + Re z dτ
τ , dτ

τ 〉G and 〈Re z dτ
τ , dτ

τ 〉G have the same sign,
so only Σ~,sgn(Re z) can enter the elliptic region.

In summary, we have shown that if dτ
τ is time-like then the assumptions on

imaginary part of p~,z in Section 2 are automatically satisfied in the Lorentzian
setting. Thus, these need not be checked individually in specific cases.

It is useful to note the following explicit calculation regarding the time-like char-
acter of dτ

τ if we are given a Lorentzian b-metric g that, with respect to some local

boundary defining function τ̃ and local product decomposition U × [0, δ)τ̃ of M̄

near U ⊂ X open, is of the form G = (τ̃ ∂τ̃ )
2 − G̃ on U × [0, δ)τ̃ , G̃ a Riemannian

metric on U . In this case, if we define τ = τ̃ eφ, φ a function on X, so dτ
τ = dτ̃

τ̃ +dφ,
then

〈dτ
τ
,
dτ

τ
〉G = 〈dτ̃

τ̃
,
dτ̃

τ̃
〉G − 〈dφ, dφ〉G = 1− 〈dφ, dφ〉G̃,

so dτ
τ is time-like if |dφ|G̃ < 1. Note that the effect of such a coordinate change on

the Mellin transform of the normal operator of �g is conjugation by e−ıσφ since
τ̃−ıσ = τ−ıσeıσφ. Such a coordinate change is useful whenG has a product structure
on U × [0, δ)τ̃ , but τ̃ is only a local boundary defining function on U × [0, δ)τ̃ (the
product structure might not extend smoothly beyond U), in which case it is useful
to see if one can conserve the time-like nature of dτ̃

τ̃ for a global boundary defining
function. This is directly relevant for the study of conformally compact spaces in
Subsection 4.9.

Finally, we remark that if dτ
τ is time-like and f is supported in τ < τ0, the

forward problem for the wave equation,

�gu = f, u|τ>τ0 = 0,

is uniquely solvable on M̄\X nearX by standard energy estimates (a priori, without
more structure, with no estimates on growth at X), see e.g. [31, Chapter 23].
Applying Lemma 3.1 in this case, assuming that the normal operator family has
the structure stated there, gives another solution, which must be equal to u by
uniqueness. Thus, u has the expansion stated in the lemma.

4. De Sitter space and conformally compact spaces

4.1. De Sitter space as a symmetric space. Rather than starting with the
static picture of de Sitter space, we consider it as a Lorentzian symmetric space. We
follow the treatment of [51] and [39]. De Sitter space M is given by the hyperboloid

z21 + . . .+ z2n = z2n+1 + 1 in R
n+1

equipped with the pull-back g of the Minkowski metric

dz2n+1 − dz21 − . . .− dz2n.

Introducing polar coordinates (R, θ) in (z1, . . . , zn), so

R =
√
z21 + . . .+ z2n =

√
1 + z2n+1, θ = R−1(z1, . . . , zn) ∈ S

n−1, τ̃ = zn+1,

the hyperboloid can be identified with Rτ̃ × S
n−1
θ with the Lorentzian metric

g =
dτ̃2

τ̃2 + 1
− (τ̃2 + 1) dθ2,
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where dθ2 is the standard Riemannian metric on the sphere. For τ̃ > 1, set x = τ̃−1,
so the metric becomes

g =
(1 + x2)−1 dx2 − (1 + x2) dθ2

x2
.

An analogous formula holds for τ̃ < −1, so compactifying the real line to an interval
[0, 1]T , with T = x = τ̃−1 for x < 1

4 (i.e. τ̃ > 4), say, and T = 1 − |τ̃ |−1, τ̃ < −4,

gives a compactification, M̂, of de Sitter space on which the metric is conformal to
a non-degenerate Lorentz metric. There is natural generalization, to asymptotically
de Sitter-like spaces M̂ , which are diffeomorphic to compactifications [0, 1]T × Y

of Rτ̃ × Y , where Y is a compact manifold without boundary, and M̂ is equipped
with a Lorentz metric on its interior which is conformal to a Lorentz metric smooth
up to the boundary. These space-times are Lorentzian analogues of the much-
studied conformally compact (Riemannian) spaces. On this class of space-times
the solutions of the Klein-Gordon equation were analyzed by Vasy in [51], and were
shown to have simple asymptotics analogous to those for generalized eigenfunctions
on conformally compact manifolds.

Theorem. ([51, Theorem 1.1.]) Set s±(λ) =
n−1
2 ±

√
(n−1)2

4 − λ. If s+(λ)−s−(λ) /∈
N, any solution u of the Cauchy problem for �−λ with C∞ initial data at τ̃ = 0 is
of the form

u = xs+(λ)v+ + xs−(λ)v−, v± ∈ C∞(M̂).

If s+(λ)−s−(λ) is an integer, the same conclusion holds if v− ∈ C∞(M̂) is replaced

by v− = C∞(M̂) + xs+(λ)−s−(λ) log x C∞(M̂).

Figure 3. On the left, the compactification of de Sitter space with
the backward light cone from q+ = (1, 0, 0, 0) and forward light
cone from q− = (−1, 0, 0, 0) are shown. Ω+, resp. Ω−, denotes the
intersection of these light cones with τ̃ > 0, resp. τ̃ < 0. On the
right, the blow up of de Sitter space at q+ is shown. The interior
of the light cone inside the front face ffq+ can be identified with
the spatial part of the static model of de Sitter space. The spatial
and temporal coordinate lines for the static model are also shown.

One important feature of asymptotically de Sitter spaces is the following: a
conformal factor, such as x−2 above, does not change the image of null-geodesics,
only reparameterizes them. More precisely, recall that null-geodesics are merely
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projections to M of null-bicharacteristics of the metric function in T ∗M . Since
p 7→ Hp is a derivation, ap 7→ aHp+pHa, which is aHp on the characteristic set of p.
Thus, the null-geodesics of de Sitter space are the same (up to reparameterization)
as those of the metric

(1 + x2)−1 dx2 − (1 + x2) dθ2

which is smooth on the compact space M̂ .

4.2. The static model of a part of de Sitter space. The simple structure of
de Sitter metric (and to some extent of the asymptotically de Sitter-like metrics)

can be hidden by blowing up certain submanifolds of the boundary of M̂ . In
particular, the static model of de Sitter space arises by singling out a point on
S
n−1
θ , e.g. q0 = (1, 0, . . . , 0) ∈ Sn−1 ⊂ Rn. Note that (θ2, . . . , θn) ∈ Rn−1 are local

coordinates on Sn−1 near q0. Now consider the intersection of the backward light
cone from q0 considered as a point q+ at future infinity, i.e. where T = 0, and
the forward light cone from q0 considered as a point q− at past infinity, i.e. where
T = 1. These intersect the equator T = 1/2 (here τ̃ = 0) in the same set, and

together form a ‘diamond’, Ω̂, with a conic singularity at q+ and q−. Explicitly Ω̂
is given by z22 + . . . + z2n ≤ 1 inside the hyperboloid. If q+, q− are blown up, as

well as the corner ∂Ω ∩ {τ̃ = 0}, i.e. where the light cones intersect τ̃ = 0 in Ω̂,
we obtain a manifold M̄ , which can be blown down to (i.e. is a blow up of) the
space-time product [0, 1] × Bn−1, with Bn−1 = {Z ∈ Rn−1 : |Z| ≤ 1} on which
the Lorentz metric has a time-translation invariant warped product form. Namely,
first considering the interior Ω of Ω̂ we introduce the global (in Ω) standard static
coordinates (t̃, Z), given by (with the expressions involving x valid near T = 0)

(Bn−1)◦ ∋ Z = (z2, . . . , zn) = x−1
√
1 + x2(θ2, . . . , θn),

sinh t̃ =
zn+1√

z21 − z2n+1

= (x2 − (1 + x2)(θ22 + . . .+ θ2n))
−1/2.

It is convenient to rewrite these as well in terms of polar coordinates in Z (valid
away from Z = 0):

r =
√

z22 + . . .+ z2n =
√

1 + z2n+1 − z21 = x−1
√
1 + x2

√
θ22 + . . .+ θ2n,

sinh t̃ =
zn+1√

z21 − z2n+1

= (x2 − (1 + x2)(θ22 + . . .+ θ2n))
−1/2 = x−1(1− r2)−1/2,

ω = r−1(z2, . . . , zn) = (θ22 + . . .+ θ2n)
−1/2(θ2, . . . , θn) ∈ S

n−2.

In these coordinates the metric becomes

(4.1) (1− r2) dt̃2 − (1− r2)−1dr2 − r2 dω2,

which is a special case of the de Sitter-Schwarzschild metrics with vanishing mass,
M = 0, and cosmological constant Λ = 3, see Section 6. Correspondingly, the dual
metric is

(4.2) (1− r2)−1∂2
t̃ − (1− r2)∂2

r − r−2∂2
ω.

We also rewrite this in terms of coordinates valid at the origin, namely Y = rω:

(4.3) (1− |Y |2)−1∂2
t̃ + (

n−1∑

j=1

Yj∂Yj
)2 −

n−1∑

j=1

∂2
Yj
.
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4.3. Blow-up of the static model. We have already seen that de Sitter space
has a smooth conformal compactification; the singularities in the metric of the form
(4.1) at r = 1 must thus be artificial. On the other hand, the metric is already
well-behaved for r < 1 bounded away from 1, so we want the coordinate change to
be smooth there — this means smoothness in valid coordinates (Y above) at the
origin as well. This singularity can be removed by a blow-up on an appropriate
compactification. We phrase this at first in a way that is closely related to our
treatment of Kerr-de Sitter space, and the Kerr-star coordinates. So let

t = t̃+ h(r), h(r) = −1

2
log µ, µ = 1− r2.

Note that h is smooth at the origin, A key feature of this change of coordinates is

h′(r) = − r

µ
= − 1

µ
+

1

1 + r
,

which is −µ−1 near r = 1 modulo terms smooth at r = 1. Other coordinate changes
with this property would also work. Let

τ = e−t =
e−t̃

µ1/2
.

Thus, if we compactify static space-time as Bn−1
rω × [0, 1]T , with T = τ for say t > 4,

then this procedure amounts to blowing up T = 0, µ = 0 parabolically. (If we used
τ = e−2t, everything would go through, except there would be many additional
factors of 2; then the blow-up would be homogeneous, i.e. spherical.) Then the
dual metric becomes

−µ∂2
r − 2r∂rτ∂τ + τ2∂2

τ − r−2∂2
ω,

or

−4r2µ∂2
µ + 4r2τ∂τ∂µ + τ2∂2

τ − r−2∂2
ω,

which is a non-degenerate Lorentzian b-metric19 on Rn−1
rω × [0, 1)τ , i.e. it extends

smoothly and non-degenerately across the ‘event horizon’, r = 1. Note that in
coordinates valid near r = 0 this becomes

(
∑

j

Yj∂Yj
)2 − 2(

∑

j

Yj∂Yj
)τ∂τ + τ2∂2

τ −
∑

j

∂2
Yj

= (τ∂τ −
∑

j

Yj∂Yj
)2 −

∑

j

∂2
Yj
.

In slightly different notation, this agrees with the symbol of [51, Equation (7.3)].

We could have used other equivalent local coordinates; for instance replaced e−t̃

by (sinh t̃)−1, in which case the coordinates (r, τ, ω) we obtained are replaced by

(4.4) r, ρ = (sinh t̃)−1/(1− r2)1/2 = x, ω.

As expected, in these coordinates the metric would still be a smooth and non-
degenerate b-metric. These coordinates also show that Kerr-star-type coordinates
are smooth in the interior of the front face on the blow-up of our conformal com-
pactification of de Sitter space at q+.

20 In summary we have reproved (modulo a
few details):

19See Section 3 for a quick introduction to b-geometry and further references.
20If we had worked with e−2t instead of e−t above, we would obtain x2 as the defining function

of the temporal face, rather than x.
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Lemma 4.1. (See [39, Lemma 2.1] for a complete version.) The lift of Ω̂ to the

blow up [M̂ ; q+, q−] is a C∞ manifold with corners, Ω̄. Moreover, near the front
faces ffq± , Ω̄ is naturally diffeomorphic to a neighborhood of the temporal faces
tf± in the C∞ manifold with corners obtained from [0, 1]T × Bn−1 by blowing up
{0}× ∂Bn−1 and {1}× ∂Bn−1 in the parabolic manner indicated in (4.4); here tf±
are the lifts of {0} × ∂Bn−1 and {1} × ∂Bn−1.

It is worthwhile comparing the de Sitter space wave asymptotics of [51],

(4.5) u = xn−1v+ + v−, v+ ∈ C∞(M̂), v− ∈ C∞(M̂) + xn−1(log x)C∞(M̂),

with our main result, Theorem 1.4. The fact that the coefficients in the de Sitter
expansion are C∞ on M̂ means that on M̄ , the leading terms are constant. Thus,
(4.5) implies (and is much stronger than) the statement that u decays to a constant
on M̄ at an exponential rate.

4.4. D’Alembertian and its Mellin transform. Consider the d’Alembertian,
�g, whose principal symbol, including subprincipal terms, is given by the metric
function. Thus, writing b-covectors as

ξ dµ+ σ
dτ

τ
+ η dω,

we have

(4.6) G = σb,2(�) = −4r2µξ2 + 4r2σξ + σ2 − r−2|η|2,

with |η|2ω denoting the dual metric function on the sphere. Note that there is a polar
coordinate singularity at r = 0; this is resolved by using actually valid coordinates
Y = rω on Rn−1 near the origin; writing b-covectors as

σ
dτ

τ
+ ζ dY,

we have

G = σb,2(�) = (Y · ζ)2 − 2(Y · ζ)σ + σ2 − |ζ|2 = (Y · ζ − σ)2 − |ζ|2,
Y · ζ =

∑

j

Yj · ζj , |ζ|2 =
∑

j

ζ2j .
(4.7)

Since there are no interesting phenomena at the origin, we may ignore this point
below.

Via conjugation by the (inverse) Mellin transform, see Subsection 3.1, we obtain a
family of operators Pσ depending on σ on Rn−1

rω with both principal and high energy
(|σ| → ∞) symbol given by (4.6). Thus, the principal symbol of Pσ ∈ Diff2(Rn−1),
including in the high energy sense (σ → ∞), is

pfull = −4r2µξ2 + 4r2σξ + σ2 − r−2|η|2ω
= (Y · ζ)2 − 2(Y · ζ)σ + σ2 − |ζ|2 = (Y · ζ − σ)2 − |ζ|2.

