Problem 1. By proposition 0.11 in the Inner product spaces handout, we know that $\|f - \phi\|$ is minimal if we take the generalized Fourier coefficients. Meaning, if we call $c_n(x) = \cos(nx)$ and $s_n(x) = \sin(nx)$:

$$
\begin{aligned}
 a_0 &= \langle \phi, c_0 \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} \phi(x)dx = \frac{\pi}{2}, \\
 a_1 &= \langle \phi, c_1 \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} \phi(x) \cos(x)dx = -\frac{4}{\pi}, \\
 a_2 &= \langle \phi, c_2 \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} \phi(x) \cos(2x)dx = 0, \\
 b_1 &= \langle \phi, s_1 \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} \phi(x) \sin(x)dx = 0, \\
 b_2 &= \langle \phi, s_2 \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} \phi(x) \sin(2x)dx = 0.
\end{aligned}
$$

And hence $f(x) = \frac{\pi}{2} - \frac{4}{\pi} \cos(x)$.

Remark. We knew a priori that the b_n coefficients were zeros since ϕ is even.

Problem 2.

(i) Assume A is symmetric positive. Let λ be an eigenvalue of A with associated (non-zero) eigenfunction v. Then we have that λ is real since

$$
\lambda \langle v, v \rangle = \langle \lambda v, v \rangle = \langle Av, v \rangle = \langle v, Av \rangle = \langle v, \lambda v \rangle = \bar{\lambda} \langle v, v \rangle,
$$

which implies that $\bar{\lambda} = \lambda$ since $\langle v, v \rangle \neq 0$.

Now we have

$$
\lambda \langle v, v \rangle = \langle \lambda v, v \rangle = \langle Av, v \rangle \geq 0,
$$

which gives that $\lambda \geq 0$ since $\langle v, v \rangle > 0$.

1
(ii) Let \(f, g \in D \). Let’s show that \(A \) is symmetric. By integration by part, and using the fact that \(f(0) = f'(l) = 0 \) and \(g(0) = g'(l) = 0 \), we get that
\[
\langle Af, g \rangle = \int_0^l (-f''(x)) g(x) \, dx \\
= (-f'(x)) g(x) \bigg|_{x=0}^l - \int_0^l (-f'(x)) g''(x) \, dx \\
= \int_0^l f'(x) g'(x) \, dx \\
= f(x) g(x) \bigg|_{x=0}^l - \int_0^l f(x) g''(x) \, dx \\
= \int_0^l f'(x) g(x) \, dx
\]
(4)

Now let’s prove that \(A \) is positive. We get that easily from the previous third equality, that is,
\[
\langle Af, f \rangle = \int_0^l f'(x) g(x) \, dx = \int_0^l |f'(x)|^2 \, dx \geq 0.
\]
(5)

(iii) We proceed in the same fashion as before. Let \(f, g \in D \). Let’s show that \(A \) is symmetric. By integration by part, and using the fact that \(f(0) = f'(0) = f'(l) = 0 \) and \(g(0) = g'(0) = g(l) = g'(l) = 0 \), we get that
\[
\langle Af, g \rangle = \int_0^l f^{(4)}(x) g(x) \, dx \\
= f'''(x) g(x) \bigg|_{x=0}^l - \int_0^l f'''(x) g''(x) \, dx \\
= -\int_0^l f'''(x) g'(x) \, dx \\
= -f''(x) g'(x) \bigg|_{x=0}^l + \int_0^l f''(x) g'''(x) \, dx \\
= \int_0^l f''(x) g''(x) \, dx \\
= f'(x) g''(x) \bigg|_{x=0}^l - \int_0^l f'(x) g'''(x) \, dx \\
= -\int_0^l f'(x) g''(x) \, dx \\
= -f(x) g'''(x) \bigg|_{x=0}^l + \int_0^l f(x) g''''(x) \, dx \\
= \int_0^l f(x) g''''(x) \, dx
\]
(6)
\[= \langle f, Ag \rangle. \]
Now let’s prove that A is positive. We get that easily from the fifth equality above, that is,

$$
\langle Af, f \rangle = \int_0^1 f''(x) \overline{f''(x)} \, dx = \int_0^1 |f''(x)|^2 \, dx \geq 0. \quad (7)
$$

Problem 3.

