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Abstract. In this paper an asymptotic expansion is proved for locally (at in-

finity) outgoing functions on asymptotically Euclidian spaces. This is applied

to N-body scattering where the two-body interactions are one-step polyhomo-

geneous symbols of order −1 or −2 (hence long-range and short-range respec-

tively). The asymptotic behavior of the N-body resolvent applied to Schwartz

functions is thereby deduced away from the singular set, where some of the

potentials do not decay at infinity.

1. Introduction

In this paper we prove an asymptotic expansion for locally (at infinity) outgoing

functions on asymptotically Euclidian spaces, and as an application we obtain the

asymptotic behavior of the N -body resolvent applied to Schwartz functions away

from the singular set. The N -body Hamiltonian is HV = ∆ +
∑

i Vi, where ∆

is the positive Laplacian on Rn, and the Vi are real-valued functions on linear

subspaces X i of Rn (extended by orthogonal projection; see e.g. [1, 10] for a detailed

description). We shall assume that Vi are one-step polyhomogeneous (classical)

symbols of order −1 or −2 on X i, so they are long-range or short-range respectively.

Let Xi = (X i)⊥, and Ci = Sn−1 ∩ Xi, Sn−1 being the unit sphere in Rn. Then

the singular set is ∪iCi. We follow [8, 10] in our normalization of the (modified)

resolvent: RV (λ) = (HV − λ2)−1 when λ is in the physical half-plane, Imλ < 0.

Thus, for σ > 0

(1.1) (HV − (σ ± i0))−1 = RV (∓σ1/2).

Date: May 30th, 1996.

1



2 ANDRAS VASY

Our main conclusion for the N -body problem is:

Theorem. If f ∈ S(Rn), 0 6= λ ∈ R, and the Vi are of order −2 then RV (λ)f has

a full asymptotic expansion

(1.2) RV (λ)f(rθ) ∼ e−iλrr−(n−1)/2
∑

j≥0

aj(θ)r
−j

with aj ∈ C∞(Sn−1 \ ∪iCi). If the Vi are of order −1, and α ∈ C∞(Sn
+ \ ∪iCi) is

defined by α(θ) = (2λ)−1
∑

i limr→∞ rVi(rθ), then

(1.3) RV (λ)f(rθ) ∼ e−iλrr−(n−1)/2+iα
∞∑

j=0

∑

s≤2j

aj,s(θ)r
−j(log r)s

with aj,s ∈ C∞(Sn−1 \ ∪iCi).

Herbst and Skibsted have obtained the top term of this asymptotic expansion in

[2] for more general potentials by using time-dependent radiation estimates. Isozaki

had proved a closely related result in [3] in the case of three-body scattering, and

the expansion at ∪iCi was obtained in [10] in the same situation for Schwartz poten-

tials. This theorem together with the resolvent estimates of [1] and the uniqueness

theorem of [4] allows us to interpret the open part of the N -cluster to N -cluster

scattering matrix, SV (λ), in Section 4 in a geometric way, i.e. by using the asymp-

totic expansion of the generalized eigenfunctions. In fact, the possibility of such an

interpretation already follows from the results of Herbst and Skibsted, since it only

depends on the leading term of the expansion.

We show that the local properties of outgoing functions are valid in a more

general setting which we proceed to describe in some detail. Thus, let X be an n-

dimensional compact manifold with boundary. Following Melrose’s definition given

in [7], we say that a Riemannian metric g in the interior of X is a scattering metric

on X if

(1.4) g = x−4 dx2 + x−2h

where x is a boundary defining function and h is a smooth symmetric 2-tensor on

X with a non-degenerate restriction to the boundary ∂X . We shall denote this
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restriction by h as well. This situation arises naturally in Euclidian scattering if we

consider the radial compactification SP of Rn into Sn
+, and pull back the standard

metric by SP−1.

The Laplacian ∆ of such a metric g is a scattering differential operator: ∆ ∈

Diff2
sc(X) (see [7]). The microlocalization of this algebra of differential operators

is the corresponding pseudo-differential operator calculus Ψ∗,∗
sc (X). This gives rise

to the scattering wave front set, WFsc, on the boundary CscX of the radial fiber-

compactification scT̄ ∗X of scT ∗X . A product decomposition U = [0, ǫ)x × ∂X of

X near the boundary allows us to introduce coordinates (x, y, τ, µ) on scT ∗
UX by

writing a covector v ∈ scT ∗
p X as v = τ(x−2 dx) + x−1µ; here (y, µ) are coordinates

on T ∗∂X . For 0 6= λ ∈ R the characteristic set Σ∆−λ2 ⊂ scT ∗
∂XX of ∆ − λ2

is τ2 + |µ|2 = λ2; |µ| = h(y, µ)1/2 is the metric length of µ. Since propagation of

singularities takes place inside Σ∆−λ2 , we are particularly interested in the structure

of the Hamiltonian vector field, scH2,0
|ζ|2−λ2 of the symbol |ζ|2 − λ2 = τ2 + |µ|2 − λ2

of ∆ − λ2 (and its integral curves) inside it. In fact, there are two radial surfaces,

(1.5) R±
λ = {(y,±λ, 0) : y ∈ ∂X},

at which scH2,0
|ζ|2−λ2 vanishes, and all integral curves inside Σ∆−λ2 tend to R+

λ as

t → −∞, and to R−
λ as t → ∞ (here we use the notation of [10] and we take λ > 0).

Thus, principal-type propagation takes places in Σ∆−λ2 \ (R−
λ ∪R+

λ ). In [7] Melrose

gives global results excluding the whole of R±
λ from WFsc under global assumptions

on the absence of WFsc nearby. In this paper we make the simple observation that

the arguments in [7] can be localized by using the characterization of the integral

curves of scH2,0
|ζ|2−λ2 obtained by Melrose and Zworski in [9]. As a straightforward

application we deduce the weak asymptotics of the N -body resolvent away from

the singular set by using the characterization of the resolvent by Gérard, Isozaki

and Skibsted [1]. It should be noted that this asymptotic expansion for short-range

N -body scattering can be proved directly by using the explicit free resolvent on R
n,
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(∆−λ2)−1, and iterative regularity arguments together with the resolvent estimates

of [1].

I am very grateful to Richard Melrose for our lively and fruitful discussions and

for his encouragement.

2. Local properties

We first construct a function on scT ∗X whose quantization commutes with the

Laplacian to top order. To do so, we shall consider the flow of scH2,0
|ζ|2−λ2 inside

scT ∗
∂XX . Here we can use the results of Melrose and Zworski who analyzed the

integral curves above the boundary in detail in [9]. In [9, Lemma 2] it is shown that

the integral curves of scH2,0√
g (which coincide with those of scH2,0

|ζ|2−λ2) in scT ∗
∂XX

are points of the form (y, τ, 0), and curves of the form

τ = σ cos(s + s0), µ = σ sin(s + s0)µ̂, (y, µ̂) = exp((s + s0)H 1

2
h)(y′, µ̂′)

where s0 ∈ [0, π], s ∈ (−s0, π − s0), σ > 0, (y′, µ̂′) ∈ T ∗∂X , h(y′, µ̂′) = 1 and

ds/dt = 1
2 |µ| = 1

2h(y, µ)1/2. Note that as t → −∞, i.e. s → −s0 the integral curve

through (y, τ, µ) will tend to (y′, λ, 0) where

(2.1) y′ = p(y, τ, µ) = π1(exp(− arccos(τ/(τ2 + |µ|2)1/2)H 1

2
h)(y, µ/|µ|));

here π1 : T ∗∂X → ∂X is projection to the base. Now, p is certainly smooth when

µ 6= 0. To see how it behaves when µ is small and τ > 0, note that there

(2.2) arccos(τ/(τ2 + |µ|2)1/2) = arcsin(|µ|/(τ2 + |µ|2)1/2).

Scaling the covector µ/|µ| we find that

(2.3) p(y, τ, µ) = π1(exp(−|µ|−1 arcsin(|µ|/(τ2 + |µ|2)1/2)H 1

2
h)(y, µ)).

Since r−1 arcsin(r/(τ2 + r2)1/2) is a smooth function of τ and r in τ > 0 which is

even in r, it follows that p is actually smooth in scT ∗
∂XX \ {(y, τ, 0) : τ ≤ 0}. We

restate this in the following lemma:

Lemma 2.1. The map p : scT ∗
∂XX \ {(y, τ, 0) : τ ≤ 0} → ∂X is smooth.
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Remark 2.2. In the case of Euclidian scattering, i.e. X = Sn
+, ∂X = Sn−1, and g is

the pull-back of the standard metric on Rn via the stereographic projection, p can

be expressed very simply:

(2.4) p(y, τ, µ) = (τ2 + |µ|2)−1/2(τy − µ) ∈ S
n−1.

This corresponds to the fact that under the Legendre diffeomorphism integral curves

of scH2,0
|ζ|2−λ2 over ∂X become curves whose projection to the base is constant.

Let U = [0, ǫ) × ∂X be a product decomposition of X near its boundary, F :

scT ∗
UX → scT ∗

∂XX be the corresponding fibration of scT ∗
UX .

Corollary 2.3. If φ ∈ C∞(∂X), then φ̃ = F ∗p∗φ ∈ C∞(scT ∗
UX \ {(x, y, τ, 0) : τ ≤

0}) satisfies scH2,0
|ζ|2−λ2 φ̃ ∈ xC∞(scT ∗

UX \ {(x, y, τ, 0) : τ ≤ 0}).

Proof. This is immediate since φ̃ is constant along integral curves of scH2,0
|ζ|2−λ2 in

∂X . �

We can now prove local properties of the scattering wave front set near R±
λ ;

the following propositions are analogues of [7, Proposition 9-12]. In the following

π : scT̄ ∗X → X is projection to the base.

Proposition 2.4. If λ 6= 0, s < − 1
2 , u ∈ C−∞(X), K ⊂ X is compact then

(2.5) R±
λ ∩ π−1(K) ∩ WF∗,s+1

sc ((∆ − λ2)u) = ∅,

(2.6) R±
λ ∩ cl(WF∗,s

sc (u) \ R±
λ ) ∩ π−1(K) = ∅

imply that

(2.7) WF∗,s
sc (u) ∩ R±

λ ∩ π−1(K) = ∅.

Proof. We only need to modify Melrose’s proof [7, Proposition 9] by inserting an

additional factor; we follow that proof in detail for the convenience of the reader.

For the sake of definiteness we take λ > 0 and R+
λ above. For R−

λ we would have

to change the definition of p by mapping (y, τ, µ) to the end point (i.e as t → ∞) of
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the integral curve through it, and if λ < 0 we need to reverse the signs in R±
λ in this

proof. Thus, let φ ∈ C∞(∂X) be identically 1 in a neighborhood of K, supported

sufficiently close to K, and let φ̃ be as in the previous corollary. Let s′ ≤ s, and

define

(2.8) br = bφ3(
x

r
), b = x−s′−1/2φ̃(x, y, τ, µ)φ1(

τ2 + |µ|2

λ2
)φ2(

τ

|µ|
)φ4(x).

Here given δ > 0 we take φ1 ∈ C∞(R) supported in (1 − δ, 1 + δ), positive definite

in the interior of this set. Let φ2 ∈ C∞(R) be supported in [1/δ,∞), identically 1

in [2/δ,∞), φ3 ∈ C∞(R) vanish in (−∞, 1) and identically 1 in (2,∞), and finally

φ4 ∈ C∞(R) identically 1 near 0, supported in (−ǫ, ǫ). Thus, we have only changed

br by inserting the factor of φ̃. Note that the support conditions on φ1 and φ2

insure that on these supports φ̃ is smooth. In particular, br it is well defined and

bounded in A(−∞,−s′−1/2)(scT̄ ∗X).

Since scH2,0
|ζ|2−λ2 φ̃ ∈ xC∞(scT̄ ∗X), φ̃ only affects the commutator [∆, B2

r ] by

adding a term G′
r which is bounded in A(−∞,−2s′+1)(scT̄ ∗X). More precisely,

(2.9) (∆ − λ2)B2
r − B2

r (∆ − λ2) = −2ixCr

where the (principal) symbol cr of Cr is

(2.10) cr = τ((−2s′ − 1)φ2
3(

x

r
) + 2

x

r
(φ′

3φ3)(
x

r
))b2 + er,

(2.11) er = −2x−2s′−1 τ2 + |µ|2

|µ|
φ2

1(
τ2 + |µ|2

λ2
)φ′

2(
τ

|µ|
)φ2(

τ

|µ|
)φ2

3(
x

r
)φ2

4(x).

Thus, with an appropriate choice of φ3 the first two terms are squares of symbols

and we find that

(2.12) (∆ − λ2)B2
r − B2

r (∆ − λ2) = −2i(A2
r + F 2

r + Gr + G′
r)

where Ar ∈ Ψ−∞,−s′

sc (X) and Fr ∈ Ψ−∞,−s′

sc (X) are self-adjoint, Ar is elliptic on

R±
λ ∩ π−1(K) (its symbol is in fact an elliptic multiple of x1/2br), Gr is bounded

of order −2s′ with essential support disjoint from R±
λ but included in a small
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neighborhood of R±
λ ∩ π−1(K), G′

r ∈ Ψ−∞,−2s′+1
sc (X). Now, all terms of (2.12) are

order ∞ for r > 0, so we can pair with u which gives

(2.13) − Im〈B2
ru, (∆ − λ2)u〉 = ‖Aru‖

2 + ‖Fru‖
2 + 〈Gru, u〉 + 〈G′

ru, u〉.

From the Cauchy-Schwarz inequality

(2.14) |〈B2
ru, u〉| ≤ ǫ2‖x1/2Bru‖

2 + Cǫ−2‖x−1/2Br(∆ − λ2)u‖2, ǫ > 0.

Since the symbol of Ar is an elliptic multiple of x1/2b (2.13) and (2.14) give

(2.15) ‖x1/2Bru‖
2 ≤ C(‖x−1/2Br(∆ − λ2)u‖2 + |〈Gru, u〉|+ |〈G′

ru, u〉|)

Take S sufficiently small so that WF∗,S
sc (u) ∩ π−1(K) ∩ R±

λ = ∅. Then for s′ ≤

S + 1/2, s′ ≤ s each term on the right hand side is bounded by assumption, so

x1/2Bru ∈ L2(X), so WF∗,s′

sc (u)∩R±
λ ∩π−1(K) = ∅, i.e. we have gained regularity.

Applying this iteratively proves the proposition. �

Since this argument is based on inserting an additional factor which commutes

with the Laplacian to top order, the same method also gives a localized version of

the finer regularity result [7, Proposition 10].

Proposition 2.5. If λ 6= 0, s ≥ − 1
2 , u ∈ C−∞(X), K ⊂ X compact, then

(2.16) R±
λ ∩ WF∗,s+1

sc ((∆ − λ2)u) ∩ π−1(K) = ∅,

(2.17) R±
λ ∩ WF∗,−1/2

sc (u) ∩ π−1(K) = ∅

imply that

(2.18) WF∗,s
sc (u) ∩ R±

λ ∩ π−1(K) = ∅.

We now proceed to prove a weaker, but local, version of [7, Proposition 11].

Proposition 2.6. If λ 6= 0, K ⊂ X compact, and u ∈ C−∞(X) satisfies

(2.19) WF∗,−1/2
sc (u) ∩ π−1(K) = ∅,

(2.20) WFM+2,s−1
sc (u) ∩ π−1(K) ⊂ R±

λ ,
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(2.21) WFM,s
sc ((∆ − λ2)u) ∩ π−1(K) = ∅

for some s ≥ 1
2 , then

(2.22) WFM+2,s−1
sc (u) ∩ π−1(K) = ∅.

Proof. By Proposition 2.5

(2.23) WF∗,s−1
sc (u) ∩ R±

λ ∩ π−1(K) = ∅,

and hence the conclusion follows. �

Remark 2.7. Since we only need to use the normal symbol of ∆ in the previous

propositions, ∆ can be replaced by ∆+V in all of them if V satisfies φV ∈ xC∞(X)

for some φ ∈ C∞(X) which is identically 1 in a neighborhood of K.

We are now ready to prove that locally outgoing functions do in fact have an

asymptotic expansion at ∂X .

Proposition 2.8. If 0 6= λ ∈ R, K ⊂ X compact, u ∈ C−∞(X),

(2.24) WFsc(u) ∩ π−1(K) ⊂ R+
λ ,

(2.25) WFsc((∆ − λ2)u) ∩ π−1(K) = ∅

then x−(n−1)/2eiλ/xu ∈ C∞(U ′) for a sufficiently small neighborhood U ′ of K.

Proof. This proposition can be proved in exactly the same way as the correspond-

ing global result [7, Proposition 12]. Namely, we commute powers of the special

extension ∆̃0 of the boundary Laplacian ∆0 through ∆ − λ2. Of course, we have

to use the local results given above instead of the global ones. The only additional

ingredient is noting that the regularity and interpolation estimates in the proof of

[7, Proposition 12] only use the pseudodifferential operator calculus on the fibers,

∂X , of the local product decomposition. Since this calculus is local, that proof goes

through in this case too.
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More explicitly, we show the first step of that proof by using cut-offs. Let

f = (∆ − λ2)u. First note that by Proposition 2.4 WF∗,−1/2−δ
sc (u) ∩ π−1(K) = ∅

for all δ > 0. Commuting ∆̃0 through ∆ − λ2 and using that

(2.26) [∆̃0, ∆] ∈ x2 Diff3
c(X) ∩ x3 Diff3

b(X) ⊂ Diff3
sc(X)

we conclude that WF∗,−1/2−δ
sc ((∆ − λ2)∆̃0u) ∩ π−1(K) = ∅. Then Proposition 2.4

implies that WF∗,−3/2−δ
sc (∆̃0u) ∩ π−1(K) = ∅. This means that for φ1 ∈ C∞(X)

identically 1 on a neighborhood of K, supported sufficiently close to K,

(2.27) φ1∆̃0u ∈ H∞,−3/2−δ
sc (X).

The interpolation estimates on the fibers, ∂X , of the local product decomposition

allows us to conclude that with φ2 ∈ C∞(X) supported in a sufficiently small

neighborhood of K

(2.28) φ2 Diff2
c(X)u ⊂ H∞,−3/2−δ

sc (X), φ2 Diff1
c(X)u ⊂ H∞,−1−δ

sc (X).

Using the identity (∆ − λ2)(∆̃0u) = [∆, ∆̃0]u + ∆̃0f and (2.26) we conclude that

(2.29) φ2(∆ − λ2)(∆̃0u) ∈ H∞,1/2−δ
sc (X),

so by Proposition 2.4

(2.30) WF∗,−1/2−δ
sc (∆̃0u) ∩ π−1(K) = ∅,

which is an improvement over (2.28). Just as in [7], we can iterate this argument

to conclude that for all k

(2.31) WF∗,−1/2−δ
sc (∆̃k

0u) ∩ π−1(K) = ∅,

i.e. for φ ∈ C∞(X) supported sufficiently close to K

(2.32) φ∆̃k
0u ∈ H∞,−1/2−δ

sc (X).

This means that u is a C∞ function on a neighborhood Ũ of K ∩ ∂X in ∂X with

values in x(n−1)/2−δL2
b([0, ǫ)); L2

b is the L2 space with respect to dx/x. We can
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conclude as in [7] that with v = x−(n−1)/2u

(2.33) v = e−iλ/xa0 + v′; a0 ∈ C∞(Ũ), v′ ∈ C∞(Ũ ; x1−δL2
b([0, ǫ))).

We can certainly construct on outgoing formal solution u′ with leading coefficient

equal to a0 in a neighborhood of K ∩ ∂X , and then with u′′ = u − u′ we have

(2.34) WF∗,0
sc (u′′) ∩ π−1(K) = ∅, WFsc(u

′′) ∩ π−1(K) ⊂ R+
λ ,

(2.35) WF∗,∗
sc ((∆ − λ2)u′′) ∩ π−1(K) = ∅.

Hence Proposition 2.6 proves that WF∗,∗
sc (u′′)∩π−1(K) = ∅, so for φ ∈ C∞(X) sup-

ported sufficiently close to K, φu′′ ∈ ˙C∞(X). Thus, u has an asymptotic expansion

near K as claimed. �

Remark 2.9. This proposition holds with essentially the same proof if we replace

∆ by ∆ + V if φV ∈ x2C∞(X) for some φ ∈ C∞(X), φ ≡ 1 in a neighborhood of

K, just as the corresponding one does in [7].

Melrose has also proved the corresponding global proposition for long range

potentials V ∈ xC∞(X) [5]. His proof can be modified to give a local result. To

state this, introduce the index set (with N being the set of the non-negative integers)

(2.36) K = {(m, p) : m, p ∈ N, p ≤ 2m}.

For a description of the space AK
phg(X) of polyhomogeneous conormal distributions

to the boundary see [6]. Essentially u ∈ AK
phg(X) means that u has an asymptotic

expansion in xm(log x)p, p ≤ 2m, m → ∞, with smooth coefficients on ∂X .

Proposition 2.10. If 0 6= λ ∈ R, K ⊂ X compact, V = xV ′, V ′ ∈ C∞(X) real

valued, α = (2λ)−1V ′|∂X , u ∈ C−∞(X),

(2.37) WFsc(u) ∩ π−1(K) ⊂ R+
λ ,

(2.38) WFsc((∆ + V − λ2)u) ∩ π−1(K) = ∅
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then xiα−(n−1)/2eiλ/xu ∈ AK
phg(U

′) for a sufficiently small neighborhood U ′ of K.

Thus, for Ũ a small neighborhood of K ∩ ∂X in ∂X

(2.39) u ∼ e−iλ/x
∞∑

j=0

∑

r≤2j

x(n−1)/2−iα+j(log x)raj,r(ω), aj,r ∈ C∞(Ũ).

Proof. The additional problem arises because [V, ∆̃0] ∈ xDiff1
c(X) ⊂ Diff1

sc(X)

only. This is sufficient to show (2.27), hence (2.28). Now, however,

(2.40) (∆ + V − λ2)(∆̃0u) = [∆ + V, ∆̃0]u + ∆̃0f, f = (∆ + V − λ2)u,

only implies that for all δ > 0

(2.41) φ2(∆ + V − λ2)(∆̃0u) ∈ H∞,−δ
sc (X)

where φ2 ∈ C∞(X) is supported in a sufficiently small neighborhood of K as be-

forehand. Thus, (2.30) is replaced by

(2.42) WF∗,−1−δ
sc (∆̃0u) ∩ π−1(K) = ∅.

This result is not strong enough to carry out the iteration of Proposition 2.8, so

we have to improve it further. Notice that (2.42) is in fact an improvement over

(2.27), and correspondingly we can replace (2.28) by

(2.43) φ3 Diff2
c(X)u ⊂ H∞,−1−δ

sc (X), φ3 Diff1
c(X)u ⊂ H∞,−3/4−δ

sc (X)

where φ3 ∈ C∞(X) is supported sufficiently close to K. Hence, (2.41) is replaced

by

(2.44) φ3(∆ + V − λ2)(∆̃0u) ∈ H∞,1/4−δ
sc (X),

so

(2.45) WF∗,−3/4−δ
sc (∆̃0u) ∩ π−1(K) = ∅.

We can iterate this procedure to conclude that

(2.46) WF∗,−1/2−δ−δ′

sc (∆̃0u) ∩ π−1(K) = ∅

for all δ′ > 0, so as δ > 0 was arbitrary, (2.30) holds for all δ > 0.
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We now iterate this argument as in Proposition 2.8. Note that

(2.47) [V, ∆̃k
0 ] ∈ xDiff2k−1

c (X).

Hence, if we have shown that Diff2(k−1)
c (X)u ⊂ H

∞,−1/2−δ
sc (X), then

(2.48) (∆ + V − λ2)(∆̃k
0u) = [∆ + V, ∆̃k

0 ]u + ∆̃k
0f ∈ H∞,−1/2−δ

sc (X),

so ∆̃k
0u ∈ H

∞,−3/2−δ
sc (X). We can then repeat the previous iteration to conclude

that (2.32) holds in this case too. Hence u is a C∞ function on a neighborhood Ũ

of K ∩ ∂X in ∂X with values in x(n−1)/2−δL2
b([0, ǫ)) for all δ > 0.

Let v = x−(n−1)/2u. Then

(2.49) (x2Dx + λ − αx)(x2Dx − λ + αx) − ((x2Dx)2 + V − λ2) ∈ x2C∞(X),

so as in the proof of [7, Proposition 12] we can conclude that

(2.50) (x2Dx + λ − αx)(x2Dx − λ + αx)v ∈ C∞(Ũ ; x2−δL2
b([0, ǫ))).

The first factor is elliptic on WFsc(v), so we can remove it. Since

(2.51) (x2Dx − λ + αx)e−iλ/xx−iα = 0,

it follows by integration that

(2.52) v = e−iλ/xx−iαa0 + v′; a0 ∈ C∞(Ũ), v′ ∈ C∞(Ũ ; x1−δL2
b([0, ǫ)).

Given a0,0 ∈ C∞(∂X) Melrose has constructed approximate eigenfunctions (i.e.

ones satisfying (∆ + V − λ2)u′ ∈ ˙C∞(X)) as in (2.39) but with aj,r ∈ C∞(∂X).

This construction is also local, and it is based on the observation that

(∆ + V − λ2)((log x)rx−iα+pe−iλ/xb)

= x−iα+p+1e−iλ/x(
∑

s≤r

(log x)sgs + x
∑

s≤r+2

(log x)sg′s)
(2.53)

for b ∈ C∞(X), where gs, g′s ∈ C∞(X), gr = −iλ(2p − n + 1)b, which allows us to

solve away the error terms iteratively if we start with p = (n − 1)/2, r = 0. Then

the formal expansion as in (2.39) can be summed asymptotically to u′ ∈ C−∞(X)

(see [6]).
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Now choose a0,0 ∈ C∞(∂X) such that a0,0 = a0 in a neighborhood of K. Con-

sidering the difference u′′ = u − u′ shows as in Proposition 2.8 that φu′′ ∈ ˙C∞(X)

when φ ∈ C∞(X) is supported sufficiently close to K, so u indeed has an asymptotic

expansion near K. �

3. Weak N-body asymptotics

We now briefly recall the setting of N -body scattering. Our basic space is R
n,

and we consider perturbations of the (standard positive) Laplacian ∆ on it. More

precisely, let Xi, i = 1, ..., M be linear subspaces, X i = X⊥
i , and denote the

corresponding orthogonal projections by πi and πi respectively. The interaction

potentials are then of the form (πi)∗Vi, i.e. they are functions on X i. We now define

two particularly nice class of interaction potentials. Let ni = dim X i, and consider

the stereographic compactification SPni
of Rni into S

ni

+ . Identifying X i with Rni

by a choice of a basis, we say that Vi is short-range if Vi ∈ SP∗
ni

ρ2
i C

∞(Sni

+ ), and Vi

is long-range if Vi ∈ SP∗
ni

ρiC
∞(Sni

+ ). Here ρi is a defining function of S
ni−1 = ∂S

ni

+ .

This definition is independent of the choice of basis, and it means simply that Vi is

a one-step polyhomogeneous (classical) symbol on X i of order −2 or −1 in the two

cases respectively. The perturbed Laplacian is

(3.1) HV = ∆ + V, V =
M∑

i=1

(πi)∗Vi.

We shall drop (πi)∗ from now on, and consider Vi as a function on Rn.

In fact, we proceed to compactify Rn into X = Sn
+ to arrive in the framework of

the previous section. We let X̄i = cl(SP(Xi)), Ci = S
n−1 ∩ X̄i where S

n−1 = ∂S
n
+.

The standard boundary defining function x of Sn
+ is x = (SP−1)∗|w|−1 near Sn−1;

w being the coordinates on Rn. Note that for short-range potentials

(3.2) (SP−1)∗Vi ∈ x2C∞(Sn
+ \ ∪iCi),

while for long-range ones

(3.3) (SP−1)∗Vi ∈ xC∞(Sn
+ \ ∪iCi).
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We now prove a simple consequence of the local result of Section 2 and of the

microlocal characterization of the resolvent by Gérard, Isozaki and Skibsted [1] and

obtain the asymptotic behavior of RV (λ)f away from the singular set, ∪iCi, where

f ∈ ˙C∞(Sn
+). First we introduce some notation if (at least some of) the Vi are

long-range, so Vi = xV ′
i on S

n
+ \ ∪iCi. Namely we let

(3.4) α = (2λ)−1
∑

i

V ′
i |Sn−1\∪iCi

∈ C∞(Sn−1 \ ∪iCi).

Then we have the following theorem:

Theorem 3.1. If λ ∈ R \ {0}, f ∈ ˙C∞(Sn
+) and the Vi are short-range then

(3.5) eiλ/xx−(n−1)/2RV (λ)f ∈ C∞(Sn
+ \ ∪iCi).

If the Vi are long-range, K as in (2.36), then

(3.6) eiλ/xxiα−(n−1)/2RV (λ)f ∈ AK
phg(S

n
+ \ ∪iCi).

Proof. It follows from [1] that

(3.7) WFsc(RV (λ)f) ∩ {(y, τ, µ) : τ < λ} = ∅.

In fact, following Isozaki [4], we let Rk
±(a) to be the set of C∞ functions p on

T ∗Rn = Rn
w × Rn

ξ satisfying

(3.8) |∂r
w∂s

ξp(w, ξ)| ≤ Cr,s〈w〉−r〈ξ〉−k

for 0 ≤ r ≤ k, 0 ≤ s ≤ k and on supp p

(3.9) inf
w,ξ

±
w · ξ

〈w〉
> a

with the + sign corresponding to Rk
+(a) and the − sign to Rk

−(a). Note that if

p ∈ C∞(Sn
+×Sn

+) has compact support in the ξ variable, then (3.8) is automatically

satisfied for all k. Introducing the usual coordinates on scT ∗Sn
+ near scT ∗

Sn−1S
n
+, we

have

(3.10) τ = −
w · ξ

|w|
.
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Thus, (3.9) states in this case that there exists ǫ > 0 such that ±τ < −a − ǫ on

supp p.

Now let

(3.11) p(x, y, τ, µ) = φ1(x)φ2(τ, µ)

where φ1 ∈ C∞
c (R) is identically 1 near 0, and it is supported sufficiently close to 0,

φ2 ∈ C∞
c (Rn) supported in τ < λ. Thus, p ∈ Rk

+(−λ). It is shown in [1], see also

[4, Theorem 1.2], that for all s > −1/2, t > 1 there exists k = k(s) such that

(3.12) PRV (λ) ∈ B(H0,s+t, H0,s)

for all P ∈ Rk
+(−λ). Here we adopted the notation Hk,l = Hk,l

sc (Sn
+); i.e. Hk,l is just

the (image under (SP−1)∗ of the) weighted Sobolev space 〈w〉−kH l(Rn). This allows

us to conclude that if P is the (Weyl) quantization of p then PRV (λ)f ∈ H0,s for all

s. Taking into account that P ∈ Ψ−∞,0
sc (Sn

+), it follows that PRV (λ)f ∈ ˙C∞(Sn
+).

Since p was an arbitrary symbol subject to the support condition in τ , (3.7) follows.

On the other hand, φ(∆ + V − λ2) ∈ Ψ2,0
sc (Sn

+) is elliptic in

{(y, τ, µ) : τ ≥ λ, y ∈ K} \ {(y, λ, 0) : y ∈ K}

where φ ∈ C∞(X) vanishes near ∪iCi, and is identically 1 on K, K ⊂ Sn
+ \ ∪iCi is

compact. Moreover,

(3.13) φ(∆ + V − λ2)RV (λ)f = φf ∈ ˙C∞(X),

so we conclude that

(3.14) WFsc(RV (λ)f) ∩ π−1(Sn−1 \ ∪iCi) ⊂ R+
λ .

Thus for short-range Vi we can apply Proposition 2.8 (and take into account the

remark following it), while for long-range Vi we use Proposition 2.10 to prove the

theorem. �
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4. The scattering matrix

Theorem 3.1 allows us to describe the open part of the N -cluster to N -cluster

scattering matrix in terms of the asymptotic behavior of certain generalized eigen-

functions. We restrict ourselves to short-range potentials to simplify the statements;

the long-range case is completely analogous.

Theorem 4.1. Let λ > 0, 0 < ǫ < λ, and suppose that k is sufficiently large. Then

for a0 ∈ C∞
c (Sn−1 \ ∪iCi) there exists a unique u ∈ H0,−1 such that

(4.1) (HV − λ2)u = 0, u = u+ + u−,

(4.2) v− = e−iλ/xx−(n−1)/2u− ∈ C∞(Sn
+), v−|Sn−1 = a0,

and P+u+ ∈ L2 for all P+ ∈ Rk
+(−ǫ). Moreover, we have

(4.3) u+ = e−iλ/xx(n−1)/2v+, v+ ∈ C∞(Sn
+ \ ∪iCi),

and there exists f ∈ ˙C∞(Sn
+) such that u− = RV (−λ)f , u+ = −RV (λ)f .

Proof. First we discuss uniqueness. So suppose that u and u′ satisfy the assump-

tions of the theorem. Then (HV − λ2)(u − u′) = 0, and

(4.4) u− − u′
− = eiλ/xx(n−1)/2(v− − v′−) ∈ L2

since v−|Sn−1 = v′−|Sn−1 . Thus, for sufficiently large k P+(u− − u′
−) ∈ L2, since

then P+ ∈ Rk
+(−ǫ) is bounded on L2. Therefore,

(4.5) P+(u − u′) = P+(u− − u′
−) + P+u+ − P+u′

+ ∈ L2.

Hence, by Isozaki’s uniqueness theorem [4, Theorem 1.3] u = u′ proving the unique-

ness claim.

Now given a0 ∈ C∞
c (Sn−1 \ ∪iCi) we can construct u− = eiλ/xx(n−1)/2v−, v− ∈

C∞(Sn
+), v−|Sn−1 = a0 with the property that (HV − λ2)u− ∈ ˙C∞(Sn

+) by an

iterative argument as in [7, Proposition 12] since that construction is local and a0

is supported away from ∪iCi, so near supp a0 V is smooth. Let f = (HV − λ2)u−,
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u+ = −RV (λ)f , and finally u = u− + u+. Then (HV − λ2)u = 0, and P+u+ ∈ L2

by the resolvent estimates of [1], see also [4, Theorem 1.2], proving the existence

of such generalized eigenfunctions. The asymptotic expansion of u+ now follows

from Theorem 3.1. Finally note that for P− ∈ Rk
−(ǫ), P−RV (−λ)f ∈ L2 by the

resolvent estimates, and

(4.6) (x2Dx + λ)u− ∈ L2,

so by Isozaki’s result [3, Lemma 1.4] P−u− ∈ L2. Thus,

(4.7) P−(u− − RV (−λ)f) ∈ L2, (HV − λ2)(u− − RV (−λ)f) = 0.

It follows from the uniqueness theorem of [4] that u− = RV (−λ)f , completing the

proof of the theorem. �

This theorem allows us to define the open part of the (absolute) scattering matrix

as

(4.8) SV (λ) : C∞
c (Sn−1 \ ∪iCi) → C∞(Sn−1 \ ∪iCi),

(4.9) SV (λ)(a0) = v+|Sn−1\∪iCi
.

The more customary relative scattering matrix can be obtained from this by the

antipodal reflection on Sn−1; see [7, 8].
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