(4.8)

The Hamilton vector field is

Hpfull
= 4r2(−2µξ + σ)∂µ − r−2

H|η|2ω
− (4(1− 2r2)ξ2 − 4σξ − r−4|η|2ω)∂ξ

= 2(Y · ζ − σ)(Y · ∂Y − ζ · ∂ζ)− 2ζ · ∂Y ,
(4.9)
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with ζ ·∂Y =
∑

ζj∂Yj
, etc. Thus, in the standard ‘classical’ sense, which effectively

means letting σ = 0, the principal symbol is

p = σ2(Pσ) = −4r2µξ2 − r−2|η|2ω
= (Y · ζ)2 − |ζ|2,

(4.10)

while the Hamilton vector field is

Hp = −8r2µξ∂µ − r−2
H|η|2ω

− (4(1− 2r2)ξ2 − r−4|η|2ω)∂ξ
= 2(Y · ζ)(Y · ∂Y − ζ · ∂ζ)− 2ζ · ∂Y ,

(4.11)

Moreover, the imaginary part of the subprincipal symbol, given by the principal
symbol of 1

2ı (Pσ − P ∗
σ ), is

σ1(
1

2ı
(Pσ − P ∗

σ )) = 4r2(Imσ)ξ = −2(Y · ζ) Imσ.

When comparing these with [51, Section 7], it is important to keep in mind that
what is denoted by σ there (which we refer to as σ̃ here to avoid confusion) is ıσ
here corresponding to the Mellin transform, which is a decomposition in terms of
τ ıσ ∼ xıσ, being replaced by weights xσ̃ in [51, Equation (7.4)].

One important feature of this operator is that

N∗{µ = 0} = {(µ, ω, ξ, η) : µ = 0, η = 0}
is invariant under the classical flow (i.e. effectively letting σ = 0). Let

N∗S \ o = Λ+ ∪ Λ−, Λ± = N∗S ∩ {±ξ > 0}, S = {µ = 0}.
Let L± be the image of Λ± in S∗Rn−1. Next we analyze the flow at Λ±. First,

(4.12) Hp|η|2ω = 0

and

(4.13) Hpµ = −8r2µξ = −8ξµ+ aµ2ξ

with a being C∞ in T ∗X, and homogeneous of degree 0. While, in the spirit of
linearizations, we used an expression in (4.13) that is linear in the coordinates
whose vanishing defines N∗S, the key point is that µ is an elliptic multiple of p in
a linearization sense, so one can simply use p̂ = p/|ξ|2 (which is homogeneous of
degree 0, like µ), in its place.

It is convenient to rehomogenize (4.12) in terms of η̂ = η/|ξ|. To phrase this

more invariantly, consider the fiber-compactification T
∗
Rn−1 of T ∗Rn−1, see Sub-

section 2.2. On this space, the classical principal symbol, p, is (essentially) a func-

tion on ∂T
∗
Rn−1 = S∗Rn−1. Then at fiber infinity near N∗S, we can take (|ξ|−1, η̂)

as coordinates on the fibers of the cotangent bundle, with ρ̃ = |ξ|−1 defining S∗X

in T
∗
X. Then |ξ|−1

Hp is a C∞ vector field in this region and

(4.14) |ξ|−1
Hp|η̂|2 = |η̂|2Hp|ξ|−1 = −4(sgn ξ)|η̂|2 + ã,

where ã vanishes cubically at N∗S, i.e. (2.3) holds. In similar notation we have

Hp|ξ|−1 = −4 sgn(ξ) + ã′,

|ξ|−1
Hpµ = −8(sgn ξ)µ.

(4.15)

with ã′ smooth (indeed, homogeneous degree zero without the compactification)
vanishing at N∗S. As the vanishing of η̂, |ξ|−1 and µ defines ∂N∗S, we con-
clude that L− = ∂Λ− is a source, while L+ = ∂Λ+ is a sink, in the sense that
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Figure 4. The cotangent bundle near the event horizon S = {µ =
0}. It is drawn in a fiber-radially compactified view. The boundary
of the fiber compactificaton is the cosphere bundle S∗Rn−1; it is
the surface of the cylinder shown. Σ± are the components of the
(classical) characteristic set containing L±. They lie in µ ≤ 0,
only meeting S∗

SR
n−1 at L±. Semiclassically, i.e. in the interior of

T
∗
Rn−1, for z = h−1σ > 0, only the component of the semiclassical

characteristic set containing L+ can enter µ > 0. This is reversed
for z < 0.

all nearby bicharacteristics (in fact, including semiclassical (null)bicharacteristics,
since Hp|ξ|−1 contains the additional information needed) converge to L± as the pa-
rameter along the bicharacteristic goes to ±∞. In particular, the quadratic defining
function of L± given by

ρ0 = ̂̃p+ p̂2, where p̂ = |ξ|−2p, ̂̃p = |η̂|2,
satisfies (2.4).

The imaginary part of the subprincipal symbol at L± is given by

(4 sgn(ξ)) Imσ|ξ|;
here (4 sgn(ξ)) is pulled out due to (4.15), namely its size relative to Hp|ξ|−1 matters,
with a change of sign, see Subsection 2.2, thus (2.5)-(2.6) hold. This corresponds
to the fact21 that (µ± ı0)ıσ, which are Lagrangian distributions associated to Λ±,
solve the PDE modulo an error that is two orders lower than what one might a
priori expect, i.e. Pσ(µ± ı0)ıσ ∈ (µ± i0)ıσC∞(Rn−1). Note that Pσ is second order,
so one should lose two orders a priori; the characteristic nature of Λ± reduces the
loss to 1, and the particular choice of exponent eliminates the loss. This has much
in common with eıλ/xx(n−1)/2 being an approximate solution in asymptotically
Euclidean scattering. The precise situation for Kerr-de Sitter space is more delicate
as the Hamilton vector field does not vanish at L±, but this22 is irrelevant for
our estimates: only a quantitative version of the source/sink statements and the
imaginary part of the subprincipal symbol are relevant.

While (µ± ı0)ıσ is singular regardless of σ apart from integer coincidences (when
this should be corrected anyway), it is interesting to note that for Imσ > 0 this
is not bounded at µ = 0, while for Imσ < 0 it vanishes there. This is interesting
because if one reformulates the problem as one in µ ≥ 0, as was done for instance by
Sá Barreto and Zworski [46], and later by Melrose, Sá Barreto and Vasy [39] for de
Sitter-Schwarzschild space then one obtains an operator that is essentially (up to a

21This needs the analogous statement for full subprincipal symbol, not only its imaginary part.
22This would be relevant for a full Lagrangian analysis, as done e.g. in [38], or in a somewhat

different, and more complicated, context by Hassell, Melrose and Vasy in [29, 30].
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conjugation and a weight, see below) the Laplacian on an asymptotically hyperbolic

space at energy σ2 + (n−2)2

4 — more precisely its normal operator (which encodes
its behavior near µ = 0) is a multiple of that of the hyperbolic Laplacian. Then the
growth/decay behavior corresponds to the usual scattering theory phenomena, but
in our approach smooth extendability across µ = 0 is the distinguishing feature of
the solutions we want, not growth/decay. See Remark 4.5 for more details.

4.5. Global behavior of the characteristic set. First remark that 〈dττ , dτ
τ 〉G =

1 > 0, so dτ
τ is time-like. Correspondingly all the results of Subsection 3.2 apply. In

particular, (3.14) gives that the characteristic set is divided into two components
with Λ± in different components. It is easy to make this explicit: points with ξ = 0,
or equivalently Y · ζ = 0, cannot lie in the characteristic set. Thus,

Σ± = Σ ∩ {±ξ > 0} = Σ ∩ {∓(Y · ζ) > 0}.
While it is not important here since the characteristic set in µ ≥ 0 is localized at

N∗S, hence one has a similar localization for nearby µ, for global purposes (which
we do not need here), we point out that Hpµ = −8r2µξ. Since ξ 6= 0 on Σ, and
in Σ, r = 1 can only happen at N∗S, i.e. only at the radial set, the C∞ function
µ provides a negative global escape function which is increasing on Σ+, decreasing
on Σ−. Correspondingly, bicharacteristics in Σ+ travel from infinity to L+, while
in Σ− they travel from L− to infinity.

4.6. High energy, or semiclassical, asymptotics. We are also interested in the
high energy behavior, as |σ| → ∞. For the associated semiclassical problem one
obtains a family of operators

Ph,z = h2Ph−1z,

with h = |σ|−1, and z corresponding to σ/|σ| in the unit circle in C. Then the
semiclassical principal symbol p~,z of Ph,z is a function on T ∗Rn−1. As in Section 2,
we are interested in Im z ≥ −Ch, which corresponds to Imσ ≥ −C. It is sometimes
convenient to think of p~,z, and its rescaled Hamilton vector field, as objects on

T
∗
Rn−1. Thus,

p~,z = σ2,h(Ph,z) = −4r2µξ2 + 4r2zξ + z2 − r−2|η|2ω
= (Y · ζ)2 − 2(Y · ζ)z + z2 − |ζ|2 = (Y · ζ − z)2 − |ζ|2.

(4.16)

We make the general discussion of Subsection 3.2 explicit. First,

(4.17) Im p~,z = 2 Im z(2r2ξ +Re z) = −2 Im z(Y · ζ − Re z).

In particular, for z non-real, Im p~,z = 0 implies 2r2ξ+Re z = 0, i.e. Y ·ζ−Re z = 0,
which means that Re p~,z is

(4.18) −r−2(Re z)2 − (Im z)2 − r−2|η|2ω = −(Im z)2 − |ζ|2 < 0,

i.e. p~,z is semiclassically elliptic on T ∗Rn−1, but not at fiber infinity, i.e. at S∗Rn−1

(standard ellipticity is lost only in r ≥ 1, of course). Explicitly, if we introduce for
instance

(µ, ω, ν, η̂), ν = |ξ|−1, η̂ = η/|ξ|,
as valid projective coordinates in a (large!) neighborhood of L± in T

∗
Rn−1, then

ν2p~,z = −4r2µ+ 4r2(sgn ξ)zν + z2ν2 − r−2|η̂|2ω
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so
ν2 Im p~,z = 4r2(sgn ξ)ν Im z + 2ν2 Re z Im z

which automatically vanishes at ν = 0, i.e. at S∗Rn−1. Thus, for σ large and pure
imaginary, the semiclassical problem adds no complexity to the ‘classical’ quantum
problem, but of course it does not simplify it. In fact, we need somewhat more
information at the characteristic set, which is thus at ν = 0 when Im z is bounded
away from 0:

ν small, Im z ≥ 0 ⇒ (sgn ξ) Im p~,z ≥ 0 ⇒ ± Im p~,z ≥ 0 near Σ~,±,

ν small, Im z ≤ 0 ⇒ (sgn ξ) Im p~,z ≤ 0 ⇒ ± Im p~,z ≥ 0 near Σ~,±,

which, as we have seen, means that for Ph,z with Im z > 0 one can propagate
estimates forwards along the bicharacteristics where ξ < 0 (in particular, away
from L−, as the latter is a source) and backwards where ξ > 0 (in particular,
away from L+, as the latter is a sink), while for P ∗

h,z the directions are reversed.
The directions are also reversed if Im z switches sign. This is important because it
gives invertibility for z = ı (corresponding to Imσ large positive, i.e. the physical
halfplane), but does not give invertibility for z = −ı negative.

We now return to the claim that even semiclassically, for z almost real23, the
characteristic set can be divided into two components Σ~,±, with L± in different
components. As explained in Subsection 3.2 the vanishing of the factor following
Im z in (4.17) gives a hypersurface that separates Σ~ into two parts; this can be
easily checked also by a direct computation. Concretely, this is the hypersurface
given by

(4.19) 0 = 2r2ξ +Re z = −(Y · ζ − Re z),

and so
Σ~,± = Σ~ ∩ {∓(Y · ζ − Re z) > 0}.

We finally need more information about the global semiclassical dynamics. Here
all null-bicharacteristics go to either L+ in the forward direction or to L− in the
backward direction, and escape to infinity in the other direction. Rather than
proving this at once, which depends on the global non-trapping structure on Rn−1,
we first give an argument that is local near the event horizon, and suffices for the
extension discussed below for asymptotically hyperbolic spaces.

As stated above, first, we are only concerned about semiclassical dynamics in
µ > µ0, where µ0 < 0 might be close to 0. To analyze this, we observe that the
semiclassical Hamilton vector field is

Hp~,z
= 4r2(−2µξ + z)∂µ − r−2

H|η|2ω
− (4(1− 2r2)ξ2 − 4zξ − r−4|η|2ω)∂ξ

= 2(Y · ζ − z)(Y · ∂Y − ζ · ∂ζ)− 2ζ · ∂Y ;
(4.20)

here we are concerned about z real. Thus,

Hp~,z
(Y · ζ) = −2|ζ|2,

and ζ = 0 implies p~,z = z2, so Hp~,z
(Y · ζ) has a negative upper bound on the

characteristic set in compact subsets of T ∗{r < 1}; note that the characteristic set is
compact in T ∗{r ≤ r0} if r0 < 1 by standard ellipticity. Thus, bicharacteristics have
to leave {r ≤ r0} for r0 < 1 in both the forward and backward direction (as Y · ζ is
bounded over this region on the characteristic set). We already know the dynamics

23So the operator is not semiclassically elliptic on T ∗Rn−1; as mentioned above, for Im z

uniformly bounded away from R, we have ellipticity in T ∗Rn−1.
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near L±, which is the only place where the characteristic set intersects S∗
SR

n−1,
namely L+ is a sink and L− is a source. Now, at µ = 0, Hp~,z

µ = z, which is positive
when z > 0, so bicharacteristics can only cross µ = 0 in the inward direction. In
view of our preceding observations, thus, once a bicharacteristic crossed µ = 0, it
has to tend to L+. As bicharacteristics in a neighborhood of L+ (even in µ < 0)
tend to L+ since L+ is a sink, it follows that in Σ~,+ the same is true in µ > µ0

for some µ0 < 0. On the other hand, in a neighborhood of L− all bicharacteristics
emanate from L− (but cannot cross into µ > 0 by our observations), so leave µ > µ0

in the forward direction. These are all the relevant features of the bicharacteristic
flow for our purposes as we shall place a complex absorbing potential near µ = µ0

in the next subsection.
However, it is easy to see the global claim by noting that Hp~,z

µ = 4r2(−2µξ+z),
and this cannot vanish on Σ~ in µ < 0, since where it vanishes, a simple calculation
gives p~,z = 4µξ2 − r−2|η|2. Thus, Hp~,z

µ has a constant sign on Σ~,± in µ < 0,
so combined with the observation above that all bicharacteristics escape to µ = µ0

in the appropriate direction, it shows that all bicharacteristics in fact escape to
infinity in that direction24.