(i) Here are sketched some of the f_n’s (say f_2, f_3 and f_5):

![Diagram with sketches of f_2, f_3, and f_5]

(ii) We need to show that for a fixed $x_0 \in [0, 1]$, we have $f_n(x_0) \xrightarrow{n \to +\infty} 0$. If $x_0 = 0$, then $f_n(x_0) = 0$ for each n. If $0 < x_0 \leq 1$, there exists $n_0 \in \mathbb{N}$ such that $\frac{1}{n_0} < x_0$, and for all $n \geq n_0$, we get $f_n(x_0) = 0$ by definition of f_n. Therefore we have the result.

(iii) The convergence to zero is uniform if $\sup_{x \in [0, 1]} |f_n(x)| \xrightarrow{n \to +\infty} 0$. However, we see that

$$
\sup_{x \in [0, 1]} |f_n(x)| = \gamma_n \xrightarrow{n \to +\infty} +\infty, \quad (8)
$$

which indeed does not converge to 0 as $n \to +\infty$.

(iv) For $\gamma_n = n^{1/4}$, we have

$$
\|f_n\|_{L^2}^2 = \int_0^1 f_n(x)^2 \, dx = 2(2n\gamma_n)^2 \frac{(2n)^{-3}}{3} = \frac{\gamma_n^2}{3n} = \frac{1}{3\sqrt{n}} \xrightarrow{n \to +\infty} 0. \quad (9)
$$

Therefore we have the L^2 convergence.
(v) For $\gamma_n = n$, we have
\[
\|f_n\|_{L^2}^2 = \frac{\gamma_n^2}{3n} = \frac{n^2}{3n} \xrightarrow{n \to \infty} +\infty.
\]
Therefore f_n does not converge in L^2.

Problem 4.

(i) Let the Fourier sine series of ϕ be $\sum_{n=1}^{+\infty} A_n \sin\left(\frac{n\pi x}{l}\right)$. We can compute the coefficients as:
\[
A_n = \frac{2}{l} \int_0^l \phi(x) \sin\left(\frac{n\pi x}{l}\right) \, dx = \frac{4(1 - (-1)^n)}{l} \left(\frac{l}{n\pi}\right)^3.
\]
Now we know from the lecture notes about convergence of Fourier series that the sine Fourier series converges to an odd $2l$-periodic extension function of ϕ.

(ii) Similarly, let the Fourier cosine series of ϕ be $\sum_{n=1}^{+\infty} B_n \cos\left(\frac{n\pi x}{l}\right)$. We can compute the coefficients as:
\[
B_0 = \frac{1}{l} \int_0^l \phi(x) \, dx = \frac{l^3}{6}, B_n = \frac{2}{l} \int_0^l \phi(x) \cos\left(\frac{n\pi x}{l}\right) \, dx = \frac{(1 + (-1)^n)}{n^2\pi^2} \frac{l^3}{n^2\pi^2}, n \geq 1.
\]
Now we know from the lecture notes about convergence of Fourier series that the sine Fourier series converges to an even $2l$-periodic extension function of ϕ.

(iii) We can see that A_n decays as $\frac{1}{n^3}$ while A_n decays as $\frac{1}{n^2}$, meaning that the former one is faster. The reason is that the odd extension of ϕ is continuously differentiable while the even one is merely continuous. And we know that the smoother the function is, the faster the Fourier coefficients decay.

Problem 5. For Fourier sine series, we first make an odd extension of ϕ. Now our ϕ is defined on $[-l, l]$.

4
(i) Fourier sine series converge pointwisely to ϕ in $(-l, l)$ and to $\frac{\phi(l) + \phi(-l)}{2} = 0$ at $x = \pm l$. However, we have $\phi(-l) = -l \neq l = \phi(l)$. Therefore the convergence is not uniform (otherwise the limit function should be continuous).

Now, we obviously have $\int_{-l}^{l} \phi(x)^2 dx < +\infty$. This implies that $\phi \in L^2([-l, l])$. Therefore we know from the course that the Fourier sine series converge to ϕ in L^2.

(ii) Using similar arguments, Fourier sine series converge pointwisely to ϕ in $(-l, l)$ and to $\frac{\phi(l) + \phi(-l)}{2} = 0$ at $x = \pm l$.

Moreover, here we have $\phi(l) = \phi(-l) = 0$ and $\phi'(l) = \phi'(-l) = 0$. Therefore the extension of ϕ is C^2, and the Fourier sine series converges uniformly to ϕ (lecture notes).

What’s more, we obviously have $\int_{-l}^{l} \phi(x)^2 dx < +\infty$. This implies that $\phi \in L^2([-l, l])$. Therefore we know from the course that the Fourier sine series converge to ϕ in L^2. Or we could have simply said that uniform convergence implies convergence in L^2.

Problem 6.

(i) There is no question. We know from the course that we have (at least in the L^2 sense) the expansions

\[
\begin{align*}
\frac{u(x, t)}{} &= \sum_{n=1}^{+\infty} u_n(t) \sin \left(\frac{n\pi x}{l}\right), \\
\frac{f(x, t)}{} &= \sum_{n=1}^{+\infty} f_n(t) \sin \left(\frac{n\pi x}{l}\right), \\
\frac{\phi(x)}{} &= \sum_{n=1}^{+\infty} \phi_n \sin \left(\frac{n\pi x}{l}\right), \\
\frac{\psi(x, t)}{} &= \sum_{n=1}^{+\infty} \psi_n \sin \left(\frac{n\pi x}{l}\right).
\end{align*}
\]
(ii) If we assume that we can differentiate term by term the Fourier sine series of u, we get:

$$u_{tt}(x,t) = \sum_{n=1}^{+\infty} u''_{n}(t) \sin \left(\frac{n\pi x}{l} \right),$$

$$u_{xx}(x,t) = \sum_{n=1}^{+\infty} \left(-\frac{n^2\pi^2}{l^2} u_{n}(t) \right) \sin \left(\frac{n\pi x}{l} \right).$$

(14)

(iii) By using orthogonality (or identifying coefficients term by term), we get the ODE:

$$\begin{cases}
 u''_{n}(t) + \left(\frac{n^2 c^2 \pi^2}{l^2} - u_{n}(t) \right) u_{n}(t) = f_{n}(t), \\
 u_{n}(0) = \phi_{n}, \quad u'_{n}(0) = \psi_{n}.
\end{cases}$$

(15)

Now using Duhamel’s principle, (or the method of variation of the parameters), we get the solution

$$u_{n}(t) = \psi_{n} \frac{l}{cn\pi} \sin \left(\frac{cn\pi t}{l} \right) + \phi_{n} \cos \left(\frac{cn\pi t}{l} \right) + \int_{0}^{t} \frac{1}{cn\pi} \sin \left(\frac{cn\pi (t-s)}{l} \right) f_{n}(s) ds.$$

(16)

(iv) We have

$$w(x,t) = \sum_{n=1}^{+\infty} w_{n}(t) \sin \left(\frac{n\pi x}{l} \right),$$

(17)

and by integration by parts, we get that

$$w_{n}(t) = \frac{2}{l} \int_{0}^{l} u_{x}(x,t) \sin \left(\frac{n\pi x}{l} \right) dx$$

$$= -\frac{2n\pi}{l^2} \int_{0}^{l} u_{x}(x,t) \cos \left(\frac{n\pi x}{l} \right) dx$$

$$= -\frac{2n\pi}{l^2} \left(u_{x}(x,t) \cos \left(\frac{n\pi x}{l} \right) \bigg|_{x=0}^{x=l} + \frac{n\pi}{l} \int_{0}^{l} u(x,t) \sin \left(\frac{n\pi x}{l} \right) dx \right)$$

$$= -\frac{2n\pi}{l^2} \left((-1)^n j(t) - h(t) \right) - \frac{n^2\pi^2}{l^2} u_{n}(t).$$

(18)
In the same fashion as previously, identifying the coefficients in the PDE, we get:

\[u''_n(t) = c^2 w_n(t) + f_n(t) = f_n(t) - \frac{2nc^2 \pi}{l^2} ((-1)^n j(t) - h(t)) - \frac{n^2 c^2 \pi^2}{l^2} u_n(t). \] \hspace{1cm} (19)

Therefore, the ODE to solve is now:

\[
\begin{align*}
 u''_n(t) + \left(\frac{n^2 c^2 \pi^2}{l^2} - u_n(t) \right) u_n(t) &= f_n(t) - \frac{2nc^2 \pi}{l^2} ((-1)^n j(t) - h(t)) - \frac{n^2 c^2 \pi^2}{l^2} u_n(t), \\
 u_n(0) &= \phi_n, \ u'_n(0) = \psi_n.
\end{align*}
\] \hspace{1cm} (20)

Calling \(g_n(t) = f_n(t) - \frac{2nc^2 \pi}{l^2} ((-1)^n j(t) - h(t)) - \frac{n^2 c^2 \pi^2}{l^2} u_n(t) \), and using Duhamel’s principle, we finally get the solution

\[u_n(t) = \psi_n \frac{l}{c n \pi} \sin \left(\frac{c n \pi t}{l} \right) + \phi_n \cos \left(\frac{c n \pi t}{l} \right) + \int_0^t \frac{l}{c n \pi} \sin \left(\frac{c n \pi (t-s)}{l} \right) g_n(s) ds. \] \hspace{1cm} (21)

Problem 7.

(i) The eigenvalue/eigenfunction problem we have to solve reduces to:

\[X''(x) = -\lambda X(x), \ X(l) = X(-l), \ X'(l) = X'(-l). \] \hspace{1cm} (22)

For \(\lambda = 0 \), we have \(\lambda_0 = 0 \), and \(X_0(x) = 1 \).

For \(\lambda > 0 \), we have, after solving the ODE, \(\lambda_n = \left(\frac{n \pi}{l} \right)^2 \), and

\[X_n(x) = A_n \cos \left(\frac{n \pi x}{l} \right) + B_n \sin \left(\frac{n \pi x}{l} \right), \ n \geq 1. \] \hspace{1cm} (23)

For \(\lambda < 0 \), we get \(X(x) = 0 \). Therefore there is no strictly negative eigenvalue.

Then we can solve for \(T_n \) for each value of \(\lambda_n \). We have the ODE

\[T''_n(t) = -c^2 \lambda_n T_n(t), \] \hspace{1cm} (24)

which gives the solutions:

\[T_0(t) = C_0 + D_0 t, \]

\[T_n(t) = C_n \cos \left(\frac{n c \pi t}{l} \right) + D_n \sin \left(\frac{n c \pi t}{l} \right), \ n \geq 1. \] \hspace{1cm} (25)

Therefore the general separated solution is which gives the solutions:

\[
\begin{align*}
 u(x, t) &= A_0 + D_0 t + \sum_{n=1}^{+\infty} A_n \cos \left(\frac{n c \pi t}{l} \right) \cos \left(\frac{n \pi x}{l} \right) \\
 &\quad + \sum_{n=1}^{+\infty} B_n \cos \left(\frac{n c \pi t}{l} \right) \sin \left(\frac{n \pi x}{l} \right) + \sum_{n=1}^{+\infty} C_n \sin \left(\frac{n c \pi t}{l} \right) \cos \left(\frac{n \pi x}{l} \right) + \sum_{n=1}^{+\infty} D_n \sin \left(\frac{n c \pi t}{l} \right) \sin \left(\frac{n \pi x}{l} \right).
\end{align*}
\] \hspace{1cm} (26)
(with arbitrary A_n, B_n, C_n and D_n.)

(ii) Initial condition $u(x,0) = 0$ gives $A_n = B_n = 0$ for all $n \in \mathbb{N}$.
Initial condition $u_t(x,0) = \cos \left(\frac{2\pi x}{l} \right) - \sin \left(\frac{\pi x}{l} \right)$ implies that
$D_0 = 0$, $D_1 = -\frