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Abstract. In this paper we construct a parametrix for the high-energy asymptotics of the ana-
lytic continuation of the resolvent on a Riemannian manifold which is a small perturbation of the
Poincaré metric on hyperbolic space. As a result, we obtain non-trapping high energy estimates
for this analytic continuation.

Introduction

Under appropriate conditions, the resolvent of the Laplacian on an asymptotically hyperbolic
space continues analytically through the spectrum [16]. In this paper we obtain estimates on the
analytic continuation of the resolvent for the Laplacian of a metric that is a small perturbation
of the Poincaré metric on hyperbolic space. In particular we show for these perturbations of the
metric, and allowing in addition a real-valued potential, that there are only a finite number of poles
for the analytic continuation of the resolvent to any half-plane containing the physical region and
that the resolvent satisfies polynomial bounds on appropriate weighted Sobolev spaces near infinity
in such a strip. This result, for a small strip, is then applied to the twisted Laplacian which is the
stationary part of the d’Alembertian on de Sitter-Schwarzschild. In a companion paper [19] the
decay of solutions to the wave equation on de Sitter-Schwarzschild space is analyzed using these
estimates.

In the main part of this paper constructive semiclassical methods are used to analyze the resolvent
of the Laplacian, and potential perturbations of it, for a complete, asymptotically hyperbolic, metric
on the interior of the closed ball, Bn+1,

(1)

gδ = g0 + χδ(z)H,

g0 =
4dz2

(1− |z|2)2
, χδ(z) = χ

(
(1− |z|)

δ

)
.

Here g0 is the standard hyperbolic metric, H = H(z, dz) is a symmetric 2-tensor which is smooth
up to the boundary of the ball and χ ∈ C∞(R), has χ(s) = 1 if |s| < 1

2 , χ(s) = 0 if |s| > 1. The
perturbation here is always the same at the boundary but is cut off closer and closer to it as δ ↓ 0.
For δ > 0 small enough we show that the analytic continuation of the resolvent of the Laplacian is
smooth, so has no poles, in the intersection of the exterior of a sufficiently large ball with any strip
around the real axis in the non-physical half-space as an operator between weighted L2 or Sobolev
spaces, and obtain high-energy estimates for this resolvent in this strip.
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A special case of these estimates is as follows: Let x = 1−|z|
1+|z| , W ∈ C∞(Bn+1) be real-valued and

let Rδ(σ) = (∆gδ + x2W − σ2 − n/22)−1 denote the resolvent of ∆gδ + x2W. The spectral theorem
shows that Rδ(σ) is well defined as a bounded operator in L2(Bn+1; dg) if Imσ ≪ 0, and the results
of Mazzeo and the first author show that it continues meromorphically to the upper half plane.
Here we show that there exists a strip about the real axis such that if δ is small and a and b are
suitably chosen xaRδ(σ)x

b has no poles, provided |σ| is large, and moreover we obtain a polynomial
bound for the norm of xaRδ(σ)x

b. More precisely, with Hk
0 (B

n+1) the L2-based Sobolev space of
order k, so for k = 0, H0

0 (B
n+1) = L2(Bn+1; dg) :

Theorem 1. (See Theorem 1.1 for the full statement.) There exist δ0 > 0, such that if 0 ≤ δ ≤ δ0,
then xaRδ(σ)x

b continues holomorphically to the region Imσ < M, M > 0 |σ| > K(δ,M), provided
Imσ < b, and a > Imσ. Moreover, there exists C > 0 such that

||xaRδ(σ)x
bv||Hk

0 (B
n+1) ≤ C|σ|−1+n

2 +k||v||L2(Bn+1), k = 0, 1, 2,

||xaRδ(σ)x
bv||L2(Bn+1) ≤ C|σ|−1+n

2 +k||v||H−k
0 (Bn+1), k = 0, 1, 2,

(2)

This estimate is not optimal; the optimal bound is expected to be O(|σ|−1+k). The additional
factor of |σ|

n
2 results from ignoring the oscillatory behavior of the Schwartz kernel of the resolvent;

a stationary phase type argument (which is made delicate by the intersecting Lagrangians described
later) should give an improved result. However, for our application, which we now describe, the
polynomial loss suffices, as there are similar losses from the trapped geodesics in compact sets.

As noted above, these results and the underlying estimates can be applied to study the wave
equation on 1 + (n+ 1) dimensional de Sitter-Schwarzschild space. This model is given by

(3) M = Rt×
◦

X, X = [rbH, rsI]r × S
n
ω,

with the Lorentzian metric

(4) G = α2 dt2 − α−2 dr2 − r2 dω2,

where dω2 is the standard metric on S
n,

(5) α =

(
1−

2m

r
−

Λr2

3

)1/2

,

with Λ and m positive constants satisfying 0 < 9m2Λ < 1, and rbH, rsI are the two positive roots
of α = 0.

The d’Alembertian associated to the metric G is

(6) � = α−2(D2
t − α2r−nDr(r

nα2Dr)− α2r−2∆ω).

An important goal is then to give a precise description of the asymptotic behavior, in all regions, of
space-time, of the solution of the wave equation, �u = 0, with initial data which are is necessarily
compactly supported. The results given below can be used to attain this goal; see the companion
paper [19].

Since we are only interested here in the null space of the d’Alembertian, the leading factor of
α−2 can be dropped. The results above can be applied to the corresponding stationary operator,
which is a twisted Laplacian

(7) ∆X = α2r−nDr(α
2rnDr) + α2r−2∆ω.

In what follows we will sometimes consider α as a boundary defining function of X. This amounts
to a change in the C∞ structure of X; we denote the new manifold by X 1

2
.
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The second order elliptic operator ∆X in (7) is self-adjoint, and non-negative, with respect to
the measure

(8) Ω = α−2rn dr dω,

with α given by (5). So, by the spectral theorem, the resolvent

R(σ) = (∆X − σ2)−1 : L2(X; Ω) −→ L2(X; Ω)(9)

is holomorphic for Imσ < 0. In [21] the second author and Zworski, using methods of Mazzeo and
the first author from [16], Sjöstrand and Zworski [22] and Zworski [28] prove that the resolvent
family has an analytic continuation.

Theorem 2. (Sá Barreto-Zworski, see [21]) As operators

R(σ) : C∞
0 (

o

X) −→ C∞(
o

X)

the family (9) has a meromorphic continuation to C with isolated poles of finite rank. Moreover,
there exists ǫ > 0 such that the only pole of R(σ) with Imσ < ǫ is at σ = 0; it has multiplicity one.

Theorem 2 was proved for n+ 1 = 3, but its proof easily extends to higher dimensions.
In order to describe the asymptotics of wave propagation precisely on M via R(σ) it is necessary

to understand the action of R(σ) on weighted Sobolev spaces for σ in a strip about the real axis
as |Reσ| → ∞. The results of [16] actually show that R(σ) is bounded as a map between the
weighted spaces in question; the issue is uniform control of the norm at high energies. The strategy
is to obtain bounds for R(σ) for Re(σ) large in the interior of X, then near the ends rbH and rsI,
and later glue those estimates. In the case n+ 1 = 3, we can use the following result of Bony and
Häfner to obtain bounds for the resolvent in the interior

Theorem 3. (Bony-Häfner, see [1]) There exists ǫ > 0 and M ≥ 0 such that if | Imσ| < ǫ and

|Reσ| > 1, then for any χ ∈ C∞
0 (

o

X) there exists C > 0 such that if n = 3 in (3), then

(10) ||χR(σ)χf ||L2(X;Ω) ≤ C|σ|M ||f ||L2(X;Ω).

This result is not known in higher dimensions (though the methods of Bony and Häfner would
work even then), and to prove our main theorem we use the results of Datchev and the third author
[5] and Wunsch and Zworski [27] to handle the general case. The advantage of the method of [5] is
that one does not need to obtain a bound for the exact resolvent in the interior and we may work
with the approximate model of [27] instead. We decompose the manifold X in two parts

X = X0 ∪X1, where

X0 = [rbH, rbH + 4δ)× S
n ∪ (rsI − 4δ, rsI]× S

n and

X1 = (rbH + δ, rsI − δ)× S
n.

(11)

If δ is small enough and if γ(t) is an integral curve of the Hamiltonian of ∆X then (see Section 8
and either [5] or [14])

if x(γ(t)) < 4δ and
dx(t)

dt
= 0 ⇒

d2x(t)

dt2
< 0.(12)

We consider the operator ∆X restricted to X1, and place it into the setting of [27] as follows. Let

X ′
1 be another Riemannian manifold extending X̃1 = (rbH + δ/2, rsI − δ/2, rsI)× S

n (and thus X1)
and which is Euclidean outside some compact set, and let ∆X′

1
be a self-adjoint operator extending
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∆X with principal symbol given by the metric on X ′
1 which is equal to the Euclidean Laplacian on

the ends. Let

P1 = h2∆X′
1
− iΥ, h ∈ (0, 1)(13)

where Υ ∈ C∞(X ′
1; [0, 1]) is such that Υ = 0 on X1 and Υ = 1 outside X̃1. Thus, P1−1 is semiclas-

sically elliptic on a neighborhood of X ′
1 \ X̃1. (In particular, this implies that no bicharacteristic of

P1 − 1 leaves X1 and returns later, i.e. X1 is bicharacteristically convex in X ′
1, since this is true for

X1 inside X̃1, and P1 − 1 is elliptic outside X̃1, hence has no characteristic set there.) By Theorem
1 of [27] there exist positive constants c, C and ǫ independent of h such that

||(P1 − σ2)−1||L2→L2 ≤ Ch−N , σ ∈ (1− c, 1 + c)× (−c, ǫh) ⊂ C.(14)

Due to the fact that 0 < 9m2Λ < 1, the function β(r) = 1
2

d
drα

2(r) satisfies β(rbH) > 0 and

β(rsI) < 0. Set βbH = β(rbH) and βsI = β(rsI). The weight function we consider, α̃ ∈ C0([rbH, rsI]),
is positive in the interior and satisfies

(15) α̃(r) =

{
α1/βbH near rbH

α1/|βsI| near rsI

We will prove

Theorem 4. If n = 2, let ǫ > 0 be such that (10) holds. In general, assume that δ is such that
(12) is satisfied, and let ǫ > 0 be such that (14) holds. If

0 < γ < min(ǫ, βbH, |βsI|, 1),

then for b > γ there exist C and M such that if Imσ ≤ γ and |Reσ| ≥ 1,

(16) ||α̃bR(σ)α̃bf ||L2(X;Ω) ≤ C|σ|M ||f ||L2(X;Ω),

where Ω is defined in (8).

This result can be refined by allowing the power of the weight, on either side, to approach Imσ
at the expense of an additional logarithmic term, see Theorem 10.1.

Two proofs of Theorem 4 are given below. The first, which is somewhat simpler but valid only
for n + 1 = 3, is given in sections 9 and 10. It uses techniques of Bruneau and Petkov [2] to glue
the resolvent estimates from Theorem 1 and the localized estimate (10). The second proof, valid
in general dimension, uses the estimate (14) and the semiclassical resolvent gluing techniques of
Datchev and the third author [5]. This is carried out in section 11.

Related weighted L2 estimates for the resolvent on asymptotically hyperbolic and asymptotically
Euclidean spaces have been proved by Cardoso and Vodev in [3, 26]. However, such estimates,
combined with Theorem 3, only give the holomorphic continuation of the resolvent, as an operator
acting on weighted L2 spaces, for |Reσ| > 1, to a region below a curve which converges polynomially
to the real axis. These weaker estimates do suffice to establish the asymptotic behavior of solutions
of the wave equation modulo rapidly decaying terms (rather than exponentially decaying) and would
give a different proof of the result of Dafermos and Rodnianski [4].

In the case of a non-trapping asymptotically hyperbolic manifold which has constant sectional
curvature near the boundary, it was shown by Guillarmou in [9] that there exists a strip about the
real axis, excluding a neighborhood of the origin, which is free of resonances. In the case studied
here, the sectional curvature of the metric associated to ∆X is not constant near the boundary, and
there exist trapped trajectories. However, see [21], all trapped trajectories of the Hamilton flow of
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∆X are hyperbolic, and the projection of the trapped set onto the base space is contained in the
sphere r = 3m, which is known as the ergo-sphere. Since the effects of the trapped trajectories
are included in the estimates of Bony and Häfner, constructing the analytic continuation of the
resolvent of a twisted Laplacian that has the correct asymptotic behavior at infinity, uniformly at
high energies, allows one to obtain the desired estimates on weighted Sobolev spaces via pasting
techniques introduced by Bruneau and Petkov [2]. The main technical result is thus Theorem 1,
and its strengthening, Theorem 1.1.

After the bulk of this paper had been completed, a new method to prove high energy estimates
for the analytic continuation of the resolvent on conformally compact spaces with even metrics (in
the sense of Guillarmou [8]) was introduced by the third author as a byproduct of his work on
the wave decay on Kerr-de Sitter spaces, see [24] and [25]. While this method directly gives non-
trapping estimates and does not require that the metric be asymptotic to that of actual hyperbolic
space, it does not describe the precise structure of the Schwartz kernel of the analytic continuation,
which is accomplished here. The latter is useful to deduce estimates for the analytic continuation
of the resolvent acting on other types of spaces, such as Lp spaces.

Theorem 1.1 is proved by the construction of a high-energy parametrix for ∆gδ + x2W . More
precisely, as customary, the problem is translated to the construction of a semiclassical parametrix
for

P (h, σ) = h2∆g + h2x2W − h2
n2

4
− σ2 = h2

(
∆g + x2W −

n2

4
−
(σ
h

)2)
.

where now σ ∈ (1 − c, 1 + c) × (−Ch,Ch) ⊂ C, c, C > 0, and h ∈ (0, 1), h → 0, so the actual
spectral parameter is

n2

4
+
(σ
h

)2
,

and Im σ
h is bounded. Note that for Imσ < 0,

(17) R(h, σ) = P (h, σ)−1 : L2(Bn+1) → H2
0 (B

n+1)

is meromorphic by the results of Mazzeo and the first author [16]. Moreover, while σ is not real, its
imaginary part is O(h) in the semiclassical sense, and is thus not part of the semiclassical principal
symbol of the operator.

The construction proceeds on the semiclassical resolution M0,h of the product of the double
space B

n+1 ×0 B
n+1 introduced in [16], and the interval [0, 1)h – this space is described in detail in

Section 3. Recall that, for fixed h > 0, the results of [16] show that the Schwartz kernel of P (h, σ)−1,
defined for Imσ < 0, is well-behaved (polyhomogeneous conormal) on B

n+1×0B
n+1, and it extends

meromorphically across Imσ = 0 with a similarly polyhomogeneous conormal Schwartz kernel.
Thus, the space we are considering is a very natural one. The semiclassical resolution is already
needed away from all boundaries; it consists of blowing up the diagonal at h = 0. Note that P (h, σ)
is a semiclassical differential operator which is elliptic in the usual sense, but its semiclassical
principal symbol g − (Reσ)2 is not elliptic (here g is the dual metric function). Ignoring the
boundaries for a moment, when a semiclassical differential operator is elliptic in both senses, it has
a parametrix in the small semiclassical calculus, i.e. one which vanishes to infinite order at h = 0
off the semiclassical front face (i.e. away from the diagonal in B

n+1 ×0 B
n+1 × {0}). However, as

P (h, σ) is not elliptic semiclassically, semiclassical singularities (lack of decay as h→ 0) flow out of
the semiclassical front face.

It is useful to consider the flow in terms of Lagrangian geometry. Thus, the small calculus of
order −∞ semiclassical pseudodifferential operators consists of operators whose Schwartz kernels
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are semiclassical-conormal to the diagonal at h = 0. As P (h, σ) is not semiclassically elliptic (but
is elliptic in the usual sense, so it behaves as a semiclassical pseudodifferential operator of order
−∞ for our purposes), in order to construct a parametrix for P (h, σ), we need to follow the flow
out of semiclassical singularities from the conormal bundle of the diagonal. For P (h, σ) as above,
the resulting Lagrangian manifold is induced by the geodesic flow, and is in particular, up to a
constant factor, the graph of the differential of the distance function on the product space. Thus, it
is necessary to analyze the geodesic flow and the distance function; here the presence of boundaries
is the main issue. As we show in Section 2, the geodesic flow is well-behaved on B

n+1 ×0 B
n+1 as a

Lagrangian manifold of the appropriate cotangent bundle. Further, for δ > 0 small (this is where the
smallness of the metric perturbation enters), its projection to the base is a diffeomorphism, which
implies that the distance function is also well-behaved. This last step is based upon the precise
description of the geodesic flow and the distance function on hyperbolic space, see Section 2.

In Section 5, we then construct the parametrix by first solving away the diagonal singularity;
this is the usual elliptic parametrix construction. Next, we solve away the small calculus error in
Taylor series at the semiclassical front face, and then propagate the solution along the flow-out by
solving transport equations. This is an analogue of the intersecting Lagrangian construction of the
first author and Uhlmann [18], see also the work of Hassell and Wunsch [11] in the semiclassical
setting. So far in this discussion the boundaries ofM0,~ arising from the boundaries of Bn+1×0B

n+1

have been ignored; these enter into the steps so far only in that it is necessary to ensure that the
construction is uniform (in a strong, smooth, sense) up to these boundaries, which the semiclassical
front face as well as the lift of {h = 0} meet transversally, and only in the zero front face, i.e. at
the front face of the blow-up of Bn+1 × B

n+1 that created B
n+1 ×0 B

n+1. Next we need to analyze
the asymptotics of the solutions of the transport equations at the left and right boundary faces of
B
n+1 ×0 B

n+1; this is facilitated by our analysis of the flowout Lagrangian (up to these boundary
faces). At this point we obtain a parametrix whose error is smoothing and is O(h∞), but does not,
as yet, have any decay at the zero front face. The last step, which is completely analogous to the
construction of Mazzeo and the first author, removes this error.

As a warm-up to this analysis, in Section 4 we present a three dimensional version of this
construction, with worse, but still sufficiently well-behaved error terms. This is made possible by
a coincidence, namely that in R

3 the Schwartz kernel of the resolvent of the Laplacian at energy
(λ − i0)2 is a constant multiple of e−iλrr−1, and r−1 is a homogeneous function on R

3, which
enables one to blow-down the semiclassical front face at least to leading order. Thus, the first steps
of the construction are simplified, though the really interesting parts, concerning the asymptotic
behavior at the left and right boundaries along the Lagrangian, are unchanged. We encourage the
reader to read this section first as it is more explicit and accessible than the treatment of arbitrary
dimensions.

In Section 6, we obtain weighted L2-bounds for the parametrix and its error. In Section 7 we
used these to prove Theorem 1 and Theorem 1.1.

In Section 8 we describe in detail the de Sitter-Schwarzschild set-up. Then in Section 9, in
dimension 3 + 1, we describe the approach of Bruneau and Petkov [2] reducing the necessary
problem to the combination of analysis on the ends, i.e. Theorem 1.1, and of the cutoff resolvent,
i.e. Theorem 3. Then, in Section 10, we use this method to prove Theorem 4, and its strengthening,
Theorem 10.1. In Section 11 we give a different proof which works in general dimension, and does
not require knowledge of estimates for the exact cutoff resolvent. Instead, it uses the results of
Wunsch and Zworski [27] for normally hyperbolic trapping in the presence of Euclidean ends and
of Datchev and the third author [5] which provide a method to combine these with our estimates
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on hyperbolic ends. Since this method is described in detail in [5], we keep this section fairly brief.
Finally, in Section 12 Ck estimates are given as these are the estimates that play a role in [19].

1. Resolvent estimates for model operators

In this section we state the full version of the main technical result, Theorem 1.
Let g0 be the metric on B

n+1 given by

g0 =
4dz2

(1− |z|2)2
.(1.1)

We consider a one-parameter family of perturbations of g0 supported in a neighborhood of ∂Bn+1

of the form

gδ = g0 + χδ(z)H(z, dz),(1.2)

where H is a symmetric 2-tensor, which is C∞ up to ∂Bn+1, χ ∈ C∞(R), with χ(s) = 1 if |s| < 1
2 ,

χ(s) = 0 if |s| > 1, and χδ(z) = χ((1− |z|)δ−1).

Let x = 1−|z|
1+|z| , W ∈ C∞(Bn+1) and let Rδ(σ) = (∆gδ + x2W − σ2 − 12)−1 denote the resolvent

of ∆gδ + x2W. The spectral theorem gives that Rδ(σ) is well defined as a bounded operator in
L2(Bn+1) = L2(Bn+1; dg) if Imσ ≪ 0. The results of [16] show that Rδ(σ) continues meromor-
phically to C \ iN/2 as an operator mapping C∞ functions vanishing to infinite order at ∂Bn+1 to
distributions in B

n+1. We recall, see for example [15], that for k ∈ N,

Hk
0 (B

n+1) = {u ∈ L2(Bn+1) : (x∂x, ∂ω)
mu ∈ L2(Bn+1), m ≤ k},

and

H−k
0 = {v ∈ D′(Bn+1) : there exists uβ ∈ L2(Bn+1), v =

∑

|β|≤k

(x∂x, ∂ω)
βuβ}.

Our main result is the following theorem:

Theorem 1.1. There exist δ0 > 0, such that if 0 ≤ δ ≤ δ0, then x
aRδ(σ)x

b continues holomorphi-
cally to Imσ < M, M > 0, provided |σ| > K(δ,M), b > Imσ and a > Imσ. Moreover, there exists
C > 0 such that

||xaRδ(σ)x
bv||Hk

0 (B
n+1) ≤ C|σ|−1+n

2 +k||v||L2(Bn+1), k = 0, 1, 2,

||xaRδ(σ)x
bv||L2(Bn+1) ≤ C|σ|−1+n

2 +k||v||H−k
0 (Bn+1), k = 0, 1, 2,

(1.3)

If a = Imσ, or b = Imσ, or a = b = Imσ, let φN (x) ∈ C∞((0, 1)), φN ≥ 1, φN (x) = | log x|−N , if
x < 1

4 φN (x) = 1 if x > 1
2 . Then in each case the operator

Ta,b,N (σ) =: xImσφN (x)Rδ(σ)x
b, if b > Imσ,

Ta,b,N=:x
aRδ(σ)x

ImλφN (x), if a > Imσ,

Ta.b,N =: xImσφN (x)Rδ(σ)x
ImσφN (x),

(1.4)

continues holomorphically to Imσ < M, provided N > 1
2 , |σ| > K(δ,M). Moreover in each case

there exists C = C(M,N, δ) such that

||Ta,b,N (σ)v||Hk
0 (B

n+1) ≤ C|σ|−1+n
2 +k||v||L2(Bn+1), k = 0, 1, 2,

||Ta,b,N (σ)v||L2(Bn+1) ≤ C|σ|−1+n
2 +k||v||H−k

0 (Bn+1), k = 0, 1, 2.
(1.5)
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2. The distance Function

In the construction of the uniform parametrix for the resolvent we will make use of an appropriate
resolution of the distance function, and geodesic flow, for the metric gδ. This in turn is obtained by
perturbation from δ = 0, so we start with an analysis of the hyperbolic distance, for which there is
an explicit formula. Namely, the distance function for the hyperbolic metric, g0, is given in terms
of the Euclidean metric on the ball by

(2.1)

dist0 : (Bn)◦ × (Bn)◦ −→ R where

cosh(dist0(z, z
′)) = 1 +

2|z − z′|2

(1− |z|2)(1− |z′|2)
.

We are particularly interested in a uniform description as one or both of the points approach the
boundary, i.e. infinity. The boundary behavior is resolved by lifting to the ‘zero stretched product’
as is implicit in [15]. This stretched product, Bn×0B

n, is the compact manifold with corners defined
by blowing up the intersection of the diagonal and the corner of Bn × B

n :

(2.2)

β : Bn ×0 B
n = [Bn × B

n; ∂Diag] −→ B
n × B

n,

∂Diag = Diag∩ (∂Bn × ∂Bn) = {(z, z); |z| = 1},

Diag = {(z, z′) ∈ B
n × B

n; z = z′}.

See Figure 1 in which (x, y) and (x′, y′) are local coordinates near a point in the center of the blow
up, with boundary defining functions x and x′ in the two factors.

Figure 1. The stretched product Bn ×0 B
n.

Thus Bn ×0 B
n has three boundary hypersurfaces, the front face introduced by the blow up and

the left and right boundary faces which map back to ∂Bn × B
n and B

n × ∂Bn respectively under
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β. Denote by Diag0 the lift of the diagonal, which in this case is the closure of the inverse image
under β of the interior of the diagonal in B

n × B
n.

Lemma 2.1. Lifted to the interior of Bn ×0 B
n the hyperbolic distance function extends smoothly

up to the interior of the front face, in the complement of Diag0, where it is positive and, for an
appropriate choice ρL ∈ C∞(Bn ×0 B

n) of defining function for the left boundary and with ρR its
reflection,

(2.3)
β∗dist0(z, z

′) = − log(ρLρR) + F,

0 < F ∈ C∞(Bn ×0 B
n \Diag0), F

2 ∈ C∞(Bn ×0 B
n),

with F 2 a quadratic defining function for Diag0 .

Proof. We show first that the square of the Euclidean distance function, |z−z′|2, lifts to be smooth
on B

n ×0 B
n and to vanish quadratically on Diag0 and on the front face produced by the blow up

(2.4) β∗(|z − z′|2) = R2f, f ∈ C∞(Bn ×0 B
n).

Here f ≥ 0 vanishes precisely at Diag0 and does so quadratically. Indeed this is certainly true away
from the front face produced by the blow up. The spaces and the distance function are invariant
under rotational symmetry, which lifts under the blow up, so me may fix the spherical position of
one variable and suppose that z′ = (1− x′, 0), with x′ > 0 and small, the blow up is then of z = z′,
x′ = 0. The fact that the variables are restricted to the unit ball is now irrelevant, and using the
translation-invariance of the Euclidean distance we can suppose instead that z′ = (x′, 0) and blow
up z = z′, x′ = 0. Since |(x, 0) − z|2 is homogeneous in all variables it lifts to be the product of
the square of a defining function for the front face and a quadratic defining function for the lift of
the diagonal. This proves (2.4) after restriction to the preimage of the balls and application of the
symmetry.

The hyperbolic distance is given by (2.1) where 1 − |z|2 and 1 − |z′|2 are boundary defining
functions on the two factors. If R is a defining function for the front face of Bn ×0 B

n then these
lift to be of the form ρLR and ρRR so combining this with (2.4)

(2.5) β∗ cosh(dist0(z, z
′)) = 1 + 2

f

ρLρR
.

Now exp(t) = cosh t+
[
cosh2 t− 1

] 1
2 , for t > 0, and from (2.5) it follows that

(2.6) exp(dist0(z, z
′)) = 1 + 2

f

ρLρR
+

(
2

f

ρLρR
+ 4

f2

ρ2Lρ
2
R

) 1
2

.

Near Diag0 the square-root is dominated by the first part and near the left and right boundaries
by the second part, and is otherwise positive and smooth. Taking logarithms gives the result as
claimed, with the defining function taken to be one near Diag0 and to be everywhere smaller than
a small positive multiple of (1− |z|2)/R. �

This result will be extended to the case of a perturbation of the hyperbolic metric by constructing
the distance function directly from Hamilton-Jacobi theory, i.e. by integration of the Hamilton
vector field of the metric function on the cotangent bundle. The presence of only simple logarithmic
singularities in (2.3) shows, perhaps somewhat counter-intuitively, that the Lagrangian submanifold
which is the graph of the differential of the distance should be smooth (away from the diagonal)
in the b-cotangent bundle of M2

0 . Conversely if this is shown for the perturbed metric then the
analogue of (2.3) follows except for the possibility of a logarithmic term at the front face.
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Since the metric is singular near the boundary, the dual metric function on T ∗
B
n is degenerate

there. In terms of local coordinates near a boundary point, x, y where the boundary is locally
x = 0, and dual variables ξ, η, the metric function for hyperbolic space is of the form

(2.7) 2p0 = x2ξ2 + 4x2(1− x2)−2h0(ω, η)

where h0 is the metric function for the induced metric on the boundary.
Recall that the 0-cotangent bundle of a manifold with boundary M, denoted 0T ∗M, is a smooth

vector bundle over M which is a rescaled version of the ordinary cotangent bundle. In local coor-
dinates near, but not at, the boundary these two bundles are identified by the (rescaling) map

(2.8) T ∗M ∋ (x, y, ξ, η) 7−→ (x, y, λ, µ) = (x, y, xξ, xη) ∈ 0T ∗M.

It is precisely this rescaling which makes the hyperbolic metric into a non-degenerate fiber metric,
uniformly up to the boundary, on this bundle. On the other hand the b-cotangent bundle, also a
completely natural vector bundle, is obtained by rescaling only in the normal variable

(2.9) T ∗M ∋ (x, y, ξ, η) 7−→ (x, y, λ, η) = (x, y, xξ, η) ∈ bT ∗M.

Identification over the interior gives natural smooth vector bundle maps

(2.10) ιb0 : 0TM −→ bTM, ιtb0 : bT ∗M −→ 0T ∗M.

The second scaling map can be constructed directly in terms of blow up.

Lemma 2.2. If 0T ∗∂M ⊂ 0T ∗
∂MM denotes the annihilator of the null space, over the boundary, of

ιb0 in (2.10) then there is a canonical diffeomorphism

(2.11) bT ∗M −→ [0T ∗M, 0T ∗∂M ] \ β#
(
0T ∗

∂MM
)
, β : [0T ∗M, 0T ∗∂M ] −→ 0T ∗M,

to the complement, in the blow up, of the lift of the boundary:

β#(0T ∗
∂MM) = β−1(0T ∗

∂MM \ 0T ∗∂M).

Proof. In local coordinates x, yj , the null space of ιb0 in (2.10) is precisely the span of the ‘tangential’
basis elements x∂yj

over each boundary point. Its annihilator, 0T ∗∂M is given in the coordinates
(2.9) by µ = 0 at x = 0. The lift of the ‘old boundary’ x = 0 is precisely the boundary hypersurface
near which |µ| dominates x. Thus, x is a valid defining function for the boundary of the complement,
on the right in (2.11) and locally in this set, above the coordinate patch inM, ηj = µj/x are smooth
functions. The natural bundle map bT ∗M −→ 0T ∗M underlying (2.11) is given in these coordinates

by λdx
x + η · dy 7−→ λdx

x + xη · dy
x , which is precisely the same map, µ = xη, as appears in (2.9), so

the result, including naturality, follows. �

The symplectic form lifted to 0T ∗M is

0ω =
1

x
dλ ∧ dx+

1

x
dµ ∧ dy −

1

x2
dx ∧ (µ · dy)

whereas lifted to bT ∗M it is

(2.12) bω =
1

x
dλ ∧ dx+ dη ∧ dy.

Working, for simplicity of computation, in the non-compact upper half-space model for hyperbolic
space the metric function lifts to the non-degenerate quadratic form on 0T ∗M :

(2.13) 2p0 = λ2 + h0(ω, µ)
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where h0 = |µ|2 is actually the Euclidean metric. The 0-Hamilton vector field of p0 ∈ C∞(0T ∗M),
just the lift of the Hamilton vector field over the interior, is determined by

(2.14) 0ω(·, 0Hp) = dp.

Thus

0
Hp = x

∂p

∂λ
∂x + x

∂p

∂µ
· ∂y −

(
µ ·

∂p

∂µ
+ x

∂p

∂x

)
∂λ −

(
−
∂p

∂λ
µ+ x

∂p

∂y

)
· ∂µ

and hence

(2.15) 0
Hp0

= λ(x∂x + µ∂µ)− h0∂λ +
x

2
Hh0

is tangent to the smooth (up to the boundary) compact sphere bundle given by p0 = 1.
Over the interior of M = B

n, the hyperbolic distance from any interior point of the ball is
determined by the graph of its differential, which is the flow out inside p0 = 1, of the intersection of
this smooth compact manifold with boundary with the cotangent fiber to the initial point. Observe
that Hp0

is also tangent to the surface µ = 0 over the boundary, which is the invariantly defined
subbundle 0T ∗∂M. Since the coordinates can be chosen to be radial for any interior point, it follows
that all the geodesics from the interior arrive at the boundary at x = 0, µ = 0, corresponding to
the well-known fact that hyperbolic geodesics are normal to the boundary. This tangency implies
that Hp0

lifts under the blow up of 0T ∗∂M in (2.11) to a smooth vector field on bTM ; this can also
be seen by direct computation.

Lemma 2.3. The graph of the differential of the distance function from any interior point, p ∈
(Bn)◦, of hyperbolic space extends by continuity to a smooth Lagrangian submanifold of bT ∗(Bn\{p})
which is transversal to the boundary, is a graph over B

n \ {p} and is given by integration of a non-
vanishing vector field up to the boundary.

Proof. Observe the effect of blowing up µ = 0, x = 0 on the Hamilton vector field in (2.15). As
noted above, near the front face produced by this blow up valid coordinates are given by η = µ/x,
λ and y, with x the boundary defining function. Since this transforms 0ω to bω it follows that 0

Hp0

is transformed to

(2.16) b
Hp0

= x(λ∂x − xh0∂λ + xHh0
)

where now Hh0
is the Hamilton vector field with respect to y and η.

The constant energy surface p0 = 1 remains smooth, but non-compact, near the boundary, which
it intersects transversally in λ = 1. From this the result follows – with the non-vanishing smooth
vector field being b

Hp0
divided by the boundary defining function x near the boundary. �

The logarithmic behaviour of the distance function in (2.3) with one point fixed in the interior is
a consequence of Lemma 2.2, since the differential of the distance must be of the form adx/x+b ·dy
for smooth functions a and b, and since it is closed, a is necessarily constant on the boundary.

To examine the distance as a function of both variables a similar construction for the product,
in this case M2, M = B

n can be used. The graph, Λ, of the differential of the distance d(p, p′) as
a function on M2 is the joint flow out of the conormal sphere bundle to the diagonal in T ∗M2 =
T ∗M×T ∗M, under the two Hamiltonian vector fields of the two metric functions within the product
sphere bundles. As before it is natural to lift to 0T ∗M × 0T ∗M where the two sphere bundles
extend smoothly up to the boundary. However, one can make a stronger statement, namely that
the lifted Hamilton vector fields are smooth on the b-cotangent bundle of M2

0 , and indeed even
on the ‘partially b’-cotangent bundle of M2

0 , with ‘partially’ meaning it is the standard cotangent
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bundle over the interior of the front face. This is defined and discussed in more detail below; note
that the identification of these bundles over the interior of M2

0 extends to a smooth map from these
bundles to the lift of 0T ∗M × 0T ∗M , as we show later, explaining the ‘stronger’ claim.

Smoothness of the Hamilton vector field together with transversality conditions shows that the
flow-out of the conormal bundle of the diagonal is a smooth Lagrangian submanifold of the cotangent
bundle under consideration; closeness to a particular Lagrangian (such as that for hyperbolic space)
restricted to which projection to M2

0 is a diffeomorphism, guarantees that this Lagrangian is also
a graph over M2

0 . Thus, over the interior, (M2
0 )

◦, it is the graph of the differential of the distance
function, and the latter is smooth; the same would hold globally if the Lagrangian were smooth
on T ∗M2

0 . The latter cannot happen, though the Lagrangian will be a graph in the b-, and indeed
the partial b-, cotangent bundles over M2

0 . These give regularity of the distance function, namely
smoothness up to the front face (directly for the partial b bundle, with a short argument if using
the b bundle), and the logarithmic behavior up to the other faces. Note that had we only showed
the graph statement in the pullback of 0T ∗M × 0T ∗M, one would obtain directly only a weaker
regularity statement for the distance function; roughly speaking, the closer the bundle in which
the Lagrangian is described is to the standard cotangent bundle, the more regularity the distance
function has.

In fact it is possible to pass from the dual of the lifted product 0-tangent bundle to the dual
of the b-tangent bundle, or indeed the partial b-bundle, by blow-up, as for the single space above.
Observe first that the natural inclusion

(2.17) ι0b × ι0b : 0TM × 0TM −→ bTM2 = bTM × bTM

identifies the sections of the bundle on the left with those sections of the bundle on the right, the
tangent vector fields on M2, which are also tangent to the two fibrations, one for each boundary
hypersurface

(2.18) φL : ∂M ×M −→M, φR :M × ∂M −→M.

Lemma 2.4. The fibrations (2.18), restricted to the interiors, extend by continuity to fibrations
φL, resp. φR, of the two ‘old’ boundary hypersurfaces of M2

0 and the smooth sections of the lift of
0TM×0TM to M2

0 are naturally identified with the subspace of the smooth sections of bTM2
0 which

are tangent to these fibrations and also to the fibres of the front face of the blow up, β0 : ff(M2
0 ) −→

∂M × ∂M.

Proof. It is only necessary to examine the geometry and vector fields near the front face produced
by the the blow up of the diagonal near the boundary. Using the symmetry between the two factors,
it suffices to consider two types of coordinate systems. The first is valid in the interior of the front
fact and up to a general point in the interior of the intersection with one of the old boundary faces.
The second is valid near a general point of the corner of the front face, which has fibers which are
quarter spheres.

For the first case let x, y and x′, y′ be the same local coordinates in two factors. The coordinates

(2.19) s = x/x′, x′, y and Y = (y′ − y)/x′

are valid locally in M2
0 above the point x = x′ = 0, y = y′, up to the lift of the old boundary x = 0,

which becomes locally s = 0. The fibration of this hypersurface is given by the constancy of y and
the front face is x′ = 0 with fibration also given by the constancy of y. The vector fields

x∂x, x∂y, x
′∂x′ and x′∂y′
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lift to
s∂s, sx

′∂y − s∂Y , x
′∂x′ − s∂s − Y · ∂Y and ∂Y .

The basis s∂s, sx
′∂y, x

′∂x′ and ∂Y shows that these vector fields are locally precisely the tangent
vector fields also tangent to both fibrations.

After relabeling the tangential variables as necessary, and possibly switching their signs, so that
y′1 − y1 > 0 is a dominant variable, the coordinate system

(2.20) t = y′1 − y1, s1 =
x

y′1 − y1
, s2 =

x′

y′1 − y1
, Zj =

y′j − yj

y′1 − y1
, j > 1, y

can be used at a point in the corner of the front face. The three boundary hypersurfaces are locally
s1 = 0, s2 = 0 and t = 0 and their respective fibrations are given in these coordinates by

(2.21)

s1 = 0, y = const.,

s2 = 0, y′1 = y1 + t = const., y′j = yj + tZj = const., j > 1,

t = 0, y = const.

Thus, the intersections of fibres of the lifted left or right faces with the front face are precisely
boundary hypersurfaces of fibres there. On the other hand within the intersection of the lifted left
and right faces the respective fibres are transversal except at the boundary representing the front
face. The lifts of the basis of the zero vector fields is easily computed:

(2.22)

x∂x 7−→ s1∂s1 ,

x∂y1
−→ −s1t∂t + s21∂s1 + s1s2∂s2 + s1Z · ∂Z + s1t∂y1

,

x∂yj
7−→ s1t∂yj

− s1∂Zj
,

x′∂x′ 7−→ s2∂s2 ,

x′∂y′
1
−→ s2t∂t − s2s1∂s1 − s22∂s2 − s2Z · ∂Z ,

x′∂y′
j
7−→ s2∂Zj

.

The span, over C∞(M2
0 ), of these vector fields is also spanned by

s1∂s1 , s2∂s2 , s2∂Zj
, j > 1, s1(t∂yj

− ∂Zj
), j > 1, s1(t∂t − t∂y1

− Z · ∂Z) and s2t∂t.

These can be seen to locally span the vector fields tangent to all three boundaries and corresponding
fibrations, proving the Lemma. �

With φ = {φL, φR, β0} the collection of boundary fibrations, we denote by φTM2
0 the bundle

whose smooth sections are exactly the smooth vector fields tangent to all boundary fibrations.
Thus, the content of the preceding lemma is that

β∗(0TM × 0TM) = φTM2
0 .

These fibrations allow the reconstruction of bT ∗M2
0 as a blow up of the lift of 0T ∗M × 0T ∗M

to M2
0 . It is also useful, for more precise results later on, to consider the ‘partially b-’ cotangent

bundle of M2
0 ,

b,ffT ∗M2
0 ; this is the dual space of the partially b-tangent bundle, b,ffTM2

0 , whose
smooth sections are smooth vector fields on M2

0 which are tangent to the old boundaries, but not
necessarily to the front face, ff. Thus, in coordinates (2.19), s∂s, ∂x′ , ∂y and ∂Y form a basis of
b,ffTM2

0 , while in coordinates (2.20), s1∂s1 , s2∂s2 , ∂t, ∂Zj
and ∂y do so. Let

ι20b : φTM2
0 → bTM2

0 , ι
2
0b,ff : φTM2

0 → b,ffTM2
0

be the inclusion maps.
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Lemma 2.5. The annihilators, in the lift of 0T ∗M×0T ∗M to M2
0 , of the null space of either ι20b or

ι20b,ff over the old boundaries, as in Lemma 2.4, form transversal embedded p-submanifolds. After

these are blown up, the closure of the annihilator of the nullspace of ι20b, resp. ι
2
0b,ff , over the interior

of the front face of M2
0 is a p-submanifold, the subsequent blow up of which produces a manifold

with corners with three ‘old’ boundary hypersurfaces; the complement of these three hypersurfaces
is canonically diffeomorphic to bT ∗M2

0 , resp.
b,ffT ∗M2

0 .

Proof. By virtue of Lemma 2.2 and the product structure away from the front face ff of M2
0 , the

statements here are trivially valid except possibly near ff. We may again use the coordinate systems
discussed in the proof of Lemma 2.4. Consider the linear variables in the fibres in which a general
point is lx∂x + v · x∂y + l′x′∂x′ + v′ · x′∂y′ .

First consider the inclusion into bTM2
0 . In the interiors of s1 = 0 and s2 = 0 and the front face

respectively, the null bundles of the inclusion into the tangent vector fields are

(2.23)

l = l′ = 0, v′ = 0,

l = l′ = 0, v = 0,

ls∂s + v(sx′∂y − s∂Y ) + l′(x′∂x′ − s∂s − Y ∂Y ) + v′∂Y = 0 at x′ = 0, s > 0

⇐⇒ l = l′ = 0, v′ = sv.

The corresponding annihilator bundles, over the interiors of the boundary hypersurfaces of M2
0 ,

in the dual bundle, with basis

(2.24) λ
dx

x
+ µ

dy

x
+ λ′

dx′

x′
+ µ′ dy

′

x′

are therefore, as submanifolds,

(2.25)

s1 = 0, µ = 0,

s2 = 0, µ′ = 0 and

x′ = 0, µ+ sµ′ = 0 or t = 0, s2µ+ s1µ
′ = 0.

Here the annihilator bundle over the front face is given with respect to both the coordinate system
(2.19) and (2.20).

Thus, the two subbundles over the old boundary hypersurfaces meet transversally over the in-
tersection, up to the corner, as claimed and so can be blown up in either order. In the complement
of the lifts of the old boundaries under these two blow ups, the variables µ/s1 and µ′/s2 become
legitimate; in terms of these the subbundle over the front face becomes smooth up to, and with a
product decomposition at, all its boundaries. Thus, it too can be blown up. That the result is a
(painful) reconstruction of the b-cotangent bundle of the blown up manifold M2

0 follows directly
from the construction.

It remains to consider the inclusion into b,ffTM2
0 . The only changes are at the front face, namely

the third line of (2.23) becomes

(2.26)
ls∂s + v(sx′∂y − s∂Y ) + l′(x′∂x′ − s∂s − Y ∂Y ) + v′∂Y = 0 at x′ = 0, s > 0

⇐⇒ l = l′, v′ = sv + l′Y.
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Correspondingly the third line of (2.25) becomes

(2.27)

x′ = 0, λ+ λ′ + µ′Y = 0, µ+ sµ′ = 0

or t = 0, s2µ+ s1µ
′ = 0, s2(λ+ λ′) + µ′

1 +
∑

j≥2

µ′
jZj = 0.

The rest of the argument is unchanged, except that the conclusion is that b,ffT ∗M2
0 is being recon-

structed. �

Note that for any manifold with corners, X, the b-cotangent bundle of any boundary hypersurface
H (or indeed any boundary face) includes naturally as a subbundle bT ∗H →֒ bT ∗

HX.

Lemma 2.6. The Hamilton vector field of gδ lifts from either the left or the right factor of M
in M2 to a smooth vector field, tangent to the boundary hypersurfaces, on bT ∗M2

0 , as well as on
b,ffT ∗M2

0 , still denoted by H
L
gδ
, resp. HR

gδ
. Moreover, HL

gδ
= ρLV

L, HR
gδ

= ρRV
R, where VL, resp.

VR are smooth vector fields tangent to all hypersurfaces except the respective cotangent bundles over
the left, resp. right, boundaries, to which they are transversal, and where ρL and ρR are defining
functions of the respective cotangent bundles over these boundaries.

Proof. Inserting the explicit form of the Euclidean metric, the Hamilton vector field in (2.15)
becomes

(2.28) 0
Hp0

= λ(x∂x + µ∂µ)− |µ|2∂λ + xµ · ∂y.

Consider the lift of this vector field to the product, 0T ∗M × 0T ∗M, from left and right, and then
under the blow up of the diagonal in the boundary. In the coordinate systems (2.19) and (2.20)

(2.29)

0
H

L
p0

= λ(s∂s + µ∂µ)− |µ|2∂λ + sµ(x′∂y − ∂Y )

0
H

R
p0

= λ′(x′∂x′ − s∂s − Y ∂Y + µ′∂µ′)− |µ′|2∂λ′ + µ′∂Y

0
H

L
p0

= λ(s1∂s1 + µ∂µ)− |µ|2∂λ + s1
∑

j≥2

µj(t∂yj
− ∂Zj

)

+s1µ1(t∂y1
− t∂t + s1∂s1 + s2∂s2 +

∑

j≥2

Zj∂Zj
)

0
H

R
p0

= λ′(s2∂s2 + µ′∂µ′)− |µ′|2∂λ′ + s2
∑

j≥2

µ′
j∂Zj

+s2µ
′
1(t∂t − s1∂s1 − s2∂s2 −

∑

j≥2

Zj∂Zj
).

Note that the bundle itself is just pulled back here, so only the base variables are changed.
Next we carry out the blow ups of Lemma 2.5. The centers of blow up are given explicitly, in

local coordinates, in (2.25), with the third line replaced by (2.27) in the case of ι20b,ff . We are only

interested in the behaviour of the lifts of the vector fields in (2.29) near the front faces introduced
in the blow ups.

Consider ι20b first. For the first two cases there are two blow-ups, first of µ = 0 in s = 0 and then
of µ+ sµ′ = 0 in x′ = 0. Thus, near the front face of the first blow up, the µ variables are replaced
by µ̃ = µ/s and then the center of the second blow up is µ̃ + µ′ = 0, x′ = 0. Thus, near the front
face of the second blow up we can use as coordinates s, x′, µ′ and ν = (µ̃ + µ′)/x′, i.e. substitute
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µ̃ = −µ′ + x′ν. In the coordinate patch (2.29) the lifts under the first blow up are

(2.30)

0
H

L
p0

7−→ λs∂s − s2|µ̃|2∂λ + s2µ̃(x′∂y − ∂Y )

0
H

R
p0

7−→ λ′(x′∂x′ − s∂s − Y ∂Y + µ̃∂µ̃ + µ′∂µ′)− |µ′|2∂λ′ + µ′∂Y .

Thus under the second blow up, the left Hamilton vector field lifts to

(2.31) 0
H

L
p0

7−→ sT, T = λ∂s − s|µ̃|2∂λ + sµ̃(x′∂y − ∂Y )

where T is transversal to the boundary s = 0 where λ 6= 0.
A similar computation near the corner shows the lifts of the two Hamilton vector fields under

blow up the fibrations of s1 = 0 and s2 = 0 in terms of the new coordinates µ̃ = µ/s1 and µ̃
′ = µ′/s2

to be

(2.32)

0
H

L
p0

=λs1∂s1 − s21|µ̃|
2∂λ + s21

∑

j≥2

µ̃j(t∂yj
− ∂Zj

)

+s21µ̃1(t∂y1
− t∂t + s1∂s1 − µ̃∂µ̃ + s2∂s2 − µ̃′∂µ̃′ +

∑

j≥2

Zj∂Zj
),

0
H

R
p0

=λ′s2∂s2 − s22|µ̃
′|2∂λ′ + s22

∑

j≥2

µ̃′
j∂Zj

+s22µ̃
′
1(t∂t − s1∂s1 + µ̃∂µ̃ − s2∂s2 + µ̃′∂µ̃′ −

∑

j≥2

Zj∂Zj
).

The final blow up is that of t = 0, µ̃+ µ̃′ = 0, near the front face of this blow-up replacing (t, µ̃, µ̃′)
by (t, µ̃, ν̃), ν̃ = (µ̃ + µ̃′)/t, as valid coordinates (leaving the others unaffected). Then the vector
fields above become

(2.33)

0
H

L
p0

= s1T̃
L, 0

H
R
p0

= s2T̃
R,

T̃L =λ∂s1 − s1|µ̃|
2∂λ + s1

∑

j≥2

µ̃j(t∂yj
− ∂Zj

)

+s1µ̃1(t∂y1
− t∂t + s1∂s1 − µ̃∂µ̃ + s2∂s2 +

∑

j≥2

Zj∂Zj
),

T̃R =λ′∂s2 − s2|µ̃
′|2∂λ′ + s2

∑

j≥2

µ̃′
j∂Zj

+s2µ̃
′
1(t∂t − s1∂s1 + µ̃∂µ̃ − s2∂s2 −

∑

j≥2

Zj∂Zj
).

Thus both left and right Hamilton vector fields are transversal to the respective boundaries after a
vanishing factor is removed, provided λ, λ′ 6= 0.

The final step is to show that the same arguments apply to the perturbed metric. First consider
the lift, from left and right, of the perturbation to the Hamilton vector field arising from the
perturbation of the metric. By assumption, the perturbation H is a 2-cotensor which is smooth
up to the boundary. Thus, as a perturbation of the dual metric function on 0T ∗M it vanishes
quadratically at the boundary. In local coordinates near a boundary point it follows that the
perturbation of the differential of the metric function is of the form

(2.34) dp− dp0 = x2(a
dx

x
+ bdy + cdλ+ edµ)
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¿From (2.14) it follows that the perturbation of the Hamilton vector field is of the form

(2.35) Hp − Hp0
= x2(a′x∂x + b′x∂y + c′∂λ + e′∂µ)

on 0T ∗M. Lifted from the right or left factors to the product and then under the blow-up of the
diagonal to M2

0 it follows that in the coordinate systems (2.19) and (2.20), the perturbations are
of the form

(2.36)
H

L
p − H

L
p0

= s2(x′)2V L, HR
p − H

R
p0

= (x′)2V R, V L, V R ∈ Vb,

H
L
p − H

L
p0

= s21t
2WL, HR

p − H
R
p0

= s22t
2WR, WR, WR ∈ Vb

where Vb denotes the space of smooth vector fields tangent to all boundaries. Since the are lifted
from the right and left factors, V L and V R are necessarily tangent to the annihilator submanifolds
of the right and left boundaries. It follows that the vector fields sx′V L and x′V R are tangent
to both fibrations above a coordinate patch as in (2.19) and s1tV

L and s2tV
R are tangent to all

three annihilator submanifolds above a coordinate patch (2.20). Thus, after the blow ups which
reconstruct bT ∗M2

0 , the perturbations lift to be of the form

(2.37) H
L
p − H

L
p0

= ρLρffU
L, HR

p − H
R
p0

= ρRρffU
R

where UL and UR are smooth vector fields on bT ∗M2
0 .

¿From (2.37) it follows that the transversality properties in (2.31) and (2.33) persist.
Now consider ι20b,ff . First, (2.30) is unchanged, since the annihilators on the ‘old’ boundary faces

are the same in this case. In particular, we still have µ̃ = µ/s as one of our coordinates after the first
blow up; the center of the second blow up is then x′ = 0, λ+λ′+µ′ ·Y = 0, µ̃+µ′ = 0. Thus, near
the front face of the second blow up we can use as coordinates s, x′, µ′ and σ = (λ+λ′+µ′ ·Y )/x′,
ν = (µ̃ + µ′)/x′, i.e. substitute µ̃ = −µ′ + x′ν, i.e. µ = −µ′s + x′sν, and λ = −λ′ − µ′ · Y + x′σ.
Thus under the second blow up, the left Hamilton vector field lifts to

(2.38) 0
H

L
p0

7−→ sT ′, T ′ = λ∂s + µ · (−ν∂σ + x′∂y − ∂Y ),

so T ′ is transversal to the boundary s = 0 where λ 6= 0.
In the other coordinate chart, again, (2.32) is unchanged since the annihilators on the ‘old’

boundary faces are the same. The final blow up is that of

t = 0, µ̃+ µ̃′ = 0, λ+ λ′ + µ̃′
1 +

∑

j≥2

µ̃′
jZj = 0,

near the front face of this blow-up replacing (t, µ̃, µ̃′, λ, λ′) by (t, µ̃, ν̃, λ, σ̃),

ν̃ = (µ̃+ µ̃′)/t, σ̃ = (λ+ λ′ + µ̃′
1 +

∑

j≥2

µ̃′
jZj)/t,
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as valid coordinates (leaving the others unaffected). Then the vector fields above become

(2.39)

0
H

L
p0

= s1T̂
L, 0

H
R
p0

= s2T̂
R,

T̂L =λ∂s1 − s1|µ̃|
2∂λ + s1

∑

j≥2

µ̃j(t∂yj
− ∂Zj

− ν̃j∂σ̃)

+s1µ̃1(t∂y1
− t∂t + s1∂s1 + σ̃∂σ̃ − ν̃∂ν̃ + s2∂s2 − ν̃1∂σ̃ +

∑

j≥2

Zj∂Zj
),

T̂R =λ′∂s2 + s2
∑

j≥2

µ̃′
j∂Zj

+s2µ̃
′
1(t∂t − s1∂s1 + µ̃∂µ̃ − s2∂s2 − σ̃∂σ̃ −

∑

j≥2

Zj∂Zj
).

Again, both left and right Hamilton vector fields are transversal to the respective boundaries after
a vanishing factor is removed, provided λ, λ′ 6= 0. The rest of the argument proceeds as above. �

Proposition 2.7. The differential of the distance function for the perturbed metric gδ, for suffi-
ciently small δ, on M = B

n defines a global smooth Lagrangian submanifold Λδ, of
bT ∗(M ×0 M),

which is a smooth section outside the lifted diagonal and which lies in bT ∗ ff over the front face,
ff(M2

0 ) and in consequence there is a unique geodesic between any two points of (B3)◦, no conjugate
points and (2.3) remains valid for distδ(z, z

′).

Proof. For the unperturbed metric this already follows from Lemma 2.1. We first reprove this result
by integrating the Hamilton vector fields and then examine the effect of the metric perturbation.
Thus we first consider the lift of the Hamilton vector field of the hyperbolic distance function from
0T ∗M, from either the left of the right, to b,ffT ∗M2

0 , using the preceding lemma.
Although the global regularity of the Lagrangian which is the graph of the differential of the

distance is already known from the explicit formula in this case, note that it also follows from the
form of these two vector fields. The initial manifold, the unit conormal bundle to the diagonal,
becomes near the corner of M2 the variety of those

(2.40) ξ(dx− dx′) + η(dy − dy′) such that ξ2 + |η|2 =
1

2x2
, x = x′ > 0, y = y′.

In the blown up manifold M2
0 the closure is smooth in bT ∗M2

0 and is the bundle over the lifted
diagonal given in terms of local coordinates (2.19) by

(2.41) λ
ds

s
+ µdY, λ2 + |µ|2 =

1

2
, s = 1, Y = 0;

the analogous statement also holds in b,ffT ∗M2
0 where one has the ‘same’ expression. Using the

Hamilton flow in b,ffT ∗M2
0 , we deduce that the flow out is a global smooth submanifold, where

smoothness includes up to all boundaries, of b,ffT ∗M2
0 , and is also globally a graph away from the

lifted diagonal, as follows from the explicit form of the vector fields. Note that over the interior of
the front face, b,ffT ∗M2

0 is just the standard cotangent bundle, so smoothness of the distance up to
the front face follows. Over the left and right boundaries the Lagrangian lies in λ = 1 and λ′ = 1
so the form (2.3) of the distance follows.

The analogous conclusion can also be obtained by using the flow in bT ∗M2
0 . In this setting,

we need that over the front face (2.41) is contained in the image of bT ∗ ff to which both lifted
vector fields are tangent. Thus it follows that the flow out is a global smooth submanifold, where
smoothness includes up to all boundaries, of bT ∗M2

0 which is contained in the image of bT ∗ ff over
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ff(M2
0 ). Again, it is globally a graph away from the lifted diagonal, as follows from the explicit form

of the vector fields. Over the left and right boundaries the Lagrangian lies in λ = 1 and λ′ = 1 so
the form (2.3) of the distance follows.

For small δ these perturbation of the Hamilton vector fields are also small in supremum norm
and have the same tangency properties at the boundaries used above to rederive (2.3), from which
the Proposition follows. �

3. The semiclassical double space

In this section we construct the semiclassical double space, M0,~, which will be the locus of
our parametrix construction. To motivate the construction, we recall that Mazzeo and the first
author [16] have analyzed the resolvent R(h, σ), defined in equation (17), for σ/h ∈ C, though the
construction is not uniform as |σ/h| → ∞. They achieved this by constructing the Schwartz kernel
of the parametrix G(h, σ) to R(h, σ) as a conormal distribution defined on the manifold

M0 = B
n+1 ×0 B

n+1

defined in (2.2), see also figure 1, with meromorphic dependence on σ/h.
The manifold B

n+1 × B
n+1 is a 2n + 2 dimensional manifold with corners. It contains two

boundary components of codimension one, denoted as in [16] by

∂l1(B
n+1 × B

n+1) = ∂Bn+1 × B
n+1 and ∂r1(B

n+1 × B
n+1) = B

n+1 × ∂Bn+1,

which have a common boundary ∂2(B
n+1 × B

n+1) = ∂Bn+1 × ∂Bn+1. The lift of ∂r1(B
n+1 × B

n+1)
to M0, which is the closure of

β−1(∂r1(B
n+1 × B

n+1) \ ∂2(B
n+1 × B

n+1)),

with

β :M0 → B
n+1 × B

n+1(3.1)

the blow-down map, will be called the right face and denoted by R. Similarly, the lift of ∂l1(B
n+1 ×

B
n+1) will be called the left face and denoted by L. The lift of Diag∩∂2(B

n+1 ×B
n+1), which is its

inverse image under β, will be called the front face F, see figure 1.
We note that one crucial feature of M0 is that elements of V0(B

n+1) lift from either factor of
B
n+1 in B

n+1 × B
n+1 to C∞ vector fields tangent to all boundary hypersurfaces. This is shown in

[16], can be easily checked in local coordinates near the front face F (the only place where this is
non-trivial), but it also follows by more general theory from the fact that on B

n+1 × B
n+1 these

vector fields are tangent to the boundary of the diagonal, which is then blown up to create M0.
In fact, as elements of V0(B

n+1) vanish at ∂Bn+1, these lifted vector fields, when say lifted from
the left factor, vanish at the left face L, but no longer at F (though they both map under β to
∂Bn+1×B

n+1). In fact, the usefulness of M0 near the diagonal exactly corresponds to the fact that
the lifted vector fields are smooth, tangent to the boundary, but in addition they (as a collection)
are transversal to the lifted diagonal.

We briefly recall the definitions of their classes of pseudodifferential operators, and refer the
reader to [16] for full details. First they define the class Ψm

0 (Bn+1) which consists of those pseudo-
differential operators of order m whose Schwartz kernels lift under the blow-down map β defined in
(2.2) to a distribution which is conormal (of order m) to the lifted diagonal and vanish to infinite
order at all faces, with the exception of the front face, up to which it is C∞ (with values in conormal
distributions). Here, and elsewhere in the paper, we trivialized the right density bundle using a
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zero-density; we conveniently fix this as |dgδ(z
′)|. Thus, the Schwartz kernel of A ∈ Ψm

0 (Bn+1) is
KA(z, z

′)|dgδ(z
′)|, with KA as described above, so in particular is C∞ up to the front face.

It then becomes necessary to introduce another class of operators whose kernels are singular

at the right and left faces. This class will be denoted by Ψm,a,b
0 (Bn+1), a, b ∈ C. An operator

P ∈ Ψm,a,b
0 (Bn+1) if it can be written as a sum P = P1 +P2, where P1 ∈ Ψm

0 (X) and the Schwartz
kernel KP2

|dgδ(z
′)| of the operator P2 is such that KP2

lifts under β to a conormal distribution
which is smooth up to the front face, and which satisfies the following conormal regularity with
respect to the other faces

(3.2) Vk
b β

∗KP2
∈ ρaLρ

b
RL

∞(Bn+1 ×0 B
n+1), ∀ k ∈ N,

where Vb denotes the space of vector fields on M0 which are tangent to the right and left faces.
Next we define the semiclassical blow-up of

B
n+1 × B

n+1 × [0, 1)h,

and the corresponding classes of pseudodifferential operators associated with it that will be used
in the construction of the parametrix. The semiclassical double space is constructed in two steps.
First, as in [16], we blow-up the intersection of the diagonal Diag×[0, 1) with ∂Bn+1×∂Bn+1×[0, 1).
Then we blow-up the intersection of the lifted diagonal times [0, 1) with {h = 0}. We define the
manifold with corners

(3.3) M0,~ = [Bn+1 × B
n+1 × [0, 1]h; ∂Diag×[0, 1);Diag0 ×{0}].

See Figures 2 and 3. We will denote the blow-down map

(3.4) β~ :M0,~ −→ B
n+1 × B

n+1 × [0, 1).

Figure 2. The stretched product Bn+1 ×0 B
n+1 × [0, 1).

As above, we can define the right and left semiclassical faces as the lift of

∂l1
(
B
n+1 × B

n+1 × [0, 1)
)
= ∂Bn+1 × B

n+1 × [0, 1) and

∂r1
(
B
n+1 × B

n+1 × [0, 1))
)
= B

n+1 × ∂Bn+1 × [0, 1),
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Figure 3. The semiclassical blown-up spaceM0,h obtained by blowing-up B
n+1×0

B
n+1 × [0, 1) along Diag0 ∩ × {h = 0}.

by the blow-down map β~. We will denote the lift of the diagonal under the map β~ by Diag~, i.e.

Diag~ = the closure of β−1
~

(
Diag×(0, 1) \ (Diag∩(∂Bn+1 × ∂Bn+1))

)
.

The lift of ∂Diag×[0, 1) will be called the zero front face F , while the boundary obtained by
the blow-up of Diag0 ×[0, 1] along Diag0 ×{0} will be called the semiclassical front face S. The face
which is obtained by the lift of Bn+1 ×B

n+1 ×{0} is the semiclassical face, and will be denoted by
A.

Since M0,~ is a blow-up of M0 × [0, 1), the fact that vector fields V ∈ V0(B
n+1) lift by either

the left or the right projection to C∞ vector fields tangent to the boundary on M0, and thus on
M0 × [0, 1), shows that the semiclassical version hV , V ∈ V0(B

n+1), lifts, in addition, to vanish
at h = 0, and thus at Diag0 ×[0, 1). Correspondingly, hV lifts smoothly to M0,~, tangent to all
boundary hypersurfaces; as before, the lift from the left factor is still vanishing at the left face.
A standard calculation shows the transversality to Diag~ of the collection hV0(B

n+1) lifted from
either factor; this is implied by the computation of Section 5 where the transversal ellipticity of
P (h, σ) to Diag~ is discussed.

We wish to find a parametrix such that P (h, σ) acting on the left produces the identity plus
an error which vanishes to high enough order on the right and left faces, R and L, and to infinite
order at the zero-front face F , the semiclassical front face S and the semiclassical face A. Thus the
error term is bounded as an operator acting between weighted L2(Bn+1) spaces and its norm goes
to zero as h ↓ 0.

As in [16] we define the class of semiclassical pseudodifferential operators in two steps. First we
define the space P ∈ Ψm

0,~(B
n+1) which consists of operators whose kernel

KP (z, z
′, h) |dgδ(z

′)|

lifts to a conormal distribution of order m to the lifted diagonal and vanishes to infinite order at all
faces, except the zero front face, up to which it is C∞ (with values in conormal distributions) and
the semiclassical front face, up to which it is h−n−1C∞ (with values in conormal distributions). We
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then define the space

Ka,b,c(M0,~) = {K ∈ L∞(M0,~) : V
m
b K ∈ ρaLρ

b
Aρ

c
Rρ

−n−1
S L∞(M0,~), m ∈ N},(3.5)

where Vb denotes the Lie algebra of vector fields which are tangent to L, A and R. Again, as

in [16], we define the space Ψm,a,b,c
0,~ (Bn+1) as the operators P which can be expressed in the form

P = P1+P2, with P1 ∈ Ψm
0,~(B

n+1) and the kernel KP2
|dgδ(z

′)| of P2 is such β∗
~
KP2

∈ Ka,b,c(M0,~).

4. A semiclassical parametrix for the resolvent in dimension three

In this section we construct a parametrix for the resolvent R(h, σ) defined in (17) in dimension
three. We do this case separately because it is much simpler than in the general case, and one does
not have to perform the semiclassical blow-up. Besides, we will also need part of this construction
in the general case. More precisely, if n + 1 = 3, and the metric g satisfies the hypotheses of
Proposition 2.7, we will use Hadamard’s method to construct the leading asymptotic term of the
parametrix G(σ, h) at the diagonal, and the top two terms of the semiclassical asymptotics. Our
construction takes place on (B3 ×0 B

3) × [0, 1)h, instead of its semiclassical blow up, i.e. the blow
up of the zero-diagonal at h = 0, as described above. This is made possible by a coincidence,
namely that in three dimensions, apart from an explicit exponential factor, the leading term in the
asymptotics lives on B

3 ×0 B
3 × [0, 1). However, to obtain further terms in the asymptotics would

require the semiclassical blow up, as it will be working in higher dimensions. For example, this
method only give bounds for the resolvent of width 1, while the more general construction gives
the bounds on any strip.

We recall that in three dimensions the resolvent of the Laplacian in hyperbolic space, ∆g0 ,
R0(σ) = (∆g0 − σ2 − 1)−1 has a holomorphic continuation to C as an operator from functions
vanishing to infinite order at ∂B3 to distributions in B

3. The Schwartz kernel of R0(σ) is given by

R0(σ, z, z
′) =

e−iσr0

4π sinh r0
,(4.1)

where r0 = r0(z, z
′) is the geodesic distance between z and z′ with respect to the metric g0, see for

example [16].
Since there are no conjugate points for the geodesic flow of g, for each z′ ∈ (B3)◦, the exponential

map for the metric g, expg : Tz′(B3)◦ −→ (B3)◦, is a global diffeomorphism. Let (r, θ) be geodesic

normal coordinates for g which are valid in (B3)◦ \ {z′}; r(z, z′) =: d(z, z′) is the distance function
for the metric g. Since r(z, z′) is globally defined, g is a small perturbation of g0 and the kernel
of R0(σ) is given by (4.1), it is reasonable to seek a parametrix of R(h, σ) which has kernel of the
form

G(h, σ, z, z′) = e−iσ
h rh−2U(h, σ, z, z′),(4.2)

with U properly chosen.
We now reinterpret this as a semiclassical Lagrangian distribution to relate it to the results of

Section 2. Thus, −σr = −σd(z, z′) is the phase function for semiclassical distributions correspond-
ing to the backward left flow-out of the conormal bundle of the diagonal inside the characteristic
set of 2pǫ − σ2. This flowout is the same as the forward right flow-out of the conormal bundle of
the diagonal, and is also the dilated version, by a factor of σ, in the fibers of the cotangent bundle,
of the flow-out of in the characteristic set of 2pǫ − 1, which we described in detail in Section 2.

In view of the results of Section 2, for the characteristic set of 2pǫ−1 (the general case of 2pǫ−σ
2

simply gives an overall additional factor of σ due to the dilation), the lift β∗∂r of ∂r to B
3 ×0 B

3
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R

L

F

D

Figure 4. The manifold B
n+1 ×1 B

n+1.

satisfies

(4.3) β∗∂r = Π̃ǫ∗V
L
ǫ ,

and thus is a C∞ vector field on (B3 ×0 B
3) \Diag0 which is tangent to all boundary faces, and at

the left face L = B,

(4.4) ∂r = −RL +WL,

where RL is the radial vector field corresponding to the left face, andWL ∈ ρLVb((B
3×0B

3)\Diag0).
It is convenient to blow up Diag0 and lift β∗∂r further to this space. We thus define B

3 ×1 B
3

to be the manifold obtained from B
3 ×0 B

3 by blowing-up the diagonal Diag0 as shown in Fig. 4.
Let βd : B3 ×1 B

3 7−→ B
3 ×0 B

3 denote the blow-down map and let βd ◦ β = β0d. The vector field
β∗
0d∂r is transversal to the new face introduced by blowing up the diagonal; it still satisfies the lifted

analogue of (4.4). Moreover, integral curves of β∗
0d∂r hit the left face L away from its intersection

with the right face R in finite time.
In coordinates (r, θ) the metric g is given by

g = dr2 +H(r, θ, dθ),(4.5)

where H(r, θ, dθ) is a C∞ 1-parameter family of metrics on S
2. The Laplacian with respect to g in

these coordinates is given by

∆g = −∂2r − V ∂r +∆H , V =
1

|g|
1
2

∂r(|g|
1
2 ),

where |g|
1
2 is the volume element of the metric g and ∆H is the Laplacian with respect to H on S

2.

The volume element |g|
1
2 has the following expansion as r ↓ 0,

|g|
1
2 (r, θ) = r2(1 + r2g1(r, θ)),(4.6)
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see for example page 144 of [7]. So

∆g = −∂2r − (
2

r
+ rA)∂r +∆H(4.7)

We want U in (4.2) to be of the form

U(h, σ, z, z′) = U0(σ, z, z
′) + hU1(σ, z, z

′),(4.8)

and so (
h2(∆g + x2W − 1)− σ2

)
e−iσ

h rh−2U

= e−iσ
h r
(
(∆g + x2W − 1)U0 + 2i

σ

h
|g|−

1
4 ∂r(|g|

1
4U0)

+ 2iσ|g|−
1
4 ∂r(|g|

1
4U1) + h(∆g + x2W − 1)U1

)
.

(4.9)

Here the leading term in h as h→ 0 both overall, and as far as U0 is concerned, is

(4.10) 2i
σ

h
|g|−

1
4 ∂r(|g|

1
4U0),

and the leading term as far as U1 is concerned is

(4.11) 2iσ|g|−
1
4 ∂r(|g|

1
4U1).

In the interpretation as semiclassical Lagrangian distributions, these are both the differential op-
erators arising in the transport equations. For Hamiltonians given by Riemannian metrics, these
operators in the interior are well-known to be Lie derivatives with respect to the Hamilton vector
field, when interpreted as acting on half-densities. This can also be read off directly from (4.10)-

(4.11), with |g|
1
4 being the half-density conversion factor, σ is due to working at energy σ (rather

than 1), and the factor of 2 is due to the symbol of the Laplacian being 2pǫ.
To get rid of the term in h−1 we solve the 0th transport equation, i.e. we impose

∂r(|g|
1
4U0) = 0,

and we choose U0(r, θ) =
1
4π |g(r, θ)|

− 1
4 . From (4.6) we have

|g|−
1
4 (r, θ) = r−1(1 + r2g2(r, θ)) near r = 0.(4.12)

Therefore, near r = 0,

∆g
1

4π
|g(r, θ)|−

1
4 = δ(z, z′) +

1

4π
Ar−1 +

1

4π
∆g(rg2).(4.13)

This only occurs in three dimensions, and makes this construction easier than in the general case.
In higher dimensions the power or r in (4.12) is r−

n
2 , and does not coincide with the power of r of

the fundamental solution of the Laplacian, which, in dimension n+ 1, is r1−n, so one does not get
the delta function in (4.13).

To get rid of the term independent of h in (4.9) in r > 0 we solve the first transport equation,

2iσ|g|−
1
4 ∂r(|g|

1
4U1) + (∆g + x2W − 1)U0 = 0 in r > 0,

U1 = 0 at r = 0.

So

U1(r, θ) = −
1

8iσπ
|g(r, θ)|−

1
4

∫ r

0

|g|
1
4 (s, θ)

(
∆g + x2W − 1

)
|g|−

1
4 (s, θ) ds.(4.14)
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Since |g|
1
4 is C∞ up to r = 0, and vanishes at r = 0, it follows from (4.13) that |g|

1
4∆g|g|

− 1
4 is C∞

up to r = 0. In particular the integrand in (4.14) is smooth up to r = 0. With these choices of U0

and U1 we obtain
(
h2(∆g + x2W − 1)− σ2

)
e−iσ

h rh−2U(h, σ, z, z′)

= δ(z, z′) + he−iσ
h r(∆g + x2W − 1)U1(σ, z, z

′)
(4.15)

This gives, in principle, a parametrix G(h, σ, z, z′) = e−iσ
h rh−2U(h, σ, z, z′) in the interior of

B
3 × B

3 in the two senses that the diagonal singularity of R(h, σ) is solved away to leading order,
which in view of the ellipticity of the operator means that the error

E(h, σ) =
(
h2(∆g + x2W − 1)− σ2

)
G(h, σ)− Id

is a semiclassical pseudodifferential operator of order −1 (in a large calculus, i.e. with non-infinite
order vanishing off the semiclassical front face, which did not even appear in our calculations), and

the top two terms of the semiclassical parametrix of
(
h2(∆g + x2W − 1)− σ2

)−1
are also found.

In fact, our parametrix is better than this. To understand the behavior of G and the remainder

E(h, σ, z, z′) = he−iσ
h r(∆g + x2W − 1)U1(4.16)

near the boundary of B3 × B
3, we need to analyze the behavior of U0 and U1 at the left and right

boundary faces. We will do the computations for arbitrary dimensions, since we will need some of
these estimates in the general case, but in this special situation we have n = 2.

We start by noting that the asymptotics of U0 and U1 follow from the transport equation which
they satisfy. Indeed, much like we analyzed the flow-out of the conormal bundle of the diagonal,
we show now that

(4.17) U0 ∈ ρ−1
D ρ

n/2
L ρ

n/2
R C∞(Bn+1 ×1 B

n+1), U1 ∈ R2ρ
n/2
L ρ

n/2
R C∞(Bn+1 ×1 B

n+1);

here ρD is the defining function of the front face of the blow-up creating B
n+1 ×1 B

n+1. Note that
we have already shown this claim near this front face; the main content of the statement is the
precise behavior as ρL, ρR → 0.

We start with U0. First, the conclusion away from the right face, ρR = 0, follows immediately
from (4.4) since integral curves emanating from the lifted diagonal hit this region at finite time,
and solutions of the Lie derivative equation have this form near the boundary. To have the anal-
ogous conclusion away from the left face, we remark that solutions of the left transport equation
automatically solve the right transport equation; one can then argue by symmetry, or note directly
that as −∂r′ is the radial vector field at the right face, modulo an element of ρRVb(B

n+1 ×0 B
n+1),

and as integral curves of ∂r′ emanating from the lifted diagonal hit this region at finite time, and
solutions of the Lie derivative equation have this form near the boundary. It remains to treat the
corner where both ρL = 0 and ρR = 0. The conclusion here now follows immediately as integral
curves of ∂r reach this corner in finite time from a punctured neighborhood of this corner, and in
this punctured neighborhood we already have the desired regularity. This proves (4.17) for U0.

To treat U1, it suffices to prove that

(4.18) (∆g + x2W − 1)U0 ∈ R2ρ
n/2+2
L ρ

n/2
R C∞(Bn+1 ×0 B

n+1 \Diag0),

for then

(4.19) U1 ∈ R2ρ
n/2
L ρ

n/2
R C∞(Bn+1 ×0 B

n+1 \Diag0),

by the same arguments as those giving the asymptotics of U0, but now applied to the inhomogeneous
transport equation.
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On the other hand, (4.18) follows from

β∗π∗
L(∆g + x2W − 1) ∈ Diff2

b(B
n+1 ×0 B

n+1)

with

β∗π∗
L

(
(∆g + x2W − 1)− (∆g0 − 1)

)
∈ R2ρ2L Diff2

b(B
n+1 ×0 B

n+1);

here πL is added to emphasize the lift is that of the differential operator acting on the left factor;
lifting the operator on the right factor results in an ‘error’ R2ρ2R Diff2

b(B
n+1 ×0 B

n+1). These two
in turn follow immediately from the form of the metric, namely g0 − gǫ ∈ x2C∞(X; 0T ∗X ⊗ 0T ∗X).

This completes the proof of (4.17), and also yields that, with n+ 1 = 3,

β∗
(
(∆g + x2W − 1)U1

)
∈ R2ρ

n/2+2
L ρ

n/2
R C∞(Bn+1 ×0 B

n+1 \Diag0).(4.20)

Therefore, in the case n+ 1 = 3, we have proved the following

Theorem 4.1. There exists a pseudodifferential operator, G(h, σ), σ 6= 0, whose kernel is of the
form

G(h, σ, z, z′) = e−iσr
h h−2 (U0(h, σ, z, z

′) + hU1(h, σ, z, z
′))

with U0 and U1 satisfying (4.17) and such that the error E(h, σ) = P (h, σ)G(h, σ)− Id is given by
(4.16) and satisfies (4.20).

5. The structure of the semiclassical resolvent

In this section we construct the general right semiclassical parametrix G(h, σ) for the resolvent.
We will prove the following

Theorem 5.1. There exists a pseudodifferential operator G(h, σ), σ 6= 0, such that its kernel is of
the form

G(h, σ, z, z′) = G′ + e−iσr
h U(h, σ, z, z′),

G′ ∈ Ψ−2,∞,∞,∞
0,~ (Bn+1), U ∈ Ψ

−∞,n2 ,−n
2 −1,n2

0,~ (Bn+1),
(5.1)

U vanishing in a neighborhood of the semiclassical diagonal Diag~, and such that, using the notation
of section 3,

P (h, σ)G(h, σ)− Id ∈ ρ∞F ρ
∞
S Ψ

−∞,∞,∞,n2 +iσ
h

0,~ (Bn+1).(5.2)

Here G is broken up into two terms since although r2 is a C∞ function on the zero double space
away from the left and right faces and in a quadratic sense it defines the diagonal non-degenerately,

r has an additional singularity at the zero-diagonal. Correspondingly
(
σr
h

)2
is C∞ on M0,~ away

from L, R and A and defines the lifted diagonal non-degenerately in a quadratic sense; σr
h has an

additional singularity at the zero diagonal. In particular, e−iσr
h is C∞ on M0,~ away from L, R, A

and the lifted diagonal, Diag~; at Diag~ it has the form of 1 plus a continuous conormal function
vanishing there. Thus, its presence in any compact subset ofM0,~ \(L∪R∪A) is not only artificial,
but introduces an irrelevant singularity at Diag~; dividing G into two terms, with G′ not having
the oscillatory prefactor and with U vanishing near Diag~ takes care of this issue.

Indeed, the first step in the construction of G is to construct a piece of G′, namely to find
G0 ∈ Ψ−2

0,~ such that E0 = P (h, σ)G0(h, σ) − Id has no singularity at the lifted diagonal, Diag~,
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with G0 (hence E0) supported in a neighborhood of Diag~ inM0,~ that only intersects the boundary
of M0,~ at S and F . Thus,

(5.3) P (h, σ)G0 − Id = E0, with E0 ∈ Ψ−∞
0,~ (Bn+1).

Since P (h, σ) is elliptic in the interior of Bn+1, the construction of G0 in the interior follows
from the standard Hadamard parametrix construction. We want to do this construction uniformly
up to the zero front face and the semiclassical front face in the blown-up manifold M0,~. We notice
that the lifted diagonal intersects the boundary of M0,~ transversally at the zero and semiclassical
front faces. Since Diag~ intersects the boundary of M0,~ transversally at S and F , we proceed as in
[16], and extend Diag~ across the boundary of M0,~, and want to extend the Hadamard parametrix
construction across the boundary as well. To do that we have to make sure the operator P (h, σ)
lifts to be uniformly transversally elliptic at the lift of Diag~ up to the boundary of M0,~, i.e. it is
elliptic on the conormal bundle of this lift, and thus it can be extended as a transversally (to the
extension of the lifted diagonal) elliptic operator across the boundaries of M0,~. Note that up to
S \ F , this is the standard semiclassical elliptic parametrix construction, while up to F \ S, this is
the first step in the conformally compact elliptic parametrix construction of Mazzeo and the first
author [16], so the claim here is that these constructions are compatible with each other and extend
smoothly to the corner S ∩ F near Diag~.

To see the claimed ellipticity, and facilitate further calculations, we remark that one can choose
a defining function of the boundary x such that the metric g can be written in the form

g =
dx2

x2
+
Hǫ(x, ω)

x2
,

where Hǫ is one-parameter family of C∞ metrics on S
n. In these coordinates the operator P (h, σ)

is given by

(5.4) P (h, σ) = h2
(
−(x∂x)

2 + nx∂n + x2A(x, ω)∂x + x2∆Hǫ(x,ω) + x2W −
n2

4

)
− σ2.

We then conjugate P (h, σ) by x
n
2 , and we obtain

(5.5) Q(h, σ) = x−
n
2 P (h, σ)x

n
2 = h2

(
−(x∂x)

2 + x2A∂x + x2∆Hǫ
+ x2B

)
− σ2,

where B = −n
2A +W. To analyze the lift of Q(h, σ) under β~ we work in projective coordinates

for the blow-down map. We denote the coordinates on the left factor of Bn+1 by (x, ω), while the
coordinates on the right factor will be denoted by (x′, ω′). Then we define projective coordinates

(5.6) x′ = ρ, X =
x

x′
, Y =

ω − ω′

x′
,

which hold away from the left face. The front face is given by F = {ρ = 0} and the lift of the
diagonal is Diag0 = {X = 1, Y = 0}. The lift of Q(h, σ) under the zero blow-down map β is equal
to

Q0(h, σ) = β∗Q(h, σ) =

h2
(
−(X∂X)2 +X2Aρ∂X +X2∆Hǫ(ρX,ω′+ρY )(DY )−X2ρ2B

)
− σ2.

In this notation, the coefficients of ∆Hǫ(ρX,ω′+ρY )(DY ) depend on ρ, ω′ and Y, but the derivatives
are in Y. This operator is transversally elliptic in a neighborhood of {X = 1, Y = 0}, away from
h = 0.
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The restriction of the lift of Q0(h, σ) to the front face F = {ρ = 0}, is given by

NF (Q0(h, σ)) = h2(−(X∂X)2 +X2∆Hǫ(0,ω′)(DY ))− σ2.

As in [16], NF (Q0(h, σ)) will be called the normal operator of Q0(h, σ) at the zero front face
F . Notice that it can be identified with Laplacian with respect to the hyperbolic metric on the
half-plane {X > 0, Y ∈ R

n} with metric X−2(dX2 +Hǫ(0, ω
′)) conjugated by X

n
2 .

Now we blow-up the intersection of Diag0 ×[0, h) with h = 0. We define projective coordinates

(5.7) X~ =
X − 1

h
, Y~ =

Y

h
.

The lift of Q(h, σ) under the semiclassical blow-down map β~ is given in these coordinates by

Q~ = β∗
~
Q(h, σ)

= −((1 + hX~)∂X~
)2 + (1 + hX~)

2∆Hǫ
(DY~

)

− (1 + hX~)
2Aρh∂X~

+ h2ρ2(1 + hX~)
2B − σ2,

where Hǫ = Hǫ(ρ(1 + hX~), ω
′ + ρhY~). This operator is transversally elliptic to {X~ = 0, Y~=0}

near h = 0.
The restriction of the lift of Q~ to the semiclassical face, S = {h = 0} will be called the normal

operator of Q~ at the semiclassical face, and is equal to

(5.8) NS(Q~) = −∂2X~
+∆Hǫ(ρ,ω′)(DY~

)− σ2.

This is a family of differential operators on R
n+1
X~,Y~

depending on ρ and ω′, and for each ω′ and ρ

fixed, NS(Q~) + σ2 is the Laplacian with respect to the metric

δ~ = dX2
~
+
∑

Hǫ,ij(ρ, ω)dY~,idY~,j ,

which is isometric to the Euclidean metric under a linear change of variables (X~, Y~) for fixed
(ρ, ω′), and the change of variables can be done smoothly in (ρ, ω′). Note that the fibers of the
semiclassical blow-down map β~ on S are given exactly by (ρ, ω′) fixed.

Therefore, the operator Q(h, σ) lifts under β~ to an operator Q~ which is elliptic in a neigh-
borhood of the lifted diagonal uniformly up to the zero front face and the semiclassical front face.
Since the diagonal meets the two faces transversally, one can extend it to a neighborhood of F and
S in the double of the manifold M0,~ across S and F , and one can also extend the operator Q~ to
be elliptic in that neighborhood. Now, using standard elliptic theory (or, put somewhat differently,
the standard theory of conormal distributions to an embedded submanifold without boundary, in
this case the extension of the diagonal), one can find a G0 ∈ Ψ−2

0,~(B
n+1) whose Schwartz kernel

lifts to a distribution supported in a neighborhood of Diag~ such that

(5.9) Q(h, σ)G0 − Id = E0 ∈ Ψ−∞
0,~ (Bn+1).

Next we will remove the error at the semiclassical front face. We will find an operator

G1 = G′
1 + e−iσ

h rU ′
1, G

′
1 ∈ Ψ−∞

0,~ (Bn+1), U ′
1 ∈ Ψ

−∞,∞,−n
2 −1,∞

0,~ (Bn+1)

such that G′
1 is supported near Diag~ while U ′

1 is supported away from it, and

Q(h, σ)G1 − E0 = E1,

E1 = E′
1 + e−iσ

h rF1, E′
1 ∈ ρ∞S Ψ0,~, F1 ∈ ρ∞S Ψ

−∞,∞,−n
2 −1,∞

0,~

and with β∗
~
KE1

supported away from L, R,

(5.10)



SEMICLASSICAL RESOLVENT ESTIMATES 29

and KE′
1
, resp. KF1

supported near, resp. away from, Diag~. In other words, the the error term
E1 is such that the kernel of E′

1 vanishes to infinite order at all boundary faces (hence from now
on we can regard it as trivial and ignore it), while the kernel of F1 lifts to a C∞ function which is
supported near S (and in particular vanishes to infinite order at the right and left faces), vanishes
to infinite order at the semiclassical front face, and also vanishes to order n

2 at the boundary face
A.

We will use the facts discussed above about the normal operator at the semiclassical face, NS(Q~).
Notice that S, the semiclassical front face, is itself a C∞ manifold with boundary which intersects the
zero front face, F , transversally, and therefore it can be extended across F . Similarly, the operator
NS(Q~) can be extended to an elliptic operator across F . We deduce from (5.8) that for each ρ
and ω′ fixed, and for Imσ < 0, the inverse of NS(Q~) is essentially the resolvent of the Euclidean
Laplacian at energy σ2, pulled back by the linear change of variables corresponding to Hǫ(ρ, ω

′); for
Imσ ≥ 0 we use the analytic continuation of the resolvent from Imσ < 0. Here is where we need
to make a choice corresponding to the analytic continuation of the resolvent of P (h, σ) we wish to
construct, i.e. whether we proceed from Imσ > 0 or Imσ < 0; we need to make the corresponding
choice for the Euclidean resolvent.

Let R0 denote the analytic continuation of the inverse L2 → H2 of the family (depending on
ρ, ω′) NS(Q~) from Imσ < 0; it is thus (essentially, up to a linear change of coordinates, depending
smoothly on ρ, ω′) the analytic continuation of the resolvent of the Euclidean Laplacian. Since we
are working with the analytic continuation of the resolvent, it is not automatic that one can solve
away exponentially growing errors which arise in the construction below (i.e. that one can apply R0

iteratively to errors that arise), and thus it is convenient to make the following construction quite
explicit order in h we are merely in the ‘limiting absorption principle’ regime (i.e. with real spectral
parameter), thus the construction below is actually stronger than what is needed below. Moreover,
from this point of view the construction can be interpreted as an extension of the semiclassical
version of the intersecting Lagrangian construction of [18] extended to the 0-double space; from
this perspective the method we present is very ‘down to earth’.

Via the use of a partition of unity, we may assume that there is a coordinate patch U in B
n+1

(on which the coordinates are denoted by z) such that E0 is supported in β−1
~

(U × U × [0, 1)).
Note that coordinate charts of this form cover a neighborhood of S, so in particular E0 is in
Ċ∞(Bn+1 ×0 B

n+1 × [0, 1)) outside these charts, hence can already be regarded as part of the final
error term and we can ignore these parts henceforth.

Now, near S, β−1
~

(U×U×[0, 1)) has a product structure 0TU×[0, δ0) = U×B
n+1×[0, δ0), where

0TU denotes the fiber-compactified zero tangent bundle, and [0, δ0) corresponds to the boundary
defining function ρS . Indeed, the normal bundle of Diag0 in B

n+1 ×0 B
n+1 can be identified

with 0TBn+1, via lifting 0-vector fields from on B
n+1 ×0 B

n+1 via the left projection, which are
transversal to Diag0, hence the interior of the inward pointing spherical normal bundle of Diag0 ×{0}
in M0 = B

n+1 ×0 B
n+1 × [0, 1) can be identified with 0TBn+1, while the inward pointing spherical

normal bundle itself can be identified with the radial compactification of 0TBn+1. However, it is
fruitful to choose the identification in a particularly convenient form locally. Namely, away from
∂Diag0 ×{0}, coordinates z on U give coordinates

z′, Z~ = (z − z′)/h, ρS

near the interior of the front face S (here Z~ is the coordinate on the fiber of TUB
n+1 over z′),

while near ∂Diag0 ×{0}, (x′, ω′, X~, Y~, ρS) (see (5.7)) are coordinates near the interior of S (now
(X~, Y~) are the coordinates on the fiber of 0TUB

n+1 over (x′, ω′)). To obtain coordinates valid near
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the corner, one simply needs to radially compactify the fibers of 0TUB
n+1, i.e. replace the linear

coordinates Z~, resp. (X~, Y~) by radially compactified versions such as |Z~| and Ẑ~ = Z~/|Z~| ∈ S
n

in the former case.
Moreover, if a function, such as E0, is supported away from A, then its support is compact in

the interior of the fibers B
n+1 of the fiber-compactified tangent space. Now, the interior of Bn+1

is a vector space, TpU , p ∈ U , and in particular one can talk about fiberwise polynomials. Over
compact subsets of the fibers, the boundary defining function ρS is equivalent to h, and indeed we
may choose boundary defining functions ρA and ρS such that

h = ρAρS .

Note that ρA is thus a boundary defining function of the compactified fibers of the tangent bundle;
it is convenient to make a canonical choice using the metric gǫ, which is an inner product on
0TpU , hence a translation invariant metric on the fibers of 0TU , namely to make the defining
function ρA the reciprocal of the distance function from the zero section (i.e. the diagonal under
the identification), smoothed out at the zero section. In particular, if U is a coordinate chart near

∂Bn+1 then ρA =
(
(X1)

2 + |Y1|
2
Hǫ

)− 1
2 . This is indeed consistent with our previous calculations

since

ρA = h
(
(X − 1)2 + |Y |2

)− 1
2

and therefore it is, away from Diag~, a defining function of the semiclassical face A.
If v ∈ C∞(M0,~), then expanding v in Taylor series around S up to order N , we have

v =
∑

k≤N

ρkSv
′
k + v′, v′k ∈ C∞(TU), v′ ∈ ρN+1

S C∞(M0,~).

In terms of the local coordinates valid near the corner S ∩ A over an interior coordinate chart U ,

ρS = |z − z′|,
z − z′

|z − z′|
, ρA =

h

|z − z′|
, z′,

vk is a C∞ function of |z − z′|, z−z′

|z−z′| , z
′. It is convenient to rewrite this as

(5.11) v =
∑

k≤N

hk|z − z′|−kv′k + v′ =
∑

k≤N

hkvk + v′, vk ∈ ρ−k
A C∞(TU), v′ ∈ ρN+1

S C∞(M0,~),

for the reason that the vector fields Dzj are tangent to the fibers given by constant h, i.e. commute
with multiplication by h. One can rewrite v completely analogously,

v =
∑

k≤N

hkvk + v′, vk ∈ ρ−k
A C∞(TU), v′ ∈ ρN+1

S C∞(M0,~),

for coordinate charts U at ∂Bn+1.
In addition, if a ∈ C∞(Bn+1 ×0 B

n+1 × [0, 1)), then expanding a in Taylor series around

Diag0 ×{0}, shows that for any N , modulo ρN+1
S C∞(U × B

n+1 × [0, δ0)), it is of the form
∑

|α|+k≤N

aα,k(z
′)(z − z′)αhk =

∑

|α|+k≤N

aα,k(z
′)Zα

~
hk+|α|

=
∑

|α|+k≤N

aα,k(z
′)Ẑα

~
ρ
k+|α|
S ρkA,

where Ẑα
~
= Zα

~
/|Z~|

|α| (except near the zero section) is C∞ on B
n+1. While the last expression is

the most geometric way of encoding the asymptotics at ∂Bn+1, it is helpful to take advantage of
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the stronger statement on the previous line, which shows that the coefficients are polynomials in
the fibers, of degree ≤ N .

The vector fields hDz, resp. hDX and hDY , acting on a modified Taylor series as in (5.11),
become DZ~

, resp. DX~
and DY~

, i.e. act on the coefficients vk only (and on v′, of course) so

we obtain that, modulo coefficients in ρN+1
S C∞(U × B

n+1 × [0, δ0)), P (h, σ) lifts to a differential
operator with polynomial coefficients on the fibers, depending smoothly on the base variables, i.e.
an operator of the form ∑

|α|+k≤N,|β|≤2

aα,k,β(z
′)Zα

~
hk+|α|Dβ

Z~
,

with an analogous expression in the (X~, Y~) variables. Here the leading term in h, corresponding
to h0, is NS(Q~) = ∆gǫ(x′,ω′) − σ2, i.e. we have

P (h, σ)hmvm

= hm(∆gǫ(x′,ω′) − σ2)vm + hm
∑

0<|α|+k≤N,|β|≤2

aα,k,β(z
′)Zα

~
hk+|α|Dβ

Z~
vm.

Thus, one can iteratively solve away E0 as follows. Write

E0 = h−n−1
∑

hmE0,m

as in (5.11), and note that each E0,m is compactly supported. Let

G1,0,m = R0E0,m,

so

P (h, σ)hm−n−1G1,0,m

= hmE0,m + hm−n−1
∑

0<|α|+k≤N,|β|≤2

aα,k,β(z
′)Zα

~
hk+|α|−n−1Dβ

Z~
R0E0,m,

and thus we have replaced the error hmE0,m by an error of the form
∑

0<|α|+k≤N,|β|≤2

aα,k,β(z
′)Zα

~
hm+k+|α|−(n+1)Dβ

Z~
R0E0,m

=
∑

1≤ℓ≤N

hm+ℓ−(n+1)
∑

|α|≤ℓ

∑

|β|≤2

aα,ℓ−|α|,β(z
′)Zα

~
Dβ

Z~
R0E0,m

=
∑

1≤ℓ≤N

hm+ℓ−(n+1)LℓR0E0,m

which has the feature that not only does it vanish to (at least) one order higher in h, but the
hm+ℓ−(n+1) term is given by a differential operator Lℓ with polynomial coefficients of degree ≤ ℓ
applied to R0E0,m, with E0,m compactly supported. As the next lemma states, one can apply R0

to an expression of the form LℓR0E0,m, and thus iterate the construction.

Lemma 5.2. Suppose Mj, j = 1, 2, . . . , N , are differential operators with polynomial coefficients
of degree mj on R

n+1
w . Then

R0M1R0M2 . . . R0MNR0 : C∞
c (Rn+1) → C−∞(Rn+1)

has an analytic extension from Imσ < 0 to Reσ > 1, Imσ ∈ R, and

R0M1R0M2 . . . R0MNR0 : C∞
c (Rn+1) → e−iσ〈w〉〈w〉−n/2+N+mC∞(Bn+1),
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with m =
∑
mj.

Proof. For Imσ < 0, Dwk
commutes with ∆ − σ2, hence with R0, while commuting Dwk

through
a polynomial gives rise to a polynomial of lower order, so we can move all derivatives to the right,

and also assume that Mj = wα(j)

, α(j) ∈ N
n+1, |α(j)| ≤ mj , so we are reduced to examining the

operator

R0w
α(1)

R0w
α(2)

. . . R0w
α(N)

R0.

It is convenient to work in the Fourier transform representation. Denoting the dual variable of w

by ζ; for Imσ < 0, R0 is multiplication by (|ζ|2 − σ2)−1, while wα(j)

is the operator (−Dζ)
α(j)

.

Rewriting F(R0w
α(1)

R0w
α(2)

. . . R0w
α(N)

R0f), the product rule thus gives an expression of the form
∑

|β|≤α(1)+...+α(N)

(|ζ|2 − σ2)−(N+1+|α(1)|+...+|α(N)|)Qα,N,β(ζ)(−Dζ)
βFf

=
∑

|β|≤α(1)+...+α(N)

(|ζ|2 − σ2)−(N+1+|α(1)|+...+|α(N)|)FQα,N,β(Dw)w
βf,

where Qα,N,β is a polynomial in ζ. Since we are considering compactly supported f , the differential

operator Qα,N,β(Dw)w
β is harmless, and we only need to consider RN+1+m

0 applied to compactly
supported functions. This can be further rewritten as a constant multiple of ∂N+m

σ R0, so the
well-known results for the analytic continuation of the Euclidean resolvent yield the stated analytic
continuation and the form of the result; see Proposition 1.1 of [17]. �

Applying the lemma iteratively, we construct

G̃1,m = e−iσ〈Z~〉〈Z~〉
−n/2+N+mG′

1,m, G
′
1,m ∈ C∞(U × B

n+1),

such that

P (h, σ)
∞∑

m=0

hm−(n+1)G̃1,m ∼
∞∑

m=0

hm−(n+1)E0,m,

where the series are understood as formal series (i.e. this is a statement of the equality of coefficients).
Borel summing 〈z〉mhmG′

1,m = ρmS G
′
1,m, and obtaining G1 ∈ C∞(U × B

n+1 × [0, δ0)) as the result,
which we may arrange to be supported where ρS is small, we deduce that (5.10) holds.

The next step is to remove the error at the semiclassical face A. We want to construct

G2 = e−iσ
h rU2, U2 ∈ ρ∞S Ψ

−∞,n2 ,−n
2 −1,n2

0,~ ,

such that

P (h, σ)G2 − e−iσ
h rF1 = E2, E2 = e−iσ

h rF2,

F2 ∈ h∞ρ
n/2
L ρ

n/2
R C∞(Bn+1 ×0 B

n+1 × [0, 1)) = ρ∞S Ψ
−∞,n2 ,∞,n2
0,~ .

(5.12)

In other words, we want the error to vanish to infinite order at the semiclassical face A and at
the semiclassical front face S, and to vanish to order n

2 at the left and right faces; the infinite
order vanishing at S means that S can be blown-down (i.e. does not need to be blown up), which,
together with h being the joint defining function of A and S, explains the equality of the indicated
two spaces. This construction is almost identical to the one carried out in section 4. We begin
by observing that the semiclassical face A consists of the stretched product B

n+1 ×0 B
n+1 with

Diag0 blown-up, which is exactly the manifold B
n+1 ×1 B

n+1 defined in section 4. Moreover, as F1
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vanishes to infinite order at S, see (5.10), the latter can be blown down, i.e. F1 can be regarded as
being of the form

F1 ∈ h−n/2−1C∞(Bn+1 ×0 B
n+1 × [0, 1)), with KF1

supported away from L, R,

and vanishing to infinite order at Diag0 ×[0, 1).
(5.13)

Now, F1 has an asymptotic expansion at the boundary face h = 0 of the form

F1 ∼ h−
n
2 −1

∞∑

j=0

hjF1,j , F1,j ∈ C∞(Bn+1 ×0 B
n+1),

F1,j vanishing to infinite order at Diag0 ×[0, 1), supported near Diag0 ×[0, 1).

So we think of F1 as an element of Bn+1 ×1 B
n+1 × [0, 1), where the blow-up B

n+1 ×1 B
n+1, was

defined in section 4, see figure 4, with an expansion

F1 ∼ h−
n
2 −1

∞∑

j=0

hjF1,j ,

F1,j ∈ C∞(Bn+1 ×1 B
n+1), vanishing to infinite order at D.

So we seek U2 ∼ h
n
2

∑
j h

jU2,j with U2,j vanishing to infinite order at D, such that

P (h, σ)e−iσ
h rU2 − e−iσ

h rF1 = e−iσ
h rR,

R ∈ h∞C∞(Bn+1 ×1 B
n+1), vanishing to infinite order at D.

Matching the coefficients of the expansions we get the following set of transport equations

2iσ|g|−
1
4 ∂r(|g|

1
4U2,0) = −F1,0, if r > 0,

U2,0 = 0 at r = 0,

and for j ≥ 1,

2iσ|g|−
1
4 ∂r(|g|

1
4U2,j) = (∆ + x2W −

n2

4
)U2,j−1 − F1,j , if r > 0,

U2,j = 0 at r = 0.

Notice that Fj,0 is compactly supported and, as seen in equations (4.17), U2,0 ∈ ρ
n
2

L ρ
n
2

RC∞(Bn+1 ×1

B
n+1). Moreover, as in (4.18), one gets that (∆ + x2W − n2

4 )U2,0 ∈ R2ρ
n
2

Rρ
n
2 +2

L C∞(Bn+1 ×1 B
n+1),

thus one can solve the transport equation for U2,1, and gets that U2,1 ∈ ρ
n
2

L ρ
n
2

RC∞(Bn+1 ×1 B
n+1).

One obtains by using induction that U2,j ∈ ρ
n
2

L ρ
n
2

RC∞(Bn+1×1B
n+1), and (∆+x2W − n2

4 )U2,j ∈

R2ρ
n
2 +2

L ρ
n
2

RC∞(Bn+1 ×1 B
n+1), for all j. Then one sums the series asymptotically using Borel’s

lemma. This gives U2 and proves (5.12).
The last step in the parametrix construction is to remove the error at the zero front face. So far

we have

P (h, σ) (G0 −G1 +G2)− Id = E2,

with
E2 = e−iσ

h rF2, F2 ∈ ρ∞S Ψ
−∞,n2 +2,∞,n2
0,~ .

Now we want to construct G3 such that

P (h, σ)G3 − E2 = E3 ∈ e−iσ
h rρ∞S ρ

∞
F Ψ

−∞,2+n
2 ,∞,n2

0,~ (Bn+1).(5.14)
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We recall from Proposition 2.7, that r = − log(ρRρL) + F, F > 0. So,

exp(−i
σ

h
r) = (ρRρL)

iσ
h r exp(−i

σ

h
F ).

Therefore the error term E2 in (5.12) satisfies

Ẽ2 = β∗
~
E2 ∈ ρ∞S ρ

∞
A ρ

n
2 +iσ

h

R ρ
2+n

2 +iσ
h

L C∞(M0,~).

We write

Ẽ2 ∼

∞∑

j=0

ρjFE2,j , E2,j ∈ ρ∞S ρ
∞
A ρ

n
2 +iσ

h

R ρ
2+n

2 +iσ
h

L C∞(F),

and we want to construct G3 such that

β∗
~
(G3) ∼

∞∑

j=0

ρjFG3,j ,

and that

NF (Q~)G3,j = E2,j , G3,j ∈ ρ∞S ρ
∞
A ρ

n
2 +iσ

h

R ρ
n
2 +iσ

h

L C∞(F).

The asymptotic behavior in ρR and ρL follows from an application of Proposition 6.15 of [16], and
the fact that NF (Q~) can be identified with the Laplacian on the hyperbolic space. Now we just
have to make sure, this does not destroy the asymptotics at the faces S and A. But one can follow
exactly the same construction we have used above, now restricted to the zero front face instead of
M0,~ to construct G3,j vanishing to infinite order at the faces S and A.

This gives a parametrix, G̃ = G0 −G1 +G2 −G3 ∈ Ψ
−2,n2 +iσ

h ,−n
2 −1,n2 +iσ

h

0,~ that satisfies

P (h, σ)G̃− Id = R = E3 + E′
3 ∈ ρ∞F ρ

∞
S Ψ

−∞,2+n
2 +iσ

h ,∞,n2 +iσ
h

0,~ (Bn+1).(5.15)

Since

E′
3 ∈ h∞Ψ−∞

0,~ ,

E3 = e−iσ
h rF3, F3 ∈ ρ∞S ρ

∞
F Ψ

−∞,2+n
2 ,∞,n2

0,~ ,

and E3 is supported away from Diag~. The last step in the construction is to remove the error term
at the left face and it will be done using the indicial operator as in section 7 of [16]. Since in the
region near the left face is away from the semiclassical face, this is in fact the same construction
as in [16], but with the parameter h. Using equation (5.4) and the projective coordinates (5.6), we
find that the operator P (h, σ) lifts to

P0(h, σ) = h2(−(X∂X)2 + nX∂X + ρAX2∂X +X2∆Hǫ
+ ρ2X2W −

n2

4
)− σ2.

In these coordinates the left face is given by {X = 0}. Therefore, the kernel of the composition

K(P (h, σ)G̃) when lifted to B
n+1 ×0 B

n+1 is, near the left face, equal to

K(P (h, σ)G̃) =

(
h2(−(X∂X)2 + nX∂X −

n2

4
)− σ2

)
K(G̃) +O(X2).

The operator I(P (h, σ)) = h2(−(X∂X)2+nX∂X− n2

4 )−σ2 is called the indicial operator of P (h, σ).

Since G̃ ∈ Ψ
−2,n2 +iσ

h ,−n
2 −1,n2 +iσ

h

0,~ (Bn+1), then near the left face K(G̃) ∈ K
n
2 +iσ

h ,−n
2 −1,n2 +iσ

h (M0,~).

But I(P (h, σ))X
n
2 +iσ

h = 0. So we deduce that near L, K(P (h, σ)G̃) ∈ K
n
2 +iσ

h+1,−n
2 −1,n2 +iσ

h (M0,~).
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That is, we gain one order of vanishing at the left face. Since we already know from (5.15) that the
kernel of the error vanishes to infinite order A and at the front face F , and x = RρR, x

′ = RρL,
the kernel of the error R, on the manifold B

n+1 × B
n+1 satisfies

K(R) ∈ h∞x
n
2 +iσ

h+1x′
n
2 +iσ

h C∞(Bn+1 × B
n+1).

Then one can use a power series argument to find G4 with Schwartz kernel in

h∞x
n
2 +iσ

h+1x′
n
2 +iσ

h C∞(Bn+1 × B
n+1)

such that

P (h, σ)G4 −R ∈ Ψ−∞,∞,∞,n2 +iσ
h (Bn+1).

So G = G0 −G1 +G2 −G3 −G4 ∈ Ψ
−2,n2 +iσ

h ,−n
2 −1,n2 +iσ

h

0,~ is the desired parametrix.

6. L2-bounds for the semiclassical resolvent

We now prove bounds for the semiclassical resolvent, R(h, σ) = P (h, σ)−1:

Theorem 6.1. Let M > 0, h > 0 and σ ∈ C be such that Imσ
h < M. Let a, b ≥ max{0, Imσ

h }. Then
there exists h0 > 0 and C > 0 independent of h such that for h ∈ (0, h0),

||xaR(h, σ)xbf ||L2(Bn+1) ≤ Ch−1−n
2 ||f ||L2(Bn+1).(6.1)

As usual, we prove Theorem 6.1 by obtaining bounds for the parametrix G and its error E on
weighted L2 spaces. As a preliminary remark, we recall that elements of Ψ0

~
on compact manifolds

without boundary are L2-bounded with an h-independent bound; the same holds for elements of
Ψ0

0,~. Thus, the diagonal singularity can always be ignored (though in our setting, due to negative

orders of the operators we are interested in, Schur’s lemma gives this directly in any case).
The following lemma follows from the argument of Mazzeo [15, Proof of Theorem 3.25], since

for the L2 bounds, the proof in that paper only utilizes estimates on the Schwartz kernel, rather
than its derivatives. Alternatively, it can be proved using Schur’s lemma if one writes the Schwartz
kernel relative to a b-density.

Lemma 6.2. Suppose that the Schwartz kernel of B (trivialized by |dgδ(z
′)|) satisfies

|B(z, z′)| ≤ CραLρ
β
R,

then we have four situations:

If α, β > n/2, then ‖B‖L(L2) ≤ C ′C.

If α = n/2, β > n/2, then ‖| log x|−NB‖L(L2) ≤ C ′C, for N >
1

2
.

If α > n/2, β = n/2, then ‖|B| log x|−N‖L(L2) ≤ C ′C, for N >
1

2
.

If α = β = n/2, then‖| log x|−NB| log x|−N‖L(L2) ≤ C ′C, N >
1

2
.

Now let B(h, σ) have Schwartz kernel B(z, z′, σ, h) supported in r > 1, and suppose that

B(z, z′, σ, h) = e−iσr/hhkρ
n/2+γ
L ρ

n/2
R xa(x′)bH, H ∈ L∞, and

Imσ

h
< N.

Since from Proposition 2.7, r = − log ρRρL + F, F ≥ 0, e−iσ
h r = ρ

iσ
h

R ρ
iσ
h

L e−iσ
hF , and Imσ

h < N,

|e−iσ
hF | < C = C(N), it follows that
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|B(z, z′, σ, h)| ≤ Chkρ
n/2+γ−Imσ/h+a
L ρ

n/2−Imσ/h+b
R Ra+b

As an immediate consequence of Lemma 6.2, if a + b ≥ 0, δ0 > 0 and γ − Imσ/h + a > δ0 and
− Imσ/h+ b > δ0, then

‖B‖L2 ≤ C ′Chk.

If either γ− Imσ/h+a = 0 or − Imσ/h+ b = 0, we have to add the weight | log x|−N , with N > 1
2 .

On the other hand, suppose now that the Schwartz kernel of B is supported in r < 2, and (again,
trivialized by |dgδ(z

′)|)

|B(z, z′, σ, h)| ≤ Chk〈r/h〉−ℓ〈h/r〉s, s < n+ 1.

Note that for fixed z′, σ, h, B is L1 in z, and similarly with z′ and z interchanged. In fact, since
the volume form is bounded by C̃rn dr(z′) dω′ in r < 2, uniformly in z, Schur’s lemma yields

‖B‖L2 ≤ CC ′′hk
∫ 2

0

〈h/r〉s〈r/h〉−ℓrn dr.

But
∫ 2

0

〈h/r〉s〈r/h〉−ℓrn dr

≤ C0

(∫ h

0

(h/r)srn dr +

∫ 2

h

(r/h)−ℓrn dr

)
= C1(h

n+1 + h−ℓ),

so we deduce that

‖B‖L2 ≤ CC ′(hn+1+k + hk−ℓ).

First, if, with n + 1 = 3, G is the parametrix, with error E, constructed in Section 4, then,
writing G = G1 + G2, and provided Imσ

h < 1 and |σ| > 1 (recall that U1 has a factor σ−1), with

G1 supported in r < 2, G2 supported in r > 1, then |G1| ≤ Ch−2r−1, |G2| ≤ CeImσr/hρ
n/2
L ρ

n/2
R ,

and thus, using Proposition 2.7,

|xa(x′)bG1(z, z
′, σ, h)| ≤ Ch−n−1〈h/r〉n−1〈r/h〉−n/2,

|xa(x′)bG2(z, z
′, σ, h)| ≤ Ch−n−1xa(x′)bρ

n/2−Imσ/h
L ρ

n/2−Imσ/h
R .

On the other hand,

|xa(x′)bE(z, z′, σ, h)| ≤ Chxa(x′)bρ
n/2+2−Imσ/h
L ρ

n/2−Imσ/h
R .(6.2)

Thus, we deduce the following bounds:

Proposition 6.3. Suppose n + 1 = 3. Let G(h, σ) be the operator whose kernel is given by (4.2),
and let E(h, σ) = P (h, σ)G(h, σ)− Id . Then for |σ| > 1, Imσ

h < 1, a > Imσ
h , a ≥ 0, and Imσ

h < b <

2− Imσ
h , b ≥ 0, we have, with C independent of h,

||xaG(h, σ)xbf ||L2(Bn+1) ≤ Ch−1−n
2 ||f ||L2(Bn+1) and

||x−bE(h, σ)xbf ||L2(Bn+1) ≤ Ch||f ||L2(Bn+1).
(6.3)

If either a = Imσ
h or b = Imσ

h , or a = b = Imσ
h , one has to replace the factor x±

Imσ
h in (6.3) with(

x
Imσ
h | log x|−N

)±1

, N > 1
2 , to obtain the L2 bounds.
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In view of (6.2) this cannot be improved using the methods of section 4. To obtain bounds on any
strip we need the sharper bounds on the error term given by Theorem 5.1. We now turn to arbitrary
n and use the parametrix G and error E, constructed in Theorem 5.1. Writing G = G0 +G1 +G2,

with G0 ∈ Ψ−2
0,~, G1 supported in r < 2, G2 supported in r > 1, G1 ∈ e−iσr/hΨ

−∞,∞,n2 −1,∞

0,~ ,

G2 ∈ e−iσr/hΨ
−∞,n2 +2,−n

2 −1,n2
0,~ , then for |σ| > 1 and Imσ

h < N,

xaG0(z, z
′, σ, h)(x′)b ∈ Ψ−2

0,~,

|xa(x′)bG1(z, z
′, σ, h)| ≤ Ch−n−1〈r/h〉−n/2,

|xa(x′)bG2(z, z
′, σ, h)| ≤ Ch−n−1xa(x′)bρ

n/2−Imσ/h
L ρ

n/2+Imσ/h
R .

On the other hand, writing E = E1+E2, with E1 supported in r < 2, E2 supported in r > 1, E1 ∈

h∞ρ∞F Ψ
−∞,∞,n2 −1,∞

0,~ , E2 ∈ h∞ρ∞F Ψ
−∞,∞,−n

2 −1,n2
0,~ , then for any k and M (with C = C(M,N)),

|x−b(x′)bE1(z, z
′, σ, h)| ≤ Chk,

|x−b(x′)bE2(z, z
′, σ, h)| ≤ ChkxM (x′)bρ

n/2−Imσ/h
R .

In this case, we deduce the following bounds:

Proposition 6.4. Let G(h, σ) be the operator whose kernel is given by (5.1), and let E(h, σ) =
P (h, σ)G(h, σ)− Id. Then for |σ| > 1, Imσ

h < M, M > 0, a > Imσ
h , a ≥ 0, and b > Imσ

h , b ≥ 0, and
N arbitrary, we have, with C independent of h,

||xaG(h, σ)xbf ||L2(Bn+1) ≤ Ch−1−n
2 ||f ||L2(Bn+1) and

||x−bE(h, σ)xbf ||L2(Bn+1) ≤ ChN ||f ||L2(Bn+1).
(6.4)

If either a = Imσ
h or b = Imσ

h , or a = b = Imσ
h , one has to replace the factor x±

Imσ
h in (6.4) with(

x
Imσ
h | log x|−k

)±1

, k > 1
2 , to obtain the L2 bounds.

Now we can apply these estimates to prove Theorem 6.1. We know that

P (h, σ)G(h, σ) = I + E(h, σ).

Since R(h, σ) is bounded on L2(Bn+1) for Imσ < 0 we can write for Imσ < 0,

G(h, σ) = R(h, σ)(I + E(h, σ)).

Therefore we have, still for Imσ < 0,

xaG(h, σ)xb = xaR(h, σ)xb(I + x−bE(h, σ)x−b).

For a, b and σ as in Proposition 6.4 we can pick h0 so that

||x−bE(h, σ)xbf ||L2→L2 ≤
1

2
.

In this case we have

xaG(h, σ)xb(I + x−bE(h, σ)x−b)−1 = xaR(h, σ)xb

and the result is proved.
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7. Proof of Theorem 1.1

Now we are ready to prove Theorem 1.1. To avoid using the same notation for different parame-
ters, we will denote the spectral parameter in the statement of Theorem 1.1 by λ, instead of σ. We
write, for |Reλ| > 1,

(∆gδ + x2W − λ2 −
n2

4
) = (Reλ)2

[
1

(Reλ)2

(
∆gδ + x2W −

n2

4

)
−

λ2

(Reλ)2

]
.

Thus, if we denote h = 1
Reλ and σ = λ

Reλ , and E(h, σ) and G(h, σ) are the operators in Proposition
6.4, we have

(∆gδ + x2W − λ2 −
n2

4
)G(

1

Reλ
,
λ

Reλ
) = (Reλ)2

(
Id+E(

1

Reλ
,
λ

Reλ
)

)
.

Since Rδ(λ) =
(
∆gδ + x2W − λ2 − n2

4

)−1

is a well defined bounded operator if Imλ < 0, we can

write,

G(
1

Reλ
,
λ

Reλ
) = (Reλ)2Rδ(λ)

(
Id+E(

1

Reλ
,
λ

Reλ
)

)
, for Imλ < 0.

Therefore,

xaG(
1

Reλ
,
λ

Reλ
)xb = (Reλ)2xaRδ(λ)x

b

(
Id+x−bE(

1

Reλ
,
λ

Reλ
)xb
)
.

According to Proposition 6.4, if Imλ < M, we can pick K such that if |Reλ| > K, and Imλ < b
then,

||x−bE(
1

Reλ
,
λ

Reλ
)xb|| <

1

2
.

Therefore (Id+x−bE( 1
Reλ ,

λ
Reλ )x

b)−1 is holomorphic in Imλ < M, and bounded as an operator in

L2(B3, g), with norm independent of Reλ, provided b > Imλ. On the other hand, if a > Imλ, then
from Proposition 6.4,

||xaG(
1

Reλ
,
λ

Reλ
)xbf ||L2(Bn+1) ≤ C(Reλ)1+

n
2 ||f ||L2(Bn+1).

Since,

xaRδ(λ)x
b = (Reλ)−2xaG(

1

Reλ
,
λ

Reλ
)xb
(
I + x−bE(

1

Reλ
,
λ

Reλ
)xb
)−1

,

then, for and for a, b in this range, and |Reλ| > K, xaRδ(λ)x
b is holomorphic and

||xaRδ(λ)x
bf ||L2(B3,g) ≤ C(Reλ)

n
2 −1||f ||L2(B3,g).

When either a = Imλ or b = Imλ we have to introduce the logarithmic weight and in Proposition
6.4. This concludes the proof of the L2 estimates of Theorem 1.1.

The Sobolev estimates follow from these L2 estimates and interpolation. First we observe that
the following commutator properties hold: There are C∞(B3) functions Ai and Bj , i = 1, 2, and
1 ≤ j ≤ 5, such that

[∆gδ , x
a] = A1x

a +A2x
axDx,

[∆gδ , x
a(log x)−N ] = B1x

a(log x)−N +B2x
a(log x)−N−1+

B3x
a(log x)−N−2 +

(
B4x

a(log x)−N +B5x
a(log x)−N−1

)
xDx.
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Hence

∆gδx
aRδ(σ)x

bv = xa∆gδRδ(σ)x
bv +A1x

aRδ(σ)x
bv +A2x

axDxRδ(σ)x
bv.

Since a, b ≥ 0, ∆gδ is elliptic, and ∆gδRδ(σ) = Id+(σ2 + 1 − x2W (x))Rδ it follows that, see for
example [15], that there exists a constant C > 0 such that

||xaRδ(σ)x
bv||H2

0 (B
3)

≤ C
(
σ2||xbv||L2(B3) + ||xaRδ(σ)x

bv||L2(B3) + ||xaRδ(σ)x
bv||H1

0 (B
3)

)
.

(7.1)

By interpolation between Sobolev spaces we know that there exists C > 0 such that

||xav||2H1
0 (B

3) ≤ C||xav||L2(B3)||x
av||H2

0 (B
3)(7.2)

Therefore, for any ǫ > 0,

||xav||H1
0 (B

3) ≤ C
(
ǫ||xav||H2

0 (B
3) + ǫ−1||xav||L2(B3)

)
,(7.3)

and if one takes ǫ small enough, (7.1) and (7.3) give (1.3) with k = 2. If one uses (7.2) and (1.3)
with k = 2 one obtains (1.3) with k = 1. The proof of (1.5) follows by the same argument.

This completes the proof of Theorem 1.1.

8. Structure of ∆X near the boundaries

We begin the proof of Theorem 4 by analyzing the structure of the operator ∆X near r = rbH
and r = rsI. We recall that β(r) = 1

2
d
drα

2(r) and that βbH = β(rbH) and βsI = β(rsI).

We show that near these ends, after rescaling α, the operator α
n
2 ∆Xα

−n
2 is a small perturbation

of the Laplacian of the hyperbolic metric of constant negative sectional curvature −β2
bH near rbH

and −β2
sI near rsI.

Since α′(r) 6= 0 near r = rbH and r = rsI, ∆X can be written in terms of α as a ‘radial’ coordinate

∆X = βr−nαDα(βr
nαDα) + α2r−2∆ω.

We define a C∞ function x on [rbH, rsI] which is positive in the interior of the interval and rescales
α near the ends by

α = 2rbHβbHx near r = rbH and α = 2rsI|βsI|x near r = rsI.(8.1)

Using x instead of α near the ends rbH and rsI, we obtain

∆X = βr−nxDx(βr
nxDx) + 4x2β2

bHr
2
bHr

−2∆ω, near r = rbH,

∆X = βr−nxDx(βr
nxDx) + 4x2β2

sIr
2
sIr

−2∆ω, near r = rsI.
(8.2)

Proposition 8.1. There exists δ > 0 such that, if we identify each of the neighborhoods of {x = 0}
given by r ∈ [rbH, rbH + δ) and r ∈ (rsI − δ, rsI], with a neighborhood of the boundary of the ball
B
n+1, then there exist two C∞ functions, WbH(x) defined near r = rbH, and WsI(x) defined near

r = rsI, such that

α
n
2 ∆Xα

−n
2 = x

n
2 ∆Xx

−n
2 = ∆gbH + x2WbH − β2

bH

n2

4
, near r = rbH and

α
n
2 ∆Xα

−n
2 = x

n
2 ∆Xx

−n
2 = ∆gsI + x2WsI − β2

sI

n2

4
, near r = rsI,

(8.3)
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where gbH and gsI are small perturbations of the hyperbolic metrics with sectional curvature −β2
bH

and −β2
sI

respectively on the interior of Bn+1, i.e.

gbH =
4dz2

β2
bH

(1− |z|2)2
+HbH, and gsI =

4dz2

β2
sI
(1− |z|2)2

+HsI,(8.4)

where HbH and HsI are symmetric 2-tensors C∞ up to the boundary of Bn+1.

Proof. It is only necessary to prove the result near one of the ends. The computation near the other
end is identical and one only needs to replace the index bH by sI. From (8.2) we we find that near
r = rbH,

x
n
2 ∆Xx

−n
2 =β2(xDx)

2 + inβ2xDx + βr−n(xDx(βr
n))xDx + (2βbHrbH)

2r−2x2∆ω

− i
n

2
βr−nxDx(βr

n)− β2n
2

4
.

Let gbH be the metric defined on a neighborhood of ∂Bn+1 given by

gbH =
dx2

β2x2
+ λ−2

bHr
2 dω

2

x2
, where λbH = 2|βbH|rbH.(8.5)

The Laplacian of this metric is

∆gbH = β2(xDx)
2 + inβ2xDx + βr−n(xDx(βr

n))xDx + λ2bHr
−2x2∆ω.

Therefore we conclude that near the ends r = rbH

x
n
2 ∆Xx

−n
2 = ∆gbH − β2n

2

4
− i

n

2
βr−nxDx(βr

2).

Since r = r(x2), we can write near rbH and rsI,

r = rbH + x2AbH(x
2) and β(r) = βbH + x2BbH(x

2) near r = rbH.

Therefore, near r = rbH
1

β2
=

1

β2
bH

+ x2B̃bH(x
2).

We conclude that there exist a symmetric 2-tensor HbH(x
2, dx, dω) near r = rbH which is C∞ up

to {x = 0}, and such that the metric gbH given by (8.5) can be written near r = rbH as

gbH =
dx2

β2
bHx

2
+

dω2

4β2
bHx

2
+HbH near r = rbH.(8.6)

Let g̃ be the metric on the interior of Bn+1 which is given by

g̃ =
4|dz|2

c2(1− |z|2)2
.

We consider local coordinates valid for |z| > 0 given by (x, ω), where ω = z/|z|, and x = 1−|z|
1+|z| . The

metric g̃ written in terms of these coordinates is given by

g̃ =
dx2

c2x2
+ (1− x2)2

dω2

4c2x2
.

Therefore, near x = 0

g̃ =
dx2

c2x2
+

dω2

4c2x2
+H(x2, ω, dx, dω),
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where H is a symmetric 2-tensor smooth up to the boundary of Bn+1. This concludes the proof of
the Proposition. �

9. From cut-off and models to stationary resolvent

Next we use the method of Bruneau and Petkov [2] to decompose the operator R(σ) in terms of
its cut-off part χR(σ)χ and the contributions from the ends, which are controlled by Theorem 1.1.
For that one needs to define some suitable cut-off functions. For δ > 0 let χj , χ

1
j , and χ̃j , j = 1, 2,

defined by

χ1(r) = 1 if r > rbH + 4δ, χ1(α) = 0 if r < rbH + 3δ,

χ1
1(r) = 1 if r > rbH + 2δ, χ1

1(α) = 0 if r < rbH + δ,

χ̃1(r) = 1 if r > rbH + 6δ, χ̃1(α) = 0 if r < rbH + 5δ,

χ2(r) = 1 if r < rsI − 4δ, χ2(α) = 0 if r > rsI − 3δ,

χ1
2(r) = 1 if r < rsI − 2δ, χ1

2(α) = 0 if r > rsI − δ,

χ̃2(r) = 1 if r < rsI − 6δ, χ̃2(α) = 0 if r > rsI − 5δ,

and let

χ3(r) = 1− (1− χ1)(1− χ1
1)− (1− χ2)(1− χ1

2).

χ3(r) is supported in [rbH + δ, rsI − δ] and χ3(r) = 1 if r ∈ [rbH +2δ, rsI − 2δ]. Let χ ∈ C∞
0 (rbH, rsI)

with χ(r) = 1 if r ∈ [rbH + δ/2, rsI − δ/2].
Now we will use Proposition 8.1 for δ small enough. Let gbH and gsI be the metrics given on the

interior of Bn+1 given by (8.4) and let

gbH,δ =
4dz2

β2
bH(1− |z|2)2

+ (1− χ̃1)HbH, and gsI,δ =
4dz2

β2
sI(1− |z|2)2

+ (1− χ̃2)HsI.(9.1)

Since gbH,δ = gbH if χ̃1 = 0, and gsI,δ = gsI if χ̃2 = 0, it follows from Proposition 8.1 that, for x
given by equation (8.1)

α
n
2 ∆Xα

−n
2 (1− χ1)f = (∆gbH,δ

+ x2WbH −
n2

4
β2
bH − σ2)(1− χ1)f, and

α
n
2 ∆Xα

−n
2 (1− χ1

1)f = (∆gbH,δ
+ x2WbH −

n2

4
β2
bH − σ2)(1− χ1

1)f.

α
n
2 ∆Xα

−n
2 (1− χ2)f = (∆gsI,δ + x2WsI −

n2

4
β2
sI − σ2)(1− χ2)f, and

α
n
2 ∆Xα

−n
2 (1− χ1

2)f = (∆gsI,δ + x2WsI −
n2

4
β2
sI − σ2)(1− χ1

2)f.

(9.2)

Let

Rα(σ) = α
n
2R(σ)α−n

2 = (α
n
2 ∆Xα

−n
2 − σ2)−1, Imσ < 0,

and let

RbH(σ) = (∆gbH,δ
+ x2WbH − σ2 −

n2

4
β2
bH)

−1 and

RsI(σ) = (∆gsI,δ + x2WsI − σ2 −
n2

4
β2
sI)

−1

be operators acting on functions defined on B
n+1.
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If, as in Proposition 8.1, we identify neighborhoods of r = rbH and r = rsI with a neighborhood
of the boundary of Bn+1, we obtain the following identity for the resolvent

Rα(σ) = Rα(σ)χ3 + (1− χ1)RbH(σ)(1− χ1
1) + (1− χ2)RsI(σ)(1− χ1

2)−

Rα(σ)[∆gbH , 1− χ1]RbH(σ)(1− χ1
1)−Rα(σ)[∆gsI , 1− χ2]RsI(σ)(1− χ1

2).
(9.3)

Similarly, one obtains

Rα(σ) = χ3Rα(σ) + (1− χ1
1)RbH(σ)(1− χ1) + (1− χ1

2)RsI(σ)(1− χ2)+

(1− χ1
1)RbH(σ)[∆gbH , 1− χ1]Rα(σ) + (1− χ1

2)RsI(σ)[∆gsI , 1− χ2]Rα(σ).
(9.4)

These equations can be verified by applying α
n
2 ∆Xα

−n
2 − σ2 on the left and on the right of both

sides of the identities. Substituting (9.4) into (9.3) we obtain

Rα(σ) =M1(σ)χRα(σ)χM2(σ)+

(1− χ1)RbH(σ)(1− χ1
1) + (1− χ2)RsI(σ)(1− χ1

2),

where

M1(σ) = χ3 + (1− χ1
1)RbH(σ)(1− χ̃1)[∆gbH , 1− χ1]

+ (1− χ1
2)RsI(σ)(1− χ̃2)[∆gsI , 1− χ2],

M2(σ) = χ3 − [∆gbH , 1− χ1](1− χ̃1)RbH(σ)(1− χ1
1)

− [∆gsI , 1− χ2](1− χ̃2)RsI(σ)(1− χ1
2).

(9.5)

This gives a decomposition of Rα(σ) in terms of the cutoff resolvent, studied by Bony and Häfner
[1], and the resolvents of he Laplacian of a metric which are small perturbations of the Poincaré
metric in B

n+1. The mapping properties of such operators were established in Section 7. Next we
will put the estimates together and finish the proof of our main result.

10. The proof of Theorem 4 in 3 dimensions

We now prove Theorem 4 for n + 1 = 3 using Theorem 1.1 and Theorem 3. We first restate a
strengthened version of the theorem which includes the case where the weight b = Imσ.

Theorem 10.1. Let ǫ > 0 be such that (10) holds and suppose

0 < γ < min(ǫ, βbH, |βsI|, 1).

Then for b > γ there exist C and M such that if Imσ ≤ γ and |Reσ| ≥ 1,

(10.1) ||α̃bR(σ)α̃bf ||L2(X;Ω) ≤ C|σ|M ||f ||L2(X;Ω),

where α̃ was defined in (15) and the measure Ω was defined in (8). Moreover, for N > 1
2 and

0 < δ ≪ 1, choose ψN (r) ∈ C∞(rbH, rsI) with ψN (r) ≥ 1, such that

(10.2) ψN = | logα|−N if r − rbH < δ or rsI − r < δ.

Then with γ as above, there exists C > 0 and M ≥ 0 such that for |Reσ| ≥ 1 and | Imσ| ≤ γ

||α̃ImσψN (α)R(σ)α̃bf ||L2(X;Ω) ≤ C|σ|M ||f ||L2(X;Ω),

||α̃bR(σ)α̃ImσψN (α)f ||L2(X;Ω) ≤ C|σ|M ||f ||L2(X;Ω) and

||α̃ImσψN (α)R(σ)α̃ImσψN (α)f ||L2(X;Ω) ≤ C|σ|M ||f ||L2(X;Ω).

(10.3)
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Proof. Recall from (9.1) that

gbH,δ =
1

β2
bH

gδ and gsI,δ =
1

β2
sI

gδ,

where gδ is of the form (1.2). So we obtain ∆gbH,δ
= β2

bH∆gδ and similarly ∆gsI,δ = β2
sI∆gδ .

Therefore,

RbH(σ) =

(
β2
bH∆gδ + x2WbH − σ2 −

n2

4
β2
bH

)−1

=

β−2
bH

(
∆gδ + x2β−2

bHWbH − σ2β−2
bH −

n2

4

)−1

= β−2
bHRδ(σ|βbH|

−1).

(10.4)

Therefore, by replacing σ with σ|βbH|
−1 in (1.3) and (1.5) setting a = A

|βbH| , and b = B
|βbH| , we

deduce from Theorem 1.1 that there exists δ0 > 0 such that if 0 < δ < δ0, for Imσ < A and
Imσ < B and |Reσ| > K(δ),

||x
A

|βbH|RbH(σ)x
B

|βbH| v||Hk(B3) ≤ C|σ|k||v||L2(B3), k = 0, 1, 2,

||x
A

|βbH|RbHσ)x
B

|βbH v||L2(B3) ≤ C|σ|k||v||H−k
0 (B3), k = 0, 1, 2.

(10.5)

Of course, the same argument applied to RsI gives

||x
A

|βsI|RsI(σ)x
B

|βsI| v||Hk(B3) ≤ C|σ|k||v||L2(B3), k = 0, 1, 2,

||x
A

|βsI|RsIσ)x
B

|βsI v||L2(B3) ≤ C|σ|k||v||H−k
0 (B3), k = 0, 1, 2.

(10.6)

When A = Imσ, or B = Imσ, we define TbH,A,B,N and TsI,A,B,N and as in (1.4) by replacing
Rδ(σ) with either RbH(σ) or RsI(σ), a with A and b with B. Using (1.5) we obtain for J = bH or
J = sI,

||TJ,A,B,N (σ)v||Hk
0 (B

3) ≤ C|σ|k||v||L2(B3), k = 0, 1, 2,

||TJ,A,B,Nv||L2(B3) ≤ C|σ|k||v||H−k
0 (B3), k = 0, 1, 2.

(10.7)

Now we recall that α = 2rbHβbH near rbH and similarly α = 2rsIβsI near rsI. We will use these
estimates, identity (9.5) and Theorem 3 to prove Theorem 4. Indeed, in the case a > Imσ, b > Imσ
we write

α̃aRαα̃
b = α̃aM1(σ)α̃

bα̃−bχRα(σ)χα̃
−bα̃bM2(σ)α̃

b+

(1− χ1)α̃
aRbH(σ)α̃

b(1− χ1
1) + (1− χ2)α̃

aRsI(σ)α̃
b(1− χ1

2).

Notice that the measure in B
n+1 is x−n−1dxdω, which corresponds to α−n−1dαdω which in turn

corresponds to α−n−2drdω. In this case n = 2, but this part of the argument is the same for all
dimensions, and we will not set n = 2. Thus, we deduce from Theorem 1.1 that

||(1− χ1)α̃
aRbH(σ)α̃

b(1− χ1
1)||L2(X;α−n−2drdω) ≤ C||v||L2(X;α−n−2drdω),

||(1− χ2)α̃
aRsI(σ)α̃

b(1− χ1
2)v||L2(X;α−n−2drdω) ≤ C||v||L2(X;α−n−2drdω).

Recall that Ω = α−2r2drdω. Since r ∈ [rbH, rsI], rbH > 0, this gives

||(1− χ1)α̃
aα−n

2RbH(σ)α
n
2 α̃b(1− χ1

1)||L2(X;Ω) ≤ C||v||L2(X;Ω),

||(1− χ2)α̃
aα−n

2RsI(σ)α
n
2 α̃b(1− χ1

2)v||L2(X;Ω) ≤ C||v||L2(X;α−n−2Ω).
(10.8)

Similarly, using the Sobolev estimates in Theorem 1.1, we obtain
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||α̃aα−n
2M1(σ)α

n
2 α̃bv||L2(X;Ω) ≤ C|σ|||v||L2(X;Ω),

||α̃aα−n
2M2(σ)α

n
2 α̃bv||L2(X;Ω) ≤ C|σ|||v||L2(X;Ω).

(10.9)

Since χ is compactly supported in the interior of X, it follows from Theorem 3 that

||α̃bχRα(σ)χα̃
bv||L2(X;Ω) ≤ C||v||L2(X;Ω).(10.10)

Estimates (10.8), (10.9) and (10.10) imply that

||α̃bα−n
2Rα(σ)α

n
2 χα̃bv||L2(X;Ω) ≤ C||v||L2(X;Ω).

But α−n
2Rα(σ)α

n
2 = R(σ). This proves (10.1). �

11. The proof of Theorem 4 in general dimension

We will outline the main steps necessary to connect to the results of [5], and refer the reader to
[5] for more details.

First choose δ so small (12) holds. Let X0 and X1 be as defined in (11), then we recall that for
δ small,

α−n
2 Pα−n

2 |X0
= P (h, σ),

where P (h, σ) stands for model near either rbH or near rsI. By Theorem 6.1 there exists h0 > 0
such that for h ∈ (0, h0),

||xa(h2P0 − σ)−1xb||L2→L2 ≤ Ch−1−n
2 , σ ∈ (1− c, 1 + c)× (−c, ǫh) ⊂ C.

Let P1 be the operator defined in (13) and let ǫ > 0 be such that (14) holds. Then it follows
from Theorem 2.1 of [5] that there exist h1 > 0, C > 0 and K > 0 such that for h ∈ (0, h1),

||α̃bα−n
2 (h2∆X − σ2)−1α̃aα−n

2 ||L2→L2 ≤ Ch−K ,

σ ∈ (1− c, 1 + c)× (−c, ǫh) ⊂ C.
(11.1)

The estimate in Theorem 4 follows by restating (11.1) in the non-semiclassical language, i.e. mul-
tiplying it by h2 and replacing σ by h−1σ.

12. Ck Estimates

The resolvent estimates proved here are used in [19] to establish the asymptotic behavior of
solutions of the wave equation on de Sitter-Schwarzschild space. However, the estimates used there
are in fact Ck estimates, and therefore their proofs require a modification of the L2 estimates of
Theorems 4 and 10.1 to include Ck norms. We will prove

Proposition 12.1. If ǫ > 0 is sufficiently small, the only pole of the analytic continuation of the
resolvent R(σ) in Imσ < ǫ is σ = 0, which is simple, with residue given by a constant γ and for
each k there exist m > 0, C > 0 and M such that, provided |σ| > 1, Imσ < ǫ,

(12.1) ‖α̃−iσR(σ)α̃iσ‖L(xCm(X1/2),Ck(X1/2)) ≤ C|σ|M ,

The reader should notice that there is no need for the logarithmic weight ψN in (12.1), as in the
case of the Sobolev regularity obtained in Theorem 1.1. Recall that the volume measure involves a
negative power of α, so the bounds of the L∞ norms do not guarantee the local bound of the L2

norm near the boundary.
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The estimate (12.1) in the interior follows directly from Theorem 4. So we only need to concen-
trate our attention to the ends. Recall from (9.2) and (9.5) that near the ends bH or sI, α

n
2R(σ)α−n

2

is equal to the resolvent of the model case applied to either a localizer or a cutoff resolvent. There-
fore, near each end α̃−iσR(σ)α̃iσ corresponds to x−

n
2 −iσR(σ)x

n
2 +iσ where R(σ) stands for the

resolvent of the asymptotically hyperbolic models near either bH or sI. (A similar reduction is
easily given in terms of the gluing construction of [5] presented in Section 11.)

Therefore, the proof of Proposition 12.1 follows from the following

Lemma 12.2. Let g = gδ be defined in (1) with δ > 0 such that Theorem 5.1 and Theorem 1.1 hold.

Let R(σ) =
(
∆− n2

4 − σ2
)−1

denote the resolvent of ∆g. Then, if ǫ > 0 is small and Imσ < ǫ, for

each k there exist m > 0, C > 0 and M such that, provided |σ| > 1, Imσ < ǫ,

(12.2) ‖x−
n
2 −iσR(σ)x

n
2 +iσ‖L(xCm(Bn+1),Ck(Bn+1) ≤ C|σ|M ,

Proof. If

x−
n
2 −iσR(σ)x

n
2 +iσf = u,

with f ∈ xCm(Bn+1), then

(12.3) x−(n
2 +iσ)

(
∆g −

n2

4
− σ2

)
x

n
2 +iσu = f.

Since f ∈ xCm(Bn+1), then near x = 0,

f =
m−1∑

j=1

xjfj(y) + f̃ , with fj ∈ Cm−j+1, f̃ ∈ Cm, f̃ = O(xm).

The Laplacian of an asymptotically hyperbolic metric is given by

∆ = −(x∂x)
2 + nx∂x + x2∆h + xE1,

where E1 is a zero-differential operator of order 1. Hence,

x−(n
2 +iσ)

(
∆g −

n2

4
− σ2

)
x

n
2 +iσxjuj = −j(j + 2iσ)xjuj + (x∆h + E1)(x

j+1uj).(12.4)

Thus, for j ≥ 1 and Imσ < 1/2 the coefficient of xjuj on the right hand side does not vanish, so

given f̃j ∈ Cs depending on σ, with polynomial bounds in σ, there exists uj ∈ Cs such that

x−(n
2 +iσ)

(
∆g −

n2

4
− σ2

)
x

n
2 +iσxjuj − fj ∈ xj+1Cs−2,(12.5)

and moreover the Cs norm of uj grows polynomially in σ. Proceeding inductively, we deduce that
for any ℓ ≥ 1 with 2ℓ < m there is U0 ∈ xCm−2ℓ+2(Bn+1) such that its Cm−2ℓ+2 norm grows
polynomially in σ and such that

x−(n
2 +iσ)

(
∆g −

n2

4
− σ2

)
x

n
2 +iσU0 − f = F̃ ∈ xℓ+1Cm−2ℓ.

It remains to be shown that for any k, we can find m and ℓ such that if F ∈ Cm−2ℓ(Bn+1),

(12.6) u = x−
n
2 −iσR(σ)x

n
2 +iσxℓ+1F ∈ Ck(Bn+1),

and moreover, the Ck norm of u grows polynomially in σ.
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To show this, we use our semiclassical parametrix construction from Sections 4 and 5, and in
particular the semiclassical notation – recall the conversion between the semiclassical and high
energy formulations in Section 7. Thus, the polynomial growth in σ in the high energy problem
becomes polynomial growth in h−1 semiclassically.

We proved that there exists a right parametrix G(h, σ) for P (h, σ) whose kernel satisfies (5.1) and
whose error satisfies (5.2); note that here σ/h would correspond to σ in the high energy notation.
The same construction in those sections gives a left parametrix with the same properties, but with
the weights on the right and left face interchanged. In other words, there exists a left parametrix
GL(h, σ, z, z

′) such that

GL(h, σ, z, z
′) = G′

L + e−iσr
h UL(h, σ, z, z

′),

G′
L ∈ Ψ−2,∞,∞,∞

0,~ (Bn+1), UL ∈ Ψ
−∞,n2 ,−n

2 −1,n2
0,~ (Bn+1),

(12.7)

UL vanishing in a neighborhood of the semiclassical diagonal Diag~, and such that, using the
notation of Section 3,

GL(h, σ)P (h, σ)− Id = EL(h, σ) ∈ ρ∞F ρ
∞
S Ψ

−∞,n2 +iσ
h ,∞,∞

0,~ (Bn+1).(12.8)

(We note that as P (h, σ)∗ = P (h, σ), this also follows from the right parametrix construction by
simply taking adjoints.)

So applying R(h, σ) = P (h, σ)−1 to the right side of (12.8), we obtain

GL(h, σ) = R(h, σ) + EL(h, σ)R(h, σ),

and thus

R(h, σ) = GL(h, σ)− EL(h, σ)R(h, σ).(12.9)

First we look at the term involving EL(h, σ). In view of (12.8), the kernel of x−
n
2 −iσ

hEL(h, σ)
lifts under the semiclassical blow-down map β~ defined in (3.4) to a distribution which vanishes
to infinite order on all faces, except the left face, at which it is C∞. Correspondingly, the kernel
KEL

of x−
n
2 −iσ

hEL(h, σ) is C∞ on the product space B
n+1 × B

n+1 × [0, 1)h, with infinite order
vanishing at all faces except the left face. Thus, KEL

is vanishing to infinite order in h with values

in C∞(Bn+1; Ċ∞(Bn+1)), with Ċ∞(Bn+1) denoting the right variables, and correspondingly EL is
a continuous map from xℓCm, or indeed from xaHs

0 , to C∞ for any m, l, a, s, which is vanishing
to infinite order in h. Thus, by Theorem 1 in the semiclassical notation (as in Section 7), for
b > Imσ/h,

x−
n
2 −iσ

hEL(h, σ)R(h, σ)x
b : L2

0(B
n+1) → Ck(Bn+1)

is rapidly vanishing in h, and so for ℓ > 0 in view of the continuity of the inclusion x
n
2 +ℓC0 → L2

0,

x−
n
2 −iσ

hEL(h, σ)R(h, σ)x
n
2 +iσ

h : xℓC0(Bn+1) → Ck(Bn+1)

is indeed continuous, and is rapidly vanishing in h.
In view of (12.9), it remains to analyze mapping properties of GL(h, σ). Explicitly, we need to

study

(h∂x, h∂ω)
γx−iσ

h−n
2GL(h, σ)x

n
2 +iσ

h xℓF, F ∈ Cm(Bn+1),(12.10)

for |γ| ≤ k; note that one can then drop the factor of h from the vector fields at the cost of making
the polynomial bound in h−1 worse. As the kernel is well-behaved on M0,~, we lift the vector fields
h∂x and h∂ω here. Since hx∂x and hx∂ω are semiclassical zero vector fields they lift to C∞ vector
fields by β~ tangent to all faces which in addition vanish at the left face, as discussed in Section 3.
Since x pulls back to a product of defining functions of F and the left face L, we conclude that he
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vector fields h∂x and h∂ω lift under β~ to vector fields in ρ−1
F Ṽb, where Ṽb denotes the Lie algebra

of C∞ vector fields which are tangent to the semiclassical front face, the semiclassical face, the zero
front face and the right face, i.e. all boundary hypersurfaces except the left face.

First we consider the term e−iσr
h UL(h, σ). By (12.7),

β∗
~

(
h

n
2 +1UL(h, σ)

)
= ρ

n
2

L ρ
n
2

RU ,

with VmU ∈ L∞(M0,~), where V denotes the Lie algebra of C∞ vector fields in M0,~. Therefore,
according to (12.7), and Proposition 2.7, we have

β∗
~

(
x−iσ

h−n
2 h

n
2 +1(x′)

n
2 +iσ

h e−iσr
h UL(h, σ, z, z

′)
)
= ρ

n+2iσ
h

R U ,

with VNU ∈ L∞(M0,~) for every N.

Since β∗((h∂x, h∂ω)
γ) ∈ ρ

−|γ|
F V, we obtain

β∗
~

(
(h∂x, h∂ω)

γx−iσ
h−n

2 h
n
2 +1(x′)

n
2 +iσ

h e−iσr
h UL(h, σ)

)
= ρ

−|γ|
F ρ

n+2iσ
h

R Ũ ,

with VN Ũ ∈ L∞(M0) for every N. We are then left to prove that a family of operators Th whose
kernel KTh

(z, z′) satisfies

β∗KTh
(z, z′) = ρ

−|γ|
F ρ

n+2iσ
h

R Ũ , with V l
b Ũ ∈ L∞(M0,~), l ∈ N,

then if ℓ is large enough

(12.11) Th : xℓL∞(Bn+1) −→ L∞(Bn+1)

with uniform bounds in h, i.e. Thx
ℓ : L∞(Bn+1) −→ L∞(Bn+1) with uniform bounds. This in turn

follows from Thx
ℓ′ : L1(Bn+1) → L∞(Bn+1) for sufficiently large ℓ′ by taking ℓ > ℓ′+n, and noting

that xℓL∞(Bn+1) ⊂ xℓ−n−ǫL1(Bn+1) for all ǫ > 0 with continuous inclusion. But the Schwartz

kernel of Thx
ℓ′ is KTh

(x′)ℓ
′

, and (x′)ℓ
′

= Rℓ′ρℓ
′

R = ρℓ
′

Fρ
ℓ′

R, therefore for ℓ′ > max(2 Imσ − n, |γ|),

KTh
(x′)ℓ

′

∈ L∞(M0,~), and thus KT (x
′)ℓ

′

is bounded on B
n+1 × B

n+1 × [0, 1)h, so it defines a
uniformly bounded map (in h−1) from L1(Bn+1) to L∞(Bn+1). This proves (12.11), and thus that
for ℓ > max(2 Imσ, k + n),

(12.12) x−iσ
h−n

2 h
n
2 +1(x′)

n
2 +iσ

h e−iσr
h UL(h, σ, z, z

′)

is the Schwartz kernel of a polynomially bounded (in h−1) family of maps xℓL∞(Bn+1) → Ck(Bn+1).

(Note that it is not hard to improve the restriction on ℓ by showing that KTh
(x′)ℓ

′

is L∞(Bn+1 ×
[0, 1)h;L

1(Bn+1)) for an improved range of ℓ′ with L1(Bn+1) being in the right variables, giving
Thx

ℓ : L∞(Bn+1) −→ L∞(Bn+1) directly.)
The term G′

L in (12.7) is in the small semiclassical calculus, and thus

G′
L(h, σ) = x−ℓx−

n
2 −iσ

hG′
L(h, σ)x

n
2 +iσ

h xℓ ∈ Ψ−2,∞,∞,∞
0,~ (Bn+1)

as well. Now for V1, . . . , Vj ∈ V(Bn+1), one can rewrite

(hV1) . . . (hVj)G
′
L(h, σ) = x−1(hxV1) . . . x

−1(hxVj)G
′
L(h, σ)

by commuting these vector fields and the factors of x−1 through, and noting that each commutator
with a vector field gives rise to an element of hΨ−2,∞,∞,∞

0,~ (Bn+1) while x−1G̃ = G̃′x−1 with G̃′ =

x−1G̃x ∈ Ψ−2,∞,∞,∞
0,~ (Bn+1) for G̃ ∈ Ψ−2,∞,∞,∞

0,~ (Bn+1), to conclude that it is a finite sum of
operators of the form

G′′
L(hW1) . . . (hWr), r ≤ j, W1, . . . ,Wr ∈ V(Bn+1), G′′

L ∈ Ψ−2,∞,∞,∞
0,~ (Bn+1).
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So provided we show T ∈ Ψ−2,∞,∞,∞
0,~ (Bn+1) implies T : L∞(Bn+1) → L∞(Bn+1) with uniform

bounds in h, we conclude that G′
L(h, σ) : Cm+1 → Cm (for L∞ bounds on the derivatives imply

even Lipschitz continuity), with polynomial bounds in h−1, and thus

(12.13) x−
n
2 −iσ

hG′
L(h, σ)x

n
2 +iσ

h : xℓCm+1 → xℓCm

with polynomial bounds. But the claim regarding T follows from the Schwartz kernel being in
L∞(Bn+1 × [0, 1)h;L

1(Bn+1)), with L1 being the right variables, as is standard for negative order
pseudodifferential operators.

Combining these results proves (12.6): given k one first takes ℓ ≥ 1 sufficiently large for (12.12)
to be bounded into Ck, and then one lets m = k + 1 + 2ℓ so

x−
n
2 −iσ

hR(h, σ)x
n
2 +iσ

h : xℓCk+1(Bn+1) → Ck(Bn+1)

is continuous with polynomial bounds in h−1, so (12.6) holds. The lemma follows from (12.6) and
the construction that precedes it. This argument actually gives a specific, but non-optimal, value
for m: given k and for Imσ < 1/2, one can take m = 3k + 2n+ 3. �
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