In fact, for applications, it is also useful to remark that for α ∈ T ∗X,

(4.22) 0 < µ(α) < 1, p~,z(α) = 0 and (Hp~,z
µ)(α) = 0 ⇒ (H2

p~,z
µ)(α) < 0.

Indeed, as Hp~,z
µ = 4r2(−2µξ + z), the hypotheses imply z = 2µξ and H

2
p~,z

µ =

−8r2µHp~,z
ξ, so we only need to show that Hp~,z

ξ > 0 at these points. Since

Hp~,z
ξ = −4(1− 2r2)ξ2 + 4zξ + r−4|η|2ω = 4ξ2 + r−4|η|2ω = 4r−2ξ2,

where the second equality uses Hp~,z
µ = 0 and the third uses that in addition

p~,z = 0, this follows from 2µξ = z 6= 0, so ξ 6= 0. Thus, µ can be used for gluing
constructions as in [15].

4.7. Complex absorption. The final step of fitting Pσ into our general microlocal
framework is moving the problem to a compact manifold, and adding a complex
absorbing second order operator. We thus consider a compact manifold without
boundary X for which Xµ0

= {µ > µ0}, µ0 < 0, say, is identified as an open subset
with smooth boundary; it is convenient to take X to be the double25 of Xµ0

.

24There is in fact a not too complicated global escape function, e.g.

f =
2Y · ζ − Re z

2
√

1 + |Y |2(Y · ζ − Re z)
=

2Y · ζ̂ − Re z|ζ|−1

2
√

1 + |Y |2(Y · ζ̂ − Re z|ζ|−1)
,

which is a smooth function on the characteristic set in T ∗Rn−1 as Y · ζ 6= Re z there; further,

it extends smoothly to the characteristic set in T
∗
Rn−1 away from L± since

√

1 + |Y |2(Y · ζ̂ −

Re z|ζ|−1) vanishes only there near S∗Rn−1 (where these are valid coordinates), at which it has
conic points. This function arises in a straightforward manner when one reduces Minkowski space,

Rn = R
n−1
z′

× Rt with metric g0, to the boundary of its radial compactification, as described in
Section 5, and uses the natural escape function

(4.21) f̃ =
tt∗ − z′(z′)∗

t∗
√

t2 + |z′|2

there; here t∗ is the dual variable of t and (z′)∗ of z′, outside the origin.
25In fact, in the de Sitter context, this essentially means moving to the boundary of n-

dimensional Minkowski space, where our (n − 1)-dimensional model is the ‘upper hemisphere’,
see Section 5. Thus, doubling over means working with the whole boundary, but putting an ab-

sorbing operator near the equator, corresponding to the usual Cauchy hypersurface in Minkowski
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It is convenient to separate the ‘classical’ (i.e. quantum!) and ‘semiclassical’
problems, for in the former setting trapping does not matter, while in the latter it
does.

Figure 5. The cotangent bundle near the event horizon S = {µ =
0}. It is drawn in a fiber-radially compactified view, as in Figure 4.
The circles on the left show the support of q; it has opposite signs
on the two disks corresponding to the opposite directions of prop-
agation relative to the Hamilton vector field.

We then introduce a complex absorbing operator Qσ ∈ Ψ2
cl(X) with principal

symbol q, such that h2Qh−1z ∈ Ψ2
~,cl(X) with semiclassical principal symbol q~,z,

and such that p± ıq is elliptic near ∂Xµ0
, i.e. near µ = µ0, and which satisfies that

the ∓q ≥ 0 on Σ±. Having done this, we extend Pσ and Qσ to X in such a way
that p ± ıq are elliptic near X \ Xµ0

; the region we added is thus irrelevant. In
particular, as the event horizon is characteristic for the wave equation, the solution
in the exterior of the event horizons is unaffected by thus modifying Pσ, i.e. working
with Pσ and Pσ − ıQσ is equivalent for this purpose.

An alternative to this extension would be simply adding a boundary at µ = µ0;
this is easy to do since this is a space-like hypersurface, but this is slightly unpleasant
from the point of view of microlocal analysis as one has to work on a manifold with
boundary (though as mentioned this is easily done, see Remark 2.5).

For the semiclassical problem, when z is almost real (i.e. none of this is important
when Im z is bounded away from 0) we need to increase the requirements on Qσ. We
need in addition, in the semiclassical notation, semiclassical ellipticity near µ = µ0,
i.e. that p~,z± ıq~,z are elliptic near ∂Xµ0

, i.e. near µ = µ0, and which satisfies that
the ∓q~,z ≥ 0 on Σ~,±. Again, we extend Pσ and Qσ to X in such a way that p± ıq
and p~,z ± ıq~,z are elliptic near X \Xµ0

; the region we added is thus irrelevant.

4.8. More general metrics. If the operator is replaced by one on a neighborhood
of Yy × (−δ, δ)µ with full principal symbol (including high energy terms)

− 4(1 + a1)µξ
2 + 4(1 + a2)σξ + (1 + a3)σ

2 − |η|2h,(4.23)

and h a family of Riemannian metrics on Y depending smoothly on µ, aj vanishing
at µ = 0, then the local behavior of this operator Pσ near the ‘event horizon’ Y ×{0}
is exactly as in the de Sitter setting. If we start with a compact manifold X0 with
boundary Y and a neighborhood of the boundary identified with Y × [0, δ)µ with
the operator of the form above, and which is elliptic in X0 (we only need to assume
this away from Y ×[0, δ/2), say), including in the non-real high energy sense (i.e. for

space, and solving from the radial points at both the future and past light cones towards the

equator — this would be impossible without the complex absorption.
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z away from R when σ = h−1z) then we can extend the operator smoothly to one
on Xµ0

, µ0 = −δ, which enjoys all the properties above, except semiclassical non-
trapping. If we assume that X◦

0 is non-trapping in the usual sense, the semiclassical
non-trapping property also follows. In addition, for µ > 0 sufficiently small, (4.22)
also holds since η is small when Hp~,z

µ = 0 and p~,z = 0, for the former gives

z = 2(1 + a2)
−1(1 + a1)µξ, and then the latter gives

4(1 + a1)

(
1 +

(1 + a1)(1 + a3)

(1 + a2)2
µ

)
µξ2 = |η|2h,

so the contribution of |η|2h to Hp~,z
ξ, which can be large elsewhere even at µ = 0,

is actually small.

4.9. Results. The preceding subsections show that for the Mellin transform of �g

on n-dimensional de Sitter space, all the hypotheses needed in Section 2 are satisfied,
thus analogues of the results stated for Kerr-de Sitter space in the introduction,
Theorems 1.1-1.4, hold. It is important to keep in mind, however, that there is no
trapping to remove, so Theorem 1.1 applies with Qσ supported outside the event
horizon, and one does not need gluing or the result of Wunsch and Zworski [58].
In particular, Theorem 1.3 holds with arbitrary C ′, without the logarithmic or
polynomial loss. As already mentioned when discussing [51, Theorem 1.1] at the
beginning of this section, this is weaker than the result of [51, Theorem 1.1], since
there one has smooth asymptotics without a blow-up of a boundary point26.

We now reinterpret our results on the Mellin transform side in terms of (n− 1)-
dimensional hyperbolic space. Let B

n−1
1/2 be Bn−1 = {r ≤ 1} with ν =

√
µ added

to the smooth structure. For the purposes of the discussion below, we identify the
interior {r < 1} of Bn−1

1/2 with the Poincaré ball model of hyperbolic (n − 1)-space

(Hn−1, gHn−1). Using polar coordinates around the origin, let cosh ρ = ν−1, ρ is
the distance from the origin. The Laplacian on Hn−1 in these coordinates is

∆Hn−1 = D2
ρ − ı(n− 2) coth ρDρ + (sinh ρ)−2∆ω.

It is shown in [51, Lemma 7.10] that in r < 1, and with s be such that 2s = ıσ− n
2 ,

(1− r2)−sPσ(1− r2)s = ν
n
2
−ıσPσν

ıσ−n
2

= −ν−1

(
∆Hn−1 − σ2 −

(
n− 2

2

)2

− ν2
n(n− 2)

4

)
ν−1

= − cosh ρ

(
∆Hn−1 − σ2 −

(
n− 2

2

)2

− (cosh ρ)−2n(n− 2)

4

)
cosh ρ.

(4.24)

We thus deduce:

Proposition 4.2. The inverse R(σ) of

∆Hn−1 − σ2 −
(
n− 2

2

)2

− (cosh ρ)−2n(n− 2)

4

26Note that our methods work equally well for asymptotically de Sitter spaces in the sense of
[51]; after the blow up, the boundary metric is ‘frozen’ at the point that is blown up, hence the
induced problem at the front face is the same as for the de Sitter metric with asymptotics given

by this ‘frozen’ metric.
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has a meromorphic continuation from Imσ > 0 to C with poles with finite rank
residues as a map R(σ) : Ċ∞(Bn−1) → C−∞(Bn−1), and with non-trapping esti-
mates in every strip | Imσ| < C, |Reσ| ≫ 0: s > 1

2 + C,
(4.25)

‖(cosh ρ)(n−2)/2−ıσR(σ)f‖Hs

|σ|−1
(Bn−1) ≤ C|σ|−1‖(cosh ρ)(n+2)/2−ıσf‖Hs−1

|σ|−1
(Bn−1),

where the Sobolev spaces are those on Bn−1 (rather than B
n−1
1/2 ). If supp f ⊂

(Bn−1)◦, the s− 1 norm on f can be replaced by the s− 2 norm.
The same conclusion holds for small even C∞ perturbations, vanishing at ∂Bn−1

1/2 ,

of gHn−1 in the class of conformally compact metrics, or the addition of (not nec-
essarily small) V ∈ µC∞(Bn−1).

Proof. By self-adjointness and positivity of ∆Hn−1 ,
(
∆Hn−1 − σ2 −

(
n− 2

2

)2

− ν2
n(n− 2)

4

)
u = f ∈ Ċ∞(Bn−1)

has a unique solution u = R(σ)f ∈ L2(Bn−1
1/2 , |dgHn−1 |) when when Imσ ≫ 0. On

the other hand, let f̃0 = νıσ−n/2ν−1f in r ≤ 1, and f̃0 still vanishes to infinite order
at r = 1. Let f̃ be an arbitrary smooth extension of f̃0 to the compact manifold
X on which Pσ − ıQσ is defined. Let ũ = (Pσ − ıQσ)

−1f̃ , with (Pσ − ıQσ)
−1 given

by our results in Section 2; this satisfies (Pσ − ıQσ)ũ = f̃ and ũ ∈ C∞(X). Thus,
u′ = ν−ıσ+n/2ν−1ũ|r<1 satisfies u′ ∈ ν(n−2)/2−ıσC∞(Bn−1), and

(
∆Hn−1 − σ2 −

(
n− 2

2

)2

− ν2
n(n− 2)

4

)
u′ = f

by (4.24) (as Qσ is supported in r > 1). Since u′ ∈ L2(Bn−1, |dgHn−1 |) for Imσ > 0,
by the aforementioned uniqueness, u = u′.

To make the extension from Bn−1 to X more systematic, let Es : Hs(Bn−1) →
Hs(X) be a continuous extension operator, Rs : H

s(X) → Hs(Bn−1) the restriction

map. Then, as we have just seen, for f ∈ Ċ∞(Bn−1),

(4.26) R(σ)f = ν−ıσ+n/2ν−1Rs(Pσ − ıQσ)
−1Es−1ν

ıσ−n/2ν−1f.

Thus, the first half of the proposition (including the non-trapping estimate) follows
immediately from the results of Section 2. Note also that this proves that every pole
of R(σ) is a pole of (Pσ − ıQσ)

−1 (for otherwise (4.26) would show R(σ) does not
have a pole either), but it is possible for (Pσ − ıQσ)

−1 to have poles which are not
poles of R(σ). However, in the latter case, the Laurent coefficients of (Pσ − ıQσ)

−1

would be annihilated by multiplication by Rs from the left, i.e. the resonant states
(which are smooth) would be supported in µ ≤ 0, in particular vanish to infinite
order at µ = 0.

In fact, a stronger statement can be made: by a calculation completely analogous
to what we just performed, we can easily see that in µ < 0, Pσ is a conjugate (times
a power of µ) of a Klein-Gordon-type operator on (n−1)-dimensional de Sitter space
with µ = 0 being the boundary (i.e. where time goes to infinity). Thus, if σ is not
a pole of R(σ) and (Pσ − ıQσ)ũ = 0 then one would have a solution u of this Klein-
Gordon-type equation near µ = 0, i.e. infinity, that rapidly vanishes at infinity.
It is shown in [51, Proposition 5.3] by a Carleman-type estimate that this cannot
happen; although there σ2 ∈ R is assumed, the argument given there goes through
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almost verbatim in general. Thus, if Qσ is supported in µ < c, c < 0, then ũ is
also supported in µ < c. This argument can be iterated for Laurent coefficients of
higher order poles; their range (which is finite dimensional) contains only functions
supported in µ < c.

We now turn to the perturbation. After the conjugation, division by µ1/2 from
both sides, elements of V ∈ µC∞(Bn−1) can be extended to become elements of
C∞(Rn−1), and they do not affect any of the structures discussed in Section 2, so the
results automatically go through. Operators of the form x2L, L ∈ Diffb,even(B

n−1
1/2 ),

i.e. with even coefficients with respect to the local product structure, become ele-
ments of Diffb(B

n−1) after conjugation and division by µ1/2 from both sides. Hence,
they can be smoothly extended across ∂Bn−1, and they do not affect either the prin-
cipal or the subprincipal symbol at L± in the classical sense. They do, however,
affect the classical symbol elsewhere and the semiclassical symbol everywhere, thus
the semiclassical Hamilton flow, but under the smallness assumption the required
properties are preserved, since the dynamics is non-degenerate (the rescaled Hamil-

ton vector field on T
∗
Rn−1 does not vanish) away from the radial points. �

Without the non-trapping estimate, this is a special case of a result of Mazzeo
and Melrose [36], with improvements by Guillarmou [28]. The point is that first, we
do not need the machinery of the zero calculus here, and second, the analogous re-
sult holds true on arbitary asymptotically hyperbolic spaces, with the non-trapping
estimates holding under dynamical assumptions (namely, no trapping). The poles
were actually computed in [51, Section 7] using special algebraic properties, within
the Mazzeo-Melrose framework; however, given the Fredholm properties our meth-
ods here give, the rest of the algebraic computation in [51] go through. Indeed,
the results are stable under perturbations27, provided they fit into the framework
after conjugation and the weights. In the context of the perturbations (so that the
asymptotically hyperbolic structure is preserved) though with evenness conditions
relaxed, the non-trapping estimate is almost the same as in [40], where it is shown
by a parametrix construction; here the estimates are slightly stronger.

In fact, by the discussion of Subsection 4.8, we deduce a more general result,
which in particular, for even metrics, generalizes the results of Mazzeo and Melrose
[36], Guillarmou [28], and adds high-energy non-trapping estimates under non-
degeneracy assumptions. It also adds the semiclassically outgoing property which is
useful for resolvent gluing, including for proving non-trapping bounds microlocally
away from trapping, provided the latter is mild, as shown by Datchev and Vasy
[15, 16].

Theorem 4.3. Suppose that (X0, g0) is an (n − 1)-dimensional manifold with
boundary with an even conformally compact metric and boundary defining func-
tion x. Let X0,even denote the even version of X0, i.e. with the boundary defining
function replaced by its square with respect to a decomposition in which g0 is even.
Then the inverse of

∆g0 −
(
n− 2

2

)2

− σ2,

27Though of course the resonances vary with the perturbation, in the same manner as they

would vary when perturbing any other Fredholm problem.
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written as R(σ) : L2 → L2, has a meromorphic continuation from Imσ ≫ 0 to C,

R(σ) : Ċ∞(X0) → C−∞(X0),

with poles with finite rank residues. If in addition (X0, g0) is non-trapping, then
non-trapping estimates hold in every strip | Imσ| < C, |Reσ| ≫ 0: for s > 1

2 + C,
(4.27)

‖x−(n−2)/2+ıσR(σ)f‖Hs

|σ|−1
(X0,even) ≤ C̃|σ|−1‖x−(n+2)/2+ıσf‖Hs−1

|σ|−1
(X0,even)

.

If f is supported in X◦
0 , the s− 1 norm on f can be replaced by the s− 2 norm.

If instead ∆g0 −σ2 satisfies mild trapping assumptions with order κ estimates in
a C0-strip, see Definition 2.16, then the mild trapping estimates hold, with |σ|κ−1

replacing |σ|−1 on the right hand side of (4.27), as long as C ≤ C0.
Furthermore, for Re z > 0, Im z = O(h), the resolvent R(h−1z) is semiclassically

outgoing with a loss of h−1 in the sense that if f has compact support in X◦
0 ,

α ∈ T ∗X is in the semiclassical characteristic set and if WFs−1
h (f) is disjoint from

the backward bicharacteristic from α, then α /∈ WFs
h(h

−1R(h−1z)f).

We remark that although in order to go through without changes, our meth-
ods require the evenness property, it is not hard to deduce more restricted results
without this. Essentially one would have operators with coefficients that have a
conormal singularity at the event horizon; as long as this is sufficiently mild rela-
tive to what is required for the analysis, it does not affect the results. The problems
arise for the analytic continuation, when one needs strong function spaces (Hs with
s large); these are not preserved when one multiplies by the singular coefficients.

Proof. Suppose that g0 is an even asymptotically hyperbolic metric. Then we may
choose a product decomposition near the boundary such that

(4.28) g0 =
dx2 + h

x2

there, where h is an even family of metrics; it is convenient to take x to be a globally
defined boundary defining function. Then

(4.29) ∆g0 = (xDx)
2 + ı(n− 2 + x2γ)(xDx) + x2∆h,

with γ even. Changing to coordinates (µ, y), µ = x2, we obtain

(4.30) ∆g0 = 4(µDµ)
2 + 2ı(n− 2 + µγ)(µDµ) + µ∆h,

Now we conjugate by µ−ıσ/2+n/4 to obtain

µıσ/2−n/4(∆g0 −
(n− 2)2

4
− σ2)µ−ıσ/2+n/4

= 4(µDµ − σ/2− ın/4)2 + 2ı(n− 2 + µγ)(µDµ − σ/2− ın/4)

+ µ∆h − (n− 2)2

4
− σ2

= 4(µDµ)
2 − 4σ(µDµ) + µ∆h − 4ı(µDµ) + 2ıσ − 1 + 2ıµγ(µDµ − σ/2− ın/4).
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Next we multiply by µ−1/2 from both sides to obtain

µ−1/2µıσ/2−n/4(∆g0 −
(n− 2)2

4
− σ2)µ−ıσ/2+n/4µ−1/2

= 4µD2
µ − µ−1 − 4σDµ − 2ıσµ−1 +∆h − 4ıDµ + 2µ−1 + 2ıσµ−1 − µ−1

+ 2ıγ(µDµ − σ/2− ı(n− 2)/4)

= 4µD2
µ − 4σDµ +∆h − 4ıDµ + 2ıγ(µDµ − σ/2− ı(n− 2)/4).

(4.31)

This is certainly in Diff2(X), and for σ (almost) real, is equivalent to the form
we want via conjugation by a smooth function, with exponent depending on σ.
The latter would make no difference even semiclassically in the real regime as it
is conjugation by an elliptic semiclassical FIO. However, in the non-real regime
(where we would like ellipticity) it does; the present operator is not semiclassically
elliptic at the zero section. So finally we conjugate by (1 + µ)ıσ/4 to obtain

4µD2
µ − 4σDµ − σ2 +∆h − 4ıDµ + 2ıγ(µDµ − σ/2− ı(n− 2)/4)(4.32)

modulo terms that can be absorbed into the error terms in the negative of operators
in the class (4.23).

We still need to check that µ can be appropriately chosen in the interior away
from the region of validity of the product decomposition (4.28) (where we had no
requirements so far on µ). This only matters for semiclassical purposes, and (being
smooth and non-zero in the interior) the factor µ−1/2 multiplying from both sides
does not affect any of the relevant properties (semiclassical ellipticity and possible
non-trapping properties), so can be ignored — the same is true for σ independent
powers of µ.

To do so, it is useful to think of (τ̃ ∂τ̃ )
2 − G0, G0 the dual metric of g0, as a

Lorentzian b-metric on X◦
0 × [0,∞)τ̃ . From this perspective, we want to introduce

a new boundary defining function τ = τ̃ eφ, with our σ the b-dual variable of τ and
φ a function on X0, i.e. with our τ already given, at least near µ = 0, i.e. φ already
fixed there, namely eφ = µ1/2(1 + µ)−1/4. Recall from the end of Subsection 3.2
that such a change of variables amounts to a conjugation on the Mellin transform
side by e−ıσφ. Further, properties of the Mellin transform are preserved provided
dτ
τ is globally time-like, which, as noted at the end of Subsection 3.2, is satisfied if
|dφ|G0

< 1. But, reading off the dual metric from the principal symbol of (4.30),

1

4

∣∣∣∣d(log µ− 1

2
log(1 + µ))

∣∣∣∣
2

G0

=

(
1− µ

2(1 + µ)

)2

< 1

for µ > 0, with a strict bound as long as µ is bounded away from 0. Correspondingly,
µ1/2(1 + µ)−1/4 can be extended to a function eφ on all of X0 so that dτ

τ is time-
like, and we may even require that φ is constant on a fixed (but arbitrarily large)
compact subset of X◦

0 . Then, after conjugation by e−ıσφ all of the semiclassical
requirements of Section 2 are satisfied. Naturally, the semiclassical properties could
be easily checked directly for the conjugate of ∆g0 − σ2 by the so-extended µ.

Thus, all of the results of Section 2 apply. The only part that needs some expla-
nation is the direction of propagation for the semiclassically outgoing condition. For
Re z > 0, as in the de Sitter case, null-bicharacteristics in X◦

0 must go to L+, hence
lie in Σ~,+. Theorem 2.15 states backward propagation of regularity for the oper-
ator considered there. However, the operator we just constructed is the negative
of the class considered in (4.23), and under changing the sign of the operator, the
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Hamilton vector field also changes direction, so semiclassical estimates (or WFh)
indeed propagate in the forward direction. �

Remark 4.4. We note that if the dual metric G1 on X0 is of the form κ2G0, G0 the
dual of g0 as in (4.28), then

∆G1
− κ2 (n− 2)2

4
− σ2 = κ2(∆G0

− (n− 2)2

4
− (σ/κ)2).

Thus, with µ as above, and with P̃σ the conjugate of ∆G0
− (n−2)2

4 − (σ/κ)2, of

the form (4.32) (modulo error terms as described there) then with eφ = µ1/(2κ)(1+
µ)−1/(4κ) extended into the interior of X0 as above, we have

µ−1/2µn/4eıσφ(∆g1 − κ2 (n− 2)2

4
− σ2)e−ıσφµn/4µ−1/2 = κ2P̃σ/κ.

Now, Pσ = κ2P̃σ/κ still satisfies all the assumptions of Section 2, thus directly con-

jugation by e−ıσφ and multiplication from both sides by µ−1/2 gives an operator
to which the results of Section 2 apply. This is relevant because if we have an
asymptotically hyperbolic manifold with ends of different sectional curvature, the
manifold fits into the general framework directly, including the semiclassical esti-
mates28. A particular example is de Sitter-Schwarzschild space, on which resonances
and wave propagation were analyzed from this asymptotically hyperbolic perspec-
tive in [46, 5, 39]; this is a special case of the Kerr-de Sitter family discussed in
Section 6. The stability of estimates for operators such as Pσ under small smooth,
in the b-sense, perturbations of the coefficients of the associated d’Alembertian
means that all the properties of de Sitter-Schwarzschild obtained by this method
are also valid for Kerr-de Sitter with sufficiently small angular momentum. How-
ever, working directly with Kerr-de Sitter space, and showing that it satisfies the
assumptions of Section 2 on its own, gives a better result; we accomplish this in
Section 6.

Remark 4.5. We now return to our previous remarks regarding the fact that our
solution disallows the conormal singularities (µ ± i0)ıσ from the perspective of
conformally compact spaces of dimension n − 1. The two indicial roots on these
spaces29 correspond to the asymptotics µ±ıσ/2+(n−2)/4 in µ > 0. Thus for the
operator

µ−1/2µıσ/2−n/4(∆g0 −
(n− 2)2

4
− σ2)µ−ıσ/2+n/4µ−1/2,

or indeed Pσ, they correspond to
(
µ−ıσ/2+n/4µ−1/2

)−1

µ±ıσ/2+(n−2)/4 = µıσ/2±ıσ/2.

Here the indicial root µ0 = 1 corresponds to the smooth solutions we construct for
Pσ, while µ

ıσ corresponds to the conormal behavior we rule out. Back to the original
Laplacian, thus, µ−ıσ/2+(n−2)/4 is the allowed asymptotics and µıσ/2+(n−2)/4 is the
disallowed one. Notice that Re ıσ = − Imσ, so the disallowed solution is growing
at µ = 0 relative to the allowed one, as expected in the physical half plane, and the
behavior reverses when Imσ < 0. Thus, in the original asymptotically hyperbolic
picture one has to distinguish two different rates of growths, whose relative size

28For ‘classical’ results, the interior is automatically irrelevant.
29Note that µ = x2.
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changes. On the other hand, in our approach, we rule out the singular solution and
allow the non-singular (smooth one), so there is no change in behavior at all for
the analytic continuation.

Remark 4.6. For even asymptotically de Sitter metrics on an (n − 1)-dimensional
manifoldX ′

0 with boundary, the methods for asymptotically hyperbolic spaces work,
except Pσ − ıQσ and P ∗

σ + ıQσ switch roles, which does not affect Fredholm prop-
erties, see Remark 2.7. Again, evenness means that we may choose a product
decomposition near the boundary such that

(4.33) g0 =
dx2 − h

x2

there, where h is an even family of Riemannian metrics; as above, we take x to be
a globally defined boundary defining function. Then with µ̃ = x2, so µ̃ > 0 is the
Lorentzian region, σ in place of σ (recalling that our aim is to get to P ∗

σ + ıQσ)

the above calculations for �g0 − (n−2)2

4 − σ2 in place of ∆g0 − (n−2)2

4 − σ2 leading
to (4.31) all go through with µ replaced by µ̃, σ replaced by σ and ∆h replaced by
−∆h. Letting µ = −µ̃, and conjugating by (1 + µ)ıσ/4 as above, yields

− 4µD2
µ + 4σDµ + σ2 −∆h + 4ıDµ + 2ıγ(µDµ − σ/2− ı(n− 2)/4),(4.34)

modulo terms that can be absorbed into the error terms in operators in the class
(4.23), i.e. this is indeed of the form P ∗

σ + ıQσ in the framework of Subsection 4.8,
at least near µ̃ = 0. If now X ′

0 is extended to a manifold without boundary in
such a way that in µ̃ < 0, i.e. µ > 0, one has a classically elliptic, semiclassically
either non-trapping or mildly trapping problem, then all the results of Section 2
are applicable.

5. Minkowski space

Perhaps our simplest example is Minkowski space M = Rn with the metric

g0 = dz2n − dz21 − . . .− dz2n−1.

Also, let M̂ = Rn be the radial (or geodesic) compactification of space-time, see

[38, Section 1]; thus M̂ is the n-ball, with boundary X = Sn−1. Writing z′ =
(z1, . . . , zn−1) = rω in terms of Euclidean product coordinates, and t = zn, local

coordinates on M̂ in |z′| > ǫ|zn|, ǫ > 0, are given by

(5.1) s =
t

r
, ρ = r−1, ω,

while in |zn| > ǫ|z′|, by

(5.2) ρ̃ = |t|−1, Z =
z′

|t| .

Note that in the overlap, the curves given by Z constant are the same as those
given by s, ω constant, but the actual defining function of the boundary we used,
namely ρ̃ vs. ρ, differs, and does so by a factor which is constant on each fiber. For
some purposes it is useful to fix a global boundary defining function, such as ρ̂ =
(r2+t2)−1/2. We remark that if one takes a Mellin transform of functions supported
near infinity along these curves, and uses conjugation by the Mellin transform to
obtain families of operators on X = ∂M̂ , the effect of changing the boundary
defining function in this manner is conjugation by a non-vanishing factor which
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does not affect most relevant properties of the induced operator on the boundary,
so one can use local defining functions when convenient.

The metric g0 is a Lorentzian scattering metric in the sense of Melrose [38]
(where, however, only the Riemannian case was discussed) in that it is a symmetric

non-degenerate bilinear form on the scattering tangent bundle of M̂ of Lorentzian
signature. This would be the appropriate locus of analysis of the Klein-Gordon
operator, �g0−λ for λ > 0, but for λ = 0 the scattering problem becomes degenerate
at the zero section of the scattering cotangent bundle at infinity. However, one
can convert �g0 to a non-degenerate b-operator on M̂ : it is of the form ρ̂2P̃ ,

P̃ ∈ Diff2
b(X), where ρ̂ is a defining function of the boundary. In fact, following

Wang [57], we consider (taking into account the different notation for dimension)

ρ−2ρ−(n−2)/2
�g0ρ

(n−2)/2 = �g̃0 +
(n− 2)(n− 4)

4
;

G̃0 = (1− s2)∂2
s − 2(s∂s)(ρ∂ρ)− (ρ∂ρ)

2 − ∂2
ω,

(5.3)

with G̃0 being the dual metric of g̃0. Again, this ρ is not a globally valid defining
function, but changing to another one does not change the properties we need30

where this is a valid defining function. It is then a straightforward calculation that
the induced operator on the boundary is

P ′
σ = Ds(1− s2)Ds − σ(sDs +Dss)− σ2 −∆ω +

(n− 2)(n− 4)

4
,

In the other coordinate region, where ρ̃ is a valid defining function, and t > 0, it is
even easier to compute

(5.4) �g0 = ρ̃2
(
(ρ̃Dρ̃)

2 + 2(ρ̃Dρ̃)ZDZ + (ZDZ)
2 −∆Z − ı(ρ̃Dρ̃)− ıZDZ

)
,

so after Mellin transforming ρ̃−2
�, we obtain

P̃σ = (σ − ı/2)2 +
1

4
+ 2(σ − ı/2)ZDZ + (ZDZ)

2 −∆Z .

Conjugation by ρ̃(n−2)/2 simply replaces σ by σ − ın−2
2 , yielding that the Mellin

transform Pσ of ρ̃−(n−2)/2ρ̃−2
�g0 ρ̃

(n−2)/2 is

Pσ = (σ − ı(n− 1)/2)2 ++
1

4
+ 2(σ − ı(n− 1)/2)ZDZ + (ZDZ)

2 −∆Z

= (ZDZ + σ − ı(n− 1)/2)2 +
1

4
−∆Z .

(5.5)

Note that Pσ and P ′
σ are not the same operator in different coordinates; they are

related by a σ-dependent conjugation. The operator Pσ in (5.5) is almost exactly
the operator arising from de Sitter space on the front face, see the displayed equation
after [51, Equation 7.4] (the σ in [51, Equation 7.4] is ıσ in our notation as already
remarked in Section 4), with the only change that our σ would need to be replaced

by −σ, and we need to add (n−1)2

4 − 1
4 to our operator. (Since replacing t > 0 by

t < 0 in the region we consider reverses the sign when relating Dρ and Dt, the signs
would agree with those from the discussion after [51, Equation 7.4] at the backward
light cone.) However, we need to think of this as the adjoint of an operator of the
type we considered in Section 4 up to Remark 4.6, or after [51, Equation 7.4] due

30Only when Imσ → ∞ can such a change matter.
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to the way we need to propagate estimates. (This is explained below.) Thus, we
think of Pσ as the adjoint (with respect to |dZ|) of

P ∗
σ = (ZDZ + σ − ı(n− 1)/2)2 +

1

4
−∆Z

= (σ − ı(n− 1)/2)2 + 2(σ − ı(n− 1)/2)ZDZ + (ZDZ)
2 +

1

4
−∆Z

= (ZDZ + σ − ı(n− 1))(ZDZ + σ)−∆Z +
1

4
− (n− 1)2

4
,

which is like the de Sitter operator after [51, Equation 7.4], except, denoting σ of

that paper by σ̌, ıσ̌ = σ, and we need to take λ = (n−1)2

4 − 1
4 in [51, Equation 7.4].

Thus, all of the analysis of Section 4 applies.
In particular, note that Pσ is elliptic inside the light cone, where s > 1, and

hyperbolic outside the light cone, where s < 1. It follows from Subsection 4.9 that
Pσ is a conjugate of the hyperbolic Laplacian plus a potential (decaying quadrat-
ically in the usual conformally compact sense) inside the light cones31, and of the
Klein-Gordon operator plus a potential on de Sitter space outside the light cones:
with ν = (1− |Z|2)1/2 = (cosh ρHn−1)−1,

ν
n
2
−ıσPσν

ıσ−n
2

= −ν−1

(
∆Hn−1 − σ2 − (n− 2)2

4
− ν2

n(n− 2)− (n− 1)2

4

)
ν−1

= − cosh ρHn−1

(
∆Hn−1 − σ2 − (n− 2)2

4
+

1

4
(cosh ρHn−1)−2

)
cosh ρHn−1 .

We remark that in terms of dynamics on bS∗M̂ , as discussed in Subsection 3.1,
there is a sign difference in the normal to the boundary component of the Hamilton
vector field (normal in the b-sense, only), so in terms of the full b-dynamics (rather
than normal family dynamics) the radial points here are sources/sinks, unlike the
saddle points in the de Sitter case. This is closely related to the appearance of
adjoints in the Minkowski problem (as compared to the de Sitter one).

This immediately assures that not only the wave equation on Minkowski space
fits into our framework, wave propagation on it is stable under small smooth per-
turbation in Diff2

b(X) of ρ̂2�g0 .
Further, it is shown in [51, Corollary 7.18] that the problem for P ∗

σ is invertible
in the interior of hyperbolic space, but with the behavior that corresponds to our
more global point of view at the boundary, unless

−ıσ = σ̌ ∈ −n− 1

2
±
√

(n− 1)2

4
− λ− N = −n− 1

2
± 1

2
− N = −n− 2

2
− N,

i.e.

(5.6) σ ∈ −ı(
n− 2

2
+ N).

Recall also from the proof of Proposition 4.2 that (Pσ−ıQσ)
−1 may have additional

poles as compared to the resolvent of the asymptotically hyperbolic model, but the
resonant states would vanish in a neighborhood of the event horizon and the elliptic
region — with the vanishing valid in a large region, denoted by µ > c, c < 0,

31As pointed out to the author by Gunther Uhlmann, this means that the Klein model of

hyperbolic space is the one induced by the Minkowski boundary reduction.
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there, depending on the support of Qσ. For (P ∗
σ + ıQσ)

−1 the resonant states
corresponding to these additional poles may have support in the elliptic region,
but their coefficients are given by pairing with resonant states of (Pσ − ıQσ)

−1.
Thus, if f vanishes in µ < c then (P ∗

σ + ıQσ)
−1f only has the poles given by the

asymptotically hyperbolic model.
To recapitulate, Pσ is of the form described in Section 2, at least if we restrict

away from the backward light cone32. To be more precise, for the forward problem
for the wave equation, the adjoint of the operator Pσ we need to study satisfies the
properties in Section 2, i.e. singularities are propagated towards the radial points
at the forward light cone, which means that our solution lies in the ‘bad’ dual
spaces – of course, these are just the singularities corresponding to the radiation
field of Friedlander [25], see also [45], which is singular on the radial compactifica-
tion of Minkowski space. However, by elliptic regularity or microlocal propagation
of singularities, we of course automatically have estimates in better spaces away
from the boundary of the light cone. We also need a complex absorbing potential
supported, say, near s = −1/2 in the coordinates (5.1). If we wanted to, we could
instead add a boundary at s = −1/2, or indeed at s = 0 (which would give the
standard Cauchy problem), see Remark 2.5. By standard uniqueness results based
on energy estimates, this does not affect the solution in s > 0, say, when the forcing
f vanishes in s < 0 and we want the solution u to vanish there as well.

We thus deduce from Lemma 3.1 and the analysis of Section 2:

Theorem 5.1. Let K be a compact subset of the interior of the light cone at infinity
on M̂ . Suppose that g is a Lorentzian scattering metric and ρ̂2�g is sufficiently

close to ρ̂2�g0 in Diff2
b(M̂), with n the dimension of M̂ . Then solutions of the

wave equation �gu = f vanishing in t < 0 and f ∈ Ċ∞(M̂) = S(Rn) have a
polyhomogeneous asymptotic expansion in the sense of [42] in K of the form ∼∑

j

∑
k≤mj

ajkρ̂
δj (log |ρ̂|)k, with ajk in C∞, and with

δj = ıσj +
n− 2

2
,

with σj being a point of non-invertibility of Pσ on the appropriate function spaces.
On Minkowski space, the exponents are given by

δj = ı(−ı
n− 2

2
− ıj) +

n− 2

2
= n− 2 + j, j ∈ N,

and they depend continuously on the perturbation if one perturbs the metric. A
distributional version holds globally.

For polyhomogeneous f the analogous conclusion holds, except that one has to add
to the set of exponents (index set) the index set of f , increased by 2 (corresponding
factoring out ρ̂2 in (5.4)), in the sense of extended unions [42, Section 5.18].

Remark 5.2. Here a compact K is required since we allow drastic perturbations
that may change where the light cone hits infinity. If one imposes more structure,
so that the light cone at infinity is preserved, one can get more precise results.

32The latter is only done to avoid combining for the same operator the estimates we state
below for an operator Pσ and its adjoint; as follows from the remark above regarding the sign of

σ, for the operator here, the microlocal picture near the backward light cone is like that for the
Pσ considered in Section 2, and near the forward light cone like that for P ∗

σ . It is thus fine to
include both the backward and the forward light cones; we just end up with a combination of the

problem we study here and its adjoint, and with function spaces much like in [38, 54].
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As usual, the smallness of the perturbation is only relevant to the extent that
rough properties of the global dynamics and the local dynamics at the radial points
are preserved (so the analysis is only impacted via dynamics). There are no size
restrictions on perturbations if one keeps the relevant features of the dynamics.

In a different class of spaces, namely asymptotically conic Riemannian spaces,
analogous and more precise results exist for the induced product wave equation, see
especially the work of Guillarmou, Hassell and Sikora [27]; the decay rate in their
work is the same in odd dimensional space-time (i.e. even dimensional space). In
terms of space-time, these spaces look like a blow-up of the ‘north and south poles’
Z = 0 of Minkowski space, with product type structure in terms of space time,
but general smooth dependence on ω (with the sphere in ω replaceable by another
compact manifold). In that paper a parametrix is constructed for ∆g at all energies
by combining a series of preceding papers. Their conclusion in even dimensional
space-time is one order better; this is presumably the result of a global (as opposed
to local, via complex absorbing potentials near, say, t/r = −1/2) cancellation. It
is a very interesting question whether our analysis can be extended to non-product
versions of their setting.

Note that for the Mellin transform of �g0 one can perform a more detailed
analysis, giving Lagrangian regularity at the light cone, with high energy control.
This would be preserved for other metrics that preserve the light cone at infinity
to sufficiently high order. The result is an expansion on the M̂ blown up at the
boundary of the light cone, with the singularities corresponding to the Friedlander
radiation field. However, in this relatively basic paper we do not pursue this further.

6. The Kerr-de Sitter metric

6.1. The basic geometry. We now give a brief description of the Kerr-de Sitter
metric on

Mδ = Xδ × [0,∞)τ , Xδ = (r− − δ, r+ + δ)r × S
2,

X+ = (r−, r+)r × S
2, X− =

(
(r− − δ, r+ + δ)r \ [r−, r+]r

)
× S

2,

where r± are specified later. We refer the reader to the excellent treatments of the
geometry by Dafermos and Rodnianski [13, 14] and Tataru and Tohaneanu [49, 48]
for details, and Dyatlov’s paper [20] for the set-up and most of the notation we
adopt.

Away from the north and south poles q± we use spherical coordinates (θ, φ) on
S2:

S
2 \ {q+, q−} = (0, π)θ × S

1
φ.

Thus, away from [0,∞)µ̃ × [0,∞)τ × {q+, q−}, the Kerr-de Sitter space-time is

(r− − δ, r+ + δ)r × [0,∞)τ × (0, π)θ × S
1
φ

with the metric we specify momentarily.
The Kerr-de Sitter metric has a very similar microlocal structure at the event

horizon to de Sitter space. Rather than specifying the metric g, we specify the dual
metric; it is

G = −ρ−2
(
µ̃∂2

r +
(1 + γ)2

κ sin2 θ
(α sin2 θ∂t̃ + ∂φ̃)

2 + κ∂2
θ

− (1 + γ)2

µ̃
((r2 + α2)∂t̃ + α∂φ̃)

2
)(6.1)
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with rs,Λ, α constants, rs,Λ ≥ 0,

ρ2 = r2 + α2 cos2 θ,

µ̃ = (r2 + α2)(1− Λr2

3
)− rsr,

κ = 1 + γ cos2 θ,

γ =
Λα2

3
.

While G is defined for all values of the parameters rs,Λ, α, with rs,Λ ≥ 0, we make
further restrictions. Note that under the rescaling

r′ =
√
Λr, t̃′ =

√
Λt̃, r′s =

√
Λrs, α′ =

√
Λα, Λ′ = 1,

Λ−1G would have the same form, but with all the unprimed variables replaced by
the primed ones. Thus, effectively, the general case Λ > 0 is reduced to Λ = 1.

Our first assumption is that µ̃(r) = 0 has two positive roots r = r±, r+ > r−,
with

(6.2) ̥± = ∓∂µ̃

∂r
|r=r± > 0;

r+ is the de Sitter end, r− is the Kerr end. Since µ̃ is a quartic polynomial, is > 0
at r = 0 if |α| > 0, and goes to −∞ at ±∞, it can have at most 3 positive roots;
the derivative requirements imply that these three positive roots exist, and r± are
the larger two of these. If α = 0, (6.2) is satisfied if and only if 0 < 9

4r
2
sΛ < 1.

Indeed, if (6.2) is satisfied, ∂
∂r (r

−4µ̃) must have a zero between r− and r+, where

µ̃ must be positive; ∂
∂r (r

−4µ̃) = 0 gives r = 3
2rs, and then µ̃(r) > 0 gives 1 > 9

4r
2
sΛ.

Conversely, if 0 < 9
4r

2
sΛ < 1, then the cubic polynomial r−1µ̃ = r − Λ

3 r
3 − rs is

negative at 0 and at +∞, and thus will have exactly two positive roots if it is positive
at one point, which is the case at r = 3

2rs. Indeed, note that r
−4µ̃ = r−2− Λ

3 −rsr
−3

is a cubic polynomial in r−1, and ∂r(r
−4µ̃) = −2r−3

(
1− 3rs

2r

)
, so r−4µ̃ has a non-

degenerate critical point at r = 3
2rs, and if 0 ≤ 9

4r
2
sΛ < 1, then the value of µ̃ at

this critical point is positive. Correspondingly, for small α (depending on 9
4r

2
sΛ,

but with uniform estimates in compact subintervals of (0, 1)), r± satisfying (6.2)
still exist.

We next note that for α not necessarily zero, if (6.2) is satisfied then d2µ̃
dr2 =

2− 2
3Λα

2 − 4Λr2 must have a positive zero, so we need

(6.3) 0 ≤ γ =
Λα2

3
< 1,

i.e. (6.2) implies (6.3).
Physically, Λ is the cosmological constant, rs = 2M the Schwarzschild radius,

with M being the mass of the black hole, α the angular momentum. Thus, de
Sitter-Schwarzschild space is the particular case with α = 0, while further de Sitter
space is the case when rs = 0 in which limit r− goes to the origin and simply
‘disappears’, and Schwarzschild space is the case when Λ = 0, in which case r+
goes to infinity, and ‘disappears’, creating an asymptotically Euclidean end. On
the other hand, Kerr is the special case Λ = 0, with again r+ → ∞, so the structure
near the event horizon is unaffected, but the de Sitter end is replaced by a different,
asymptotically Euclidean, end. One should note, however, that of the limits Λ → 0,
α → 0 and rs → 0, the only non-degenerate one is α → 0; in both other cases the
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geometry changes drastically corresponding to the disappearance of the de Sitter,
resp. the black hole, ends. Thus, arguably, from a purely mathematical point of
view, de Sitter-Schwarzschild space-time is the most natural limiting case. Perhaps
the best way to follow this section then is to keep de Sitter-Schwarzschild space in
mind. Since our methods are stable, this automatically gives the case of small α;
of course working directly with α gives better results.

In fact, from the point of view of our setup, all the relevant features are symbolic,
including dependence on the Hamiltonian dynamics. Thus, the only not completely
straightforward part in showing that our abstract hypotheses are satisfied is the
semi-global study of dynamics. The dynamics of the rescaled Hamilton flow depends
smoothly on α, so it is automatically well-behaved for finite times for small α if it
is such for α = 0; here rescaling is understood on the fiber-radially compactified

cotangent bundle T
∗
Xδ (so that one has a smooth dynamical system whose only

non-compactness comes from that of the base variables). The only place where
dynamics matters for unbounded times are critical points or trapped orbits of the

Hamilton vector field. In S∗Xδ = ∂T
∗
Xδ, one can analyze the structure easily for

all α, and show that for a specific range of α, given below implicitly by (6.12),
the only critical points/trapping is at fiber-infinity SN∗Y of the conormal bundle
of the event horizon Y . We also analyze the semiclassical dynamics (away from

S∗Xδ = ∂T
∗
Xδ) directly for α satisfying (6.22), which allows α to be comparable

to rs. We show that in this range of α (subject to (6.2) and (6.12)), the only
trapping is hyperbolic trapping, which was analyzed by Wunsch and Zworski [58];
further, we also show that the trapping is normally hyperbolic for small α, and is
thus structurally stable then.

In summary, apart from the full analysis of semiclassical dynamics, we work with
arbitrary α for which (6.2) and (6.12) holds, which are both natural constraints,
since it is straightforward to check the requirements of Section 2 in this generality.
Even in the semiclassical setting, we work under the relatively large α bound, (6.22),
to show hyperbolicity of the trapping, and it is only for normal hyperbolicity that
we deal with (unspecified) small α.

We now put the metric (6.1) into a form needed for the analysis. Since the metric

is not smooth b-type in terms of r, θ, φ̃, e−t̃, in order to eliminate the µ̃−1 terms we
let

t = t̃+ h(r), φ = φ̃+ P (r)

with

(6.4) h′(r) = ∓1 + γ

µ̃
(r2 + α2)∓ c, P ′(r) = ∓1 + γ

µ̃
α

near r±. Here c = c(r) is a smooth function of r (unlike µ̃−1!), that is to be specified.
One also needs to specify the behavior in µ̃ > 0 bounded away from 0, much like we
did so in the asymptotically hyperbolic setting; this affects semiclassical ellipticity
for σ away from the reals as well as semiclassical propagation there. We at first
focus on the ‘classical’ problem, however, for which the choice of c is irrelevant.
Then the dual metric becomes

G = −ρ−2
(
µ̃
(
∂r ∓ c∂t

)2 ∓ 2(1 + γ)(r2 + α2)
(
∂r ∓ c∂t

)
∂t

∓ 2(1 + γ)α
(
∂r ∓ c∂t

)
∂φ + κ∂2

θ +
(1 + γ)2

κ sin2 θ
(α sin2 θ∂t + ∂φ)

2
)
.
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We write τ = e−t, so −τ∂τ = ∂t, and b-covectors as

ξ dr + σ
dτ

τ
+ η dθ + ζ dφ,

so

ρ2G = −µ̃
(
ξ ± cσ

)2 ∓ 2(1 + γ)(r2 + α2)
(
ξ ± cσ

)
σ

± 2(1 + γ)α
(
ξ ± cσ

)
ζ − κη2 − (1 + γ)2

κ sin2 θ
(−α sin2 θσ + ζ)2.

Note that the sign of ξ here is the opposite of the sign in our de Sitter discussion
in Section 4 where it was the dual variable (thus the symbol of Dµ) of µ, which is

r−2µ̃ in the present notation, since dµ̃
dr < 0 at the de Sitter end, r = r+.

A straightforward calculation shows det g = (detG)−1 = −(1 + γ)4ρ4 sin2 θ, so
apart from the usual polar coordinate singularity at θ = 0, π, which is an artifact of
the spherical coordinates and is discussed below, we see at once that g is a smooth
Lorentzian b-metric. In particular, it is non-degenerate, so the d’Alembertian �g =
d∗d is a well-defined b-operator, and

σb,2(ρ
2
�g) = ρ2G.

Factoring out ρ2 does not affect any of the statements below but simplifies some
formulae, see Footnote 9 and Footnote 12 for general statements; one could also
work with G directly.

6.2. The ‘spatial’ problem: the Mellin transform. The Mellin transform, Pσ,
of ρ2�g has the same principal symbol, including in the high energy sense,

pfull = σfull(Pσ) =− µ̃
(
ξ ± cσ

)2 ∓ 2(1 + γ)(r2 + α2)
(
ξ ± cσ

)
σ

± 2(1 + γ)α
(
ξ ± cσ

)
ζ − p̃full

(6.5)

with

p̃full = κη2 +
(1 + γ)2

κ sin2 θ
(−α sin2 θσ + ζ)2,

so p̃full ≥ 0 for real σ. Thus,

Hpfull
=
(
− 2µ̃

(
ξ ± cσ

)
∓ 2(1 + γ)(r2 + α2)σ ± 2(1 + γ)αζ

)
∂r

−
(
− ∂µ̃

∂r

(
ξ ± cσ

)2 ∓ 4r(1 + γ)σ
(
ξ ± cσ

)
± ∂c

∂r
c̃σ
)
∂ξ

± 2(1 + γ)α
(
ξ ± cσ

)
∂φ − Hp̃full

,

c̃ = −2µ̃
(
ξ ± cσ

)
∓ 2(1 + γ)(r2 + α2)σ ± 2(1 + γ)αζ.

To deal with q+ given by θ = 0 (q− being similar), let

y = sin θ sinφ, z = sin θ cosφ, so cos2 θ = 1− (y2 + z2).

We can then perform a similar calculation yielding that if λ is the dual variable to
y and ν is the dual variable to z then

ζ = zλ− yν

and

p̃full = (1 + γ cos2 θ)−1
(
(1 + γ)2(λ2 + ν2) + p̃′′

)
+ p̃♯full,

p̃♯full = (1 + γ cos2 θ)−1(1 + γ)2(2α sin2 θσ − ζ)ασ,
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with p̃′′ smooth and vanishing quadratically at the origin. Correspondingly, by
(6.5), Pσ is indeed smooth at q±. Thus, one can perform all symbol calculations
away from q±, since the results will extend smoothly to q±, and correspondingly
from now on we do not emphasize these two poles.

In the sense of ‘classical’ microlocal analysis, we thus have:

p = σ2(Pσ) = −µ̃ξ2 ± 2(1 + γ)αξζ − p̃, p̃ = κη2 +
(1 + γ)2

κ sin2 θ
ζ2 ≥ 0,

Hp =
(
− 2µ̃ξ ± 2(1 + γ)αζ

)
∂r ± 2(1 + γ)αξ∂φ +

∂µ̃

∂r
ξ2∂ξ − Hp̃.

(6.6)

6.3. Microlocal geometry of Kerr-de Sitter space-time. As already stated
in Section 2, it is often convenient to consider the fiber-radial compactification

T
∗
Xδ of the cotangent bundle T ∗Xδ, with S∗Xδ considered as the boundary at

fiber-infinity of T
∗
Xδ.

We let

Λ+ = N∗{µ̃ = 0} ∩ {∓ξ > 0}, Λ− = N∗{µ̃ = 0} ∩ {±ξ > 0},
with the sign inside the braces corresponding to that of r±. This is consistent
with our definition of Λ± in the de Sitter case. We let L± = ∂Λ± ⊂ S∗Xδ. Since
Λ+ ∪ Λ− is given by η = ζ = 0, µ̃ = 0, Λ± are preserved by the classical dynamics
(i.e. with σ = 0). Note that the special structure of p̃ is irrelevant for the purposes of
this observation; only the quadratic vanishing at L± matters. Even for other local
aspects of analysis, considered below, the only relevant part33, is that Hpp̃ vanishes
cubically at L±, which in some sense reflects the behavior of the linearization of p̃.

Figure 6. The cotangent bundle near the event horizon S = {µ̃ =
0}. It is drawn in a fiber-radially compactified view. Σ± are the
components of the (classical) characteristic set containing L±. The
characteristic set crosses the event horizon on both components;
here the part near L+ is hidden from view. The projection of this
region to the base space is the ergoregion. Semiclassically, i.e. the

interior of T
∗
Xδ, for z = h−1σ > 0, only Σ~,+ can enter µ̃ > α2,

see the paragraph after (6.14).

To analyze the dynamics near L± on the characteristic set, starting with the
classical dynamics, we note that

Hp̃r = 0, Hp̃ξ = 0, Hpζ = 0, Hp̃p̃ = 0, Hpp̃ = 0;

33This could be relaxed: quadratic behavior with small leading term would be fine as well;
quadratic behavior follows from Hp being tangent to Λ±; smallness is needed so that Hp|ξ|−1 can
be used to dominate this in terms of homogeneous dynamics, so that the dynamical character of

L± (sink/source) is as desired.
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note that Hpp̃ = 0 and Hpζ = 0 correspond to the integrability of the Hamiltonian
dynamical system; these were observed by Carter [8] in the Kerr setting. Further-
more,

(6.7) Hp|ξ|−1|S∗Xδ
= −(sgn ξ)

∂µ̃

∂r
,

so at ∂N∗{µ̃ = 0} it is given by ±(sgn ξ)̥±, which is bounded away from 0. We
note that

(6.8) |ξ|−1
Hp(|ξ|−2p̃)|S∗Xδ

= −2(sgn ξ)
∂µ̃

∂r
p̃|ξ|−2.

Since p̃ = 0 and µ̃ 6= 0 implies ξ = 0 on the classical characteristic set (i.e. when we
take σ = 0), which cannot happen on S∗X (we are away from the zero section!), this
shows that the Hamilton vector field is non-radial except possibly at Λ±. Moreover,

Hp

(
µ̃∓ 2(1 + γ)α

ζ

ξ

)
|S∗Xδ

= −2|ξ|
(
µ̃∓ 2(1 + γ)α

ζ

ξ

)
(sgn ξ)

∂µ̃

∂r
;

as usual, this corresponds to p̂ = |ξ|−2p at L±. Finally, the imaginary part of the
subprincipal symbol at L± is

((sgn ξ)
∂µ̃

∂r
)(β± Imσ)|ξ|, where

β± = ∓2

(
dµ̃

dr

)−1

(1 + γ)(r2 + α2)|r=r± = 2̥−1
± (1 + γ)(r2± + α2) > 0;

(6.9)

here (sgn ξ)∂µ̃∂r was factored out in view of (6.7), (2.5) and (2.3).
Thus, L+ is a sink, L− a source. Furthermore, in the classical sense, ξ = 0 is

disjoint from the characteristic set in the region of validity of the form (6.5) of the
operator, as well as at the poles of the sphere (i.e. the only issue is when r is farther
from r±), so the characteristic set has two components there with L± lying in
different components. We note that that as γ < 1, κ sin2 θ = sin2 θ(1+ γ)− γ sin4 θ
has its maximum at θ = π/2, where it is 1. Since on the characteristic set

(6.10) α2ξ2 + (1 + γ)2ζ2 ≥ ±2(1 + γ)αξζ = p̃+ µ̃ξ2 ≥ η2 + (1 + γ)2ζ2 + µ̃ξ2

and ξ 6= 0, we conclude that

(6.11) µ̃ ≤ α2

there, so this form of the operator remains valid, and the characteristic set can
indeed be divided into two components, separating L±.

Next, we note that if α is so large that at r = r0 with dµ̃
dr (r0) = 0, one has

µ̃(r0) = α2, then letting η0 = 0, θ0 = π
2 , ξ0 6= 0, ζ0 = ± α

1+γ ξ0, the bicharacteristics

through (r0, θ0, φ0, ξ0, η0, ζ0) are stationary for any φ0, so the operator is classically
trapping in the strong sense that not only is the Hamilton vector field radial, but it
vanishes. Since such vanishing means that weights cannot give positivity in positive
commutator estimates, see Section 2, it is natural to impose the restriction on α
that

(6.12) r0 ∈ (r+, r−),
dµ̃

dr
(r0) = 0 ⇒ α2 < µ̃(r0).

Under this assumption, by (6.11), the ergoregions from the two ends do not inter-
sect.
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Finally, we show that bicharacteristics leave the region µ̃ > µ̃0, where µ̃0 < 0
is such that dµ̃

dr is bounded away from 0 on [µ̃0, (1 + ǫ)α2]µ̃ for some ǫ > 0, which
completes checking the hypotheses in the classical sense. Note that by (6.2) and
(6.12) such µ̃0 and ǫ exists. To see this, we use p̃ to measure the size of the
characteristic set over points in the base. Using ab ≤ (1 + ǫ)a2 + b2/(1 + ǫ) and
κ sin2 θ ≤ 1, we note that on the characteristic set

(1 + ǫ)α2ξ2 +
(1 + γ)2

1 + ǫ
ζ2 ≥ p̃+ µ̃ξ2 ≥ ǫ

1 + ǫ
p̃+

(1 + γ)2

1 + ǫ
ζ2 + µ̃ξ2,

so
((1 + ǫ)α2 − µ̃) ≥ ǫ

1 + ǫ
|ξ|−2p̃,

where now both sides are homogeneous of degree zero, or equivalently functions on
S∗Xδ. Note that p̃ = 0 implies that ξ 6= 0 on S∗Xδ, so our formulae make sense. By
(6.8), using that ∂µ̃

∂r is bounded away from 0, |ξ|−2p̃ is growing exponentially in the
forward/backward direction along the flow as long as the flow remains in a region
µ̃ ≥ µ̃0, where the form of the operator is valid (which is automatic in this region,
as farther on ‘our side’ of the event horizon, X+, where the form of the operator
is not valid, it is elliptic), which shows that the bicharacteristics have to leave this
region. As noted already, this proves that the operator fits into our framework in
the classical sense.

6.4. Semiclassical behavior. The semiclassical principal symbol is

p~,z =− µ̃
(
ξ ± cz

)2 ∓ 2(1 + γ)(r2 + α2)
(
ξ ± cz

)
z ± 2(1 + γ)α

(
ξ ± cz

)
ζ − p̃~,z

(6.13)

with

p̃~,z = κη2 +
(1 + γ)2

κ sin2 θ
(−α sin2 θz + ζ)2.

Recall now that Mδ = Xδ× [0,∞)τ , and that, due to Section 3.2, we need to choose
c in our definition of τ so that dτ

τ is time-like with respect to G. But

〈dτ
τ
,
dτ

τ
〉G = −µ̃c2 − 2c(1 + γ)(r2 + α2)− α2(1 + γ)2 sin2 θ

κ
,

and as this must be positive for all θ, we need to arrange that

(6.14) µ̃c2 + 2c(1 + γ)(r2 + α2) + α2(1 + γ)2 < 0,

and this in turn suffices. Note that c = −µ̃−1(1+γ)(r2+α2) automatically satisfies
this in µ̃ > 0; this would correspond to undoing our change of coordinates in (6.4)
(which is harmless away from µ̃ = 0, but of course c needs to be smooth at µ̃ = 0).
At µ̃ = 0, (6.14) gives a (negative) upper bound for c; for µ̃ > 0 we have an interval
of possible values of c; for µ̃ < 0 large negative values of c always work. Thus,
we may choose a smooth function c such that (6.14) is satisfied everywhere, and
we may further arrange that c = −µ̃−1(1 + γ)(r2 + α2) for µ̃ > µ̃1 where µ̃1 is an
arbitrary positive constant; in this case, as already discussed, p~,z is semiclassically
elliptic when Im z 6= 0.

Note also that, as discussed in Subsection 3.2, there is only one component of
the characteristic set in µ̃ > α2 by (6.11), namely Σ~,sgn(Re z).

It remains to discuss trapping. Note that the dynamics depends continuously on
α, with α = 0 being the de Sitter-Schwarzschild case, when there is no trapping near
the event horizon, so the same holds for Kerr-de Sitter with slow rotation. Below we
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first describe the dynamics in de Sitter-Schwarzschild space explicitly, and then, in
(6.22), give an explicit range of α in which the non-trapping dynamical assumption,
apart from hyperbolic trapping, is satisfied.

First, on de Sitter-Schwarzschild space, recalling that c is irrelevant for the dy-
namics for real z, we may take c = 0 (i.e. otherwise we would simply change this
calculation by the effect of a symplectomorphism, corresponding to a conjugation,
which we note does not affect the ‘base’ variables on the cotangent bundle). Then

p~,z = −µ̃ξ2 ∓ 2r2ξz − p̃~,z, p̃~,z = η2 +
ζ2

sin2 θ
,

so

Hp~,z
= −2(µ̃ξ ± r2z)∂r +

(
∂µ̃

∂r
ξ2 ± 4rzξ

)
∂ξ − Hp̃~,z

,

hence Hp~,z
r = −2(µ̃ξ± r2z), and so Hp~,z

r = 0 implies ∓z = r−2µ̃ξ. We first note
that Hp~,z

r cannot vanish in T ∗Xδ in µ̃ ≤ 0 (though it can vanish at fiber infinity
at L±) since (for z 6= 0)

(6.15) µ̃ ≤ 0 and Hp~,z
r = 0 ⇒ µ̃ξ 6= 0 and p~,z = µ̃ξ2 − p̃~,z < 0.

It remains to consider Hp~,z
r = 0 in µ̃ > 0. At such a point

H
2
p~,z

r = −2µ̃Hp~,z
ξ = −2µ̃ξ2

(
∂µ̃

∂r
− 4r−1µ̃

)
= −2µ̃ξ2r4

∂(r−4µ̃)

∂r
,

so as ∓z = r−2µ̃ξ, so ξ 6= 0, by the discussion after (6.2),

µ̃ > 0, ±(r − 3

2
rs) > 0, Hp~,z

r = 0 ⇒ ±H
2
p~,z

r > 0,

and thus the gluing hypotheses of [15] are satisfied arbitrarily close to34 r = 3
2rs.

Furthermore, as p~,z = −µ̃−1(µ̃ξ ± r2z)2 + r4z2 − p̃~,z, if r = 3
2rs, Hp~,z

r = 0 and

p~,z = 0 then p̃~,z = r4z2, so with

Γz = {r =
3

2
rs, µ̃ξ ± r2z = 0, p̃~,z = r4z2},

we have

(6.16) p~,z(̟) = 0, µ̃(̟) > 0, ̟ /∈ Γz, (Hp~,z
r)(̟) = 0 ⇒ (±H

2
p~,z

r)(̟) > 0,

with ± corresponding to whether r > 3
2rs or r < 3

2rs. In particular, taking into
account (6.15), r gives rise to an escape function in T ∗Xδ \ Γz as discussed in
Footnote 16, and Γz is the only possible trapping. (In this statement we ignore
fiber infinity.) Correspondingly, if one regards a compact interval I in (r−,

3
2rs), or

( 32rs, r+) as the gluing region, for sufficiently small α, for r ∈ I, Hp~,z
r = 0 still

implies ±H
2
p~,z

r > 0, and [15] is applicable. If instead one works with compact

subsets of {µ̃ > 0} \ Γz, one has non-trapping dynamics for α small.
Since in [58, Section 2] Wunsch and Zworski only check normal hyperbolicity in

Kerr space-times with sufficiently small angular momentum, in order to use their
general results for normally hyperbolic trapped sets, we need to check that Kerr-de
Sitter space-times are still normally hyperbolic. For this, with small α, we follow

34Or far from, in µ̃ > 0.
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[58, Section 2], and note that for α = 0 the linearization of the flow at Γ in the
normal variables r − 3

2rs and µ̃ξ ± r2z is

[
r − 3

2rs
µ̃ξ ± r2z

]′
=

[
0 −2( 32rs)

4z2µ̃|−1
r= 3

2
rs

−2 0

] [
r − 3

2rs
µ̃ξ ± r2z

]
+O((r− 3

2
rs)

2+(µ̃ξ±r2z)2),

so the eigenvalues of the linearization are λ = ±3
√
3rsz

(
1− 9

4Λr
2
s

)−1/2
, in agreement

with the result of [58] when Λ = 0. The rest of the arguments concerning the flow
in [58, Section 2] go through. In particular, when analyzing the flow within Γ =
∪z>0Γz, the pull backs of both dp and dζ are exactly as in the Schwarzschild setting
(unlike the normal dynamics, which has different eigenvalues), so the arguments of
[58, Proof of Proposition 2.1] go through unchanged, giving normal hyperbolicity
for small α by the structural stability.

We now check the hyperbolic nature of trapping for larger values of α. With
c = 0, as above,

p~,z = −µ̃ξ2 ∓ 2(1 + γ)
(
(r2 + α2)z − αζ

)
ξ − p̃~.z,

and in the region µ̃ > 0 this can be rewritten as

p~,z = −µ̃

(
ξ ± 1 + γ

µ̃

(
(r2 + α2)z − αζ

))2

+
(1 + γ)2

µ̃

(
(r2 + α2)z − αζ

)2 − p̃~.z;

note that the first term would be just −µ̃ξ2 in the original coordinates (6.1) which
are valid in µ̃ > 0. Thus,

(6.17) Hp~.z
r = −2

(
µ̃ξ ± (1 + γ)

(
(r2 + α2)z − αζ

))
.

Correspondingly,

µ̃ ≤ 0, Hp,~,zr = 0 ⇒ p~,z = µ̃ξ2 − p̃~.z ≤ 0,

and equality on the right hand side implies ζ = α sin2 θz, so Hp~,z
r = (r2 +

α2 cos2 θ)z > 0, a contradiction, showing that in µ̃ ≤ 0, Hp~,z
r cannot vanish

on the characteristic set.
We now turn to µ̃ > 0, where

Hp~,z
r = 0 ⇒ H

2
p~,z

r = −2µ̃Hp~,z
ξ = 2µ̃(1 + γ)2

∂

∂r

(
µ̃−1

(
(r2 + α2)z − αζ

)2)
.

Thus, we are interested in critical points of

F = µ̃−1
(
(r2 + α2)z − αζ

)2
,

and whether these are non-degenerate. We remark that

Hp~,z
r = 0 and (r2 + α2)z − αζ = 0 and p~,z = 0 ⇒ ξ = 0 and p̃~,z = 0;

p̃~,z = 0 and (r2 + α2)z − αζ = 0 and p~,z = 0 ⇒ (r2 + α2 cos2 θ)z = 0;

which is a contradiction, so (r2 + α2)z − αζ does not vanish when p~,z and Hp~,z
r

do. Note that

(6.18)
∂F

∂r
= −

(
(r2 + α2)z − αζ

)
µ̃−2f, f =

(
(r2 + α2)z − αζ

)∂µ̃
∂r

− 4rµ̃z,

so

(6.19)
∂F

∂r
= 0 and (r2 + α2)z − αζ 6= 0 ⇒ ∂2F

∂r2
= −

(
(r2 + α2)z − αζ

)
µ̃−2 ∂f

∂r
.
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Also, from (6.18),

µ̃ > 0, f = 0 ⇒ ∂µ̃

∂r
6= 0.

Now

(6.20)
∂f

∂r
=
(
(r2 + α2)z − αζ

)∂2µ̃

∂r2
− 4µ̃z − 2rz

∂µ̃

∂r
,

and
∂F

∂r
= 0 ⇒ (r2 + α2)z − αζ =

4rµ̃z
∂µ̃
∂r

,

so substituting into (6.20),

(6.21)
∂µ̃

∂r

∂f

∂r
= 4rµ̃z

∂2µ̃

∂r2
− 4zµ̃

∂µ̃

∂r
− 2rz

(
∂µ̃

∂r

)2

.

Thus,

∂µ̃

∂r

∂f

∂r
= 2z

(
2µ̃

(
r
∂2µ̃

∂r2
− 3

∂µ̃

∂r

)
− (r

∂µ̃

∂r
− 4µ̃)

∂µ̃

∂r

)
,

so taking into account

r
∂µ̃

∂r
− 4µ̃ = −2

(
1− Λα2

3

)
r2 + 3rsr − 4α2,

r
∂2µ̃

∂r2
− 3

∂µ̃

∂r
= −4

(
1− Λα2

3

)
r + 3rs,

r
∂2µ̃

∂r2
− 3

∂µ̃

∂r
=

2

r

(
r
∂µ̃

∂r
− 4µ̃

)
− 3rs +

8α2

r
,

we obtain

∂µ̃

∂r

∂f

∂r
= 2z

(
−1

r

(
r
∂µ̃

∂r
− 4µ̃

)2

− 2µ̃

r
(3rsr − 8α2)

)
.

We claim that if |α| < rs/2 then r− > rs/2. To see this, note that for r = rs/2,

µ̃(r) =

(
r2s
4

+ α2

)(
1− Λr2s

12

)
− r2s

2
< 0;

since at α = 0, r− > rs/2, we deduce that r− > rs/2 for |α| < rs/2. Making the
slightly stronger assumption,

(6.22) |α| <
√
3

4
rs,

we obtain that for µ̃ > 0, r > r−, 3rsr − 8α2 > 3
2r

2
s − 8α2 > 0, so

z
∂µ̃

∂r

∂f

∂r
< 0.

Thus, when ∂F
∂r = 0, using (6.19),

(6.23)
∂2F

∂r2
= −

(
(r2 + α2)z − αζ

)
µ̃−2 ∂f

∂r
= − 4r

µ̃
(

∂µ̃
∂r

)2 z
∂µ̃

∂r

∂f

∂r
> 0,

so critical points of F are all non-degenerate and are minima. Correspondingly,
as F → +∞ as µ̃ → 0 in µ̃ > 0, the critical point rc of F exists and is unique
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in (r−, r+) (when ζ is fixed), depends smoothly on ζ, and ∂F
∂r > 0 if r > rc, and

∂F
∂r < 0 if r < rc. Thus,

µ̃ > 0, ±(r − rc) > 0, Hp~,z
r = 0 ⇒ ±H

2
p~,z

r > 0,

giving the natural generalization of (6.16), allowing the application of the results
of [15]. Since Hp~,z

r cannot vanish in µ̃ ≤ 0 (apart from fiber infinity, which is
understood already), we conclude that r gives rise to an escape function, as in
Footnote 16, away from

Γz = {̟ :
∂F

∂r
(̟) = 0, (Hp~,z

r)(̟) = 0, p~,z(̟) = 0},

which is a smooth submanifold as the differentials of the defining functions are
linearly independent on it in view of (6.23), (6.17), and the definition of p̃~,z (as
the latter is independent of r and ξ).

The linearization of the Hamilton flow at Γz is
[

r − rc
µ̃ξ ± (1 + γ)

(
(r2 + α2)z − αζ

)
]′

=

[
0 −µ̃(1 + γ)2 ∂2F

∂r2

−2 0

] [
r − rc

µ̃ξ ± (1 + γ)
(
(r2 + α2)z − αζ

)
]

+O
(
(r − rc)

2 +
(
µ̃ξ ± (1 + γ)

(
(r2 + α2)z − αζ

))2)
,

so by (6.23), the linearization is non-degenerate, and is indeed hyperbolic. This
suffices for the resolvent estimates of [58] for exact Kerr-de Sitter, but for stability
one also needs to check normal hyperbolicity. While it is quite straightforward to
check that the only degenerate location is η = 0, θ = π

2 , the computation of the
Morse-Bott non-degeneracy in the spirit of [58, Proof of Proposition 2.1], where it
is done for Kerr spaces with small angular momentum, is rather involved, so we do
not pursue this here (for small angular momentum in Kerr-de Sitter space, the de
Sitter-Schwarzschild calculation above implies normal hyperbolicity already).

In addition, in view of an overall sign difference between our convention and that
of [58] for the operator we are considering, [58] requires the positivity of z ∂

∂zp~,z for
z 6= 0. (Note that the notation for z is also different; our z is 1 + z in the notation
of [58], so our z being near 1 corresponds to the z of [58] being near 0.) Unlike
the flow, whose behavior is independent of c when z is real, this fact does depend
on the choice of c. Note that in the high energy version, this corresponds to the
positivity of σ ∂

∂σpfull. Now, pfull = 〈σ dτ
τ +̟,σ dτ

τ +̟〉G, with ̟ ∈ Π, the ‘spatial’

hyperplane, identified with T ∗X in bT ∗M̄ , so

σ∂σpfull = 2〈σ dτ

τ
, σ

dτ

τ
〉G + 2〈σ dτ

τ
,̟〉G

= σ2〈dτ
τ
,
dτ

τ
〉G + 〈σ dτ

τ
+̟,σ

dτ

τ
+̟〉G − 〈̟,̟〉G.

Thus, if non-zero elements of Π are space-like and dτ
τ is time-like, σ∂σpfull > 0 for

σ 6= 0 on the characteristic set of pfull. If c is such that c = −µ̃−1(1 + γ)(r2 + α2)
near r = 3

2rs, which as we mentioned can be arranged, and which corresponds to
undoing our change of coordinates in (6.4), then directly from (6.1) both the time-
like and space-like statements hold, completing our checking of the hypotheses of
[58], and thus their result is applicable for de Sitter-Schwarzschild space-times. As
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these results are structurally stable, see the proof of [58, Proposition 2.1], the result
follows for Kerr-de Sitter spaces with angular momenta satisfying (6.22).

6.5. Complex absorption. The final step of fitting Pσ into a general microlocal
framework is moving the problem to a compact manifold, and adding a complex
absorbing second order operator. This section is almost completely parallel to Sub-
section 4.7 in the de Sitter case; the only change is that absorption needs to be
added at the trapped set as well.

We thus consider a compact manifold without boundary X for which Xδ is
identified as an open subset with smooth boundary; we can again take X to be the
double of Xδ. As in the de Sitter case, we discuss the ‘classical’ and ‘semiclassical’
cases separately, for in the former setting trapping does not matter, while in the
latter it does.

We then introduce a complex absorbing operator Qσ ∈ Ψ2
cl(X) with principal

symbol q, such that h2Qh−1z ∈ Ψ2
~,cl(X) with semiclassical principal symbol q~,z,

and such that p± ıq is elliptic near ∂Xδ, i.e. near µ̃ = µ̃0, and which satisfies that
the ±q ≥ 0 on Σ∓. Having done this, we extend Pσ and Qσ to X in such a way
that p ± ıq are elliptic near X \ Xδ; the region we added is thus irrelevant. In
particular, as the event horizon is characteristic for the wave equation, the solution
in the exterior of the event horizons is unaffected by thus modifying Pσ, i.e. working
with Pσ and Pσ − ıQσ is equivalent for this purpose.

Again, as in de Sitter space, an alternative to this extension would be simply
adding a boundary at µ̃ = µ̃0; this is easy to do since this is a space-like hypersur-
face, see Remark 2.5.

For the semiclassical problem, when z is almost real we need to increase the re-
quirements on Qσ. We need in addition, in the semiclassical notation, semiclassical
ellipticity near µ̃ = µ̃0, i.e. that p~,z ± ıq~,z are elliptic near ∂Xδ, i.e. near µ̃ = µ̃0,
and which satisfies that ±q~,z ≥ 0 on Σ~,∓. However, we also need semiclassical
ellipticity at the trapped set, which is in X+. To achieve this, we want q~,z elliptic
on the trapped set; since this is in Σ~,sgnRe z, we need q~,z ≤ 0 there. Again, we
extend Pσ and Qσ to X in such a way that p± ıq and p~,z ± ıq~,z are elliptic near
X \ Xδ; the region we added is thus irrelevant. For α as in (6.22), the dynamics
(away from the radial points) has only the hyperbolic trapping (and for small α, it
is normally hyperbolic); however, our results apply more generally, as long as the
dynamics has the same non-trapping character (so α might be even larger). Note
also that since the trapping is in a compact subset of X+ = {µ̃ > 0}, one can
arrange that Qσ is the sum of two terms: one supported near the trapping in X+,
the other in µ̃ < 0; this is useful for relating our construction to that of Dyatlov
[20] in the appendix.

This completes the setup. Now all of the results of Section 2 are applicable,
proving all the theorems stated in the introduction on Kerr-de Sitter spaces, The-
orems 1.1-1.4. Namely, Theorem 1.1 follows from Theorem 2.13, Theorem 1.2
follows from Theorem 2.10, Theorem 1.3 follows from Theorem 2.17. Finally The-
orem 1.4 is an immediate consequence of Theorem 1.3 and the Mellin transform
lemma, Lemma 3.1, in the Kerr-de Sitter setting, or Proposition 3.3 for general b-
perturbations (so ∂t̃ may no longer be Killing, and the space-time may no longer be
stationary), either taking into account that by usual energy estimates the complex
absorbing region cannot affect the solution in a neighborhood of X+, or simply, for
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�gu = f , so PσMu = Mf , so (Pσ − ıQσ)Mu = f − ıQσMu, and using the last
part of Theorem 2.15 to note that ıQσMu does not affect the asymptotics in Xδ.

Appendix A. Comparison with cutoff resolvent constructions

By Semyon Dyatlov35

In this appendix, we will first examine the relation of the resolvent considered in
the present paper to the cutoff resolvent for slowly rotating Kerr–de Sitter metric
constructed in [20] using separation of variables and complex contour deformation
near the event horizons. Then, we will show how to extract information on the
resolvent beyond event horizons from information about the cutoff resolvent.

First of all, let us list some notation of [20] along with its analogues in the present
paper:

Present paper [20] Present paper [20]
α a rs 2M0

γ α µ̃ ∆r

κ ∆θ F± A±

t̃, φ̃ t, ϕ t, φ t∗, ϕ∗

ω σ e−iσh(r)Pσe
iσh(r) −Pg(σ)

X+ M Kδ MK

The difference between Pg(ω) and Pσ is due to the fact that Pg(ω) was defined
using Fourier transform in the t̃ variable and Pσ is defined using Fourier transform
in the variable t = t̃ + h(r). We will henceforth use the notation of the present
paper.

We assume that δ > 0 is small and fixed, and α is small depending on δ. Define

Kδ = (r− + δ, r+ − δ)r × S
2.

Then [20, Theorem 2] gives a family of operators

Rg(σ) : L
2(Kδ) → H2(Kδ)

meromorphic in σ ∈ C and such that Pg(σ)Rg(σ)f = f on Kδ for each f ∈ L2(Kδ).

Proposition A.1. Assume that the complex absorbing operator Qσ satisfies the
assumptions of Section 6.5 in the ‘classical’ case and furthermore, its Schwartz
kernel is supported in (X \X+)

2. Let Rg(σ) be the operator constructed in [20] and
R(σ) = (Pσ − iQσ)

−1 be the operator defined in Theorem 1.2 of the present paper.
Then for each f ∈ C∞

0 (Kδ),

(A.1) −eiσh(r)Rg(σ)e
−iσh(r)f = R(σ)f |Kδ

.

Proof. The proof follows [20, Proposition 1.2]. Denote by u1 the left-hand side
of (A.1) and by u2 the right-hand side. Without loss of generality, we may assume
that f lies in the kernel D′

k of the operator Dφ − k, for some k ∈ Z; in this case,
by [20, Theorem 1], u1 can be extended to the whole X+ and solves the equation
Pσu1 = f there. Moreover, by [20, Theorem 3], u1 is smooth up to the event
horizons {r = r±}. Same is true for u2; therefore, the difference u = u1 − u2 solves
the equation Pσ(u) = 0 and is smooth up to the event horizons.

35S.D.’s address is Department of Mathematics, University of California, Berkeley, CA 94720-

3840, USA, and e-mail address is dyatlov@math.berkeley.edu.
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Since both sides of (A.1) are meromorphic, we may further assume that Imσ >
Ce, where Ce is a large constant. Now, the function ũ(t, ·) = e−itσu(·) solves the
wave equation �gũ = 0 and is smooth up to the event horizons in the coordinate
system (t, r, θ, φ); therefore, if Ce is large enough, by [20, Proposition 1.1] ũ cannot
grow faster than exp(Cet). Therefore, u = 0 as required. �

Now, we show how to express the resolvent R(σ) on the whole space in terms
of the cutoff resolvent Rg(σ) and the nontrapping parametrix constructed in the
present paper. Let Qσ be as above, but with the additional assumption of semi-
classical ellipticity near ∂Xδ, and Q′

σ be an operator satisfying the assumptions
of Section 6.5 in the ‘semiclassical’ case on the trapped set. Moreover, we require
that the semiclassical wavefront set of |σ|−2Q′

σ be compact and Q′
σ = χQ′

σ = Q′
σχ,

where χ ∈ C∞
0 (Kδ). Such operators exist for α small enough, as the trapped set is

compact and located O(α) close to the photon sphere {r = 3rs/2} and thus is far
from the event horizons. Denote R′(σ) = (Pσ − iQσ − iQ′

σ)
−1; by Theorem 2.13

applied in the case of Section 6.5, for each C0 there exists a constant σ0 such that
for s large enough, Imσ > −C0, and |Reσ| > σ0,

‖R′(σ)‖Hs−1

|σ|−1
→Hs

|σ|−1
≤ C|σ|−1.

We now use the identity

(A.2) R(σ) = R′(σ)−R′(σ)(iQ′
σ +Q′

σ(χR(σ)χ)Q′
σ)R

′(σ).

(To verify it, multiply both sides of the equation by Pσ − iQσ − iQ′
σ on the left

and on the right.) Combining (A.2) with the fact that for each N , Q′
σ is bounded

H−N
|σ|−1 → HN

|σ|−1 with norm O(|σ|2), we get for σ not a pole of χR(σ)χ,

(A.3) ‖R(σ)‖Hs−1

|σ|−1
→Hs

|σ|−1
≤ C(1 + |σ|2‖χR(σ)χ‖L2(Kδ)→L2(Kδ)).

Also, if σ0 is a pole of R(σ) of algebraic multiplicity j, then we can multiply the
identity (A.2) by (σ − σ0)

j to get an estimate similar to (A.3) on the function
(σ − σ0)

jR(σ), holomorphic at σ = σ0.
The discussion above in particular implies that the cutoff resolvent estimates

of [5] also hold for the resolvent R(σ). Using the Mellin transform, we see that the
resonance expansion of [5] is valid for any solution u to the forward time Cauchy
problem for the wave equation on the whole Mδ, with initial data in a high enough
Sobolev class; the terms of the expansion are defined and the remainder is estimated
on the whole Mδ as well.
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[8] B. Carter. Global structure of the kerr family of gravitational fields. Phys. Rev., 174:1559–
1571, 1968.

[9] Demetrios Christodoulou and Sergiu Klainerman. The global nonlinear stability of the
Minkowski space, volume 41 of Princeton Mathematical Series. Princeton University Press,

Princeton, NJ, 1993.
[10] Mihalis Dafermos and Igor Rodnianski. A proof of Price’s law for the collapse of a self-

gravitating scalar field. Invent. Math., 162(2):381–457, 2005.
[11] Mihalis Dafermos and Igor Rodnianski. The wave equation on Schwarzschild-de Sitter space

times. Preprint, arXiv:07092766, 2007.
[12] Mihalis Dafermos and Igor Rodnianski. The red-shift effect and radiation decay on black hole

spacetimes. Comm. Pure Appl. Math, 62:859–919, 2009.

[13] Mihalis Dafermos and Igor Rodnianski. The black hole stability problem for linear scalar
perturbations. Preprint, arXiv:1010.5137, 2010.

[14] Mihalis Dafermos and Igor Rodnianski. Decay of solutions of the wave equation on Kerr
exterior space-times I-II: The cases of |a| ≪ m or axisymmetry. Preprint, arXiv:1010.5132,

2010.
[15] K. Datchev and A. Vasy. Gluing semiclassical resolvent estimates via propagation of singu-

larities. Preprint, arxiv:1008.3064, 2010.

[16] K. Datchev and A. Vasy. Propagation through trapped sets and semiclassical resolvent esti-
mates. Preprint, arxiv:1010.2190, 2010.

[17] Mouez Dimassi and Johannes Sjöstrand. Spectral asymptotics in the semi-classical limit,
volume 268 of London Mathematical Society Lecture Note Series. Cambridge University Press,

Cambridge, 1999.
[18] R. Donninger, W. Schlag, and A. Soffer. A proof of price’s law on schwarzschild black hole

manifolds for all angular momenta. Preprint, arxiv:0908.4292, 2009.
[19] Semyon Dyatlov. Exponential energy decay for Kerr-de Sitter black holes beyond event hori-

zons. Preprint, arxiv:1010.5201, 2010.
[20] Semyon Dyatlov. Quasi-normal modes and exponential energy decay for the Kerr-de Sitter

black hole. Preprint, arxiv:1003.6128, 2010.

[21] Lawrence C. Evans and Maciej Zworski. Lectures on semiclassical analysis. Preprint, 2010.
[22] Charles Fefferman and C. Robin Graham. Conformal invariants. Astérisque, (Numero Hors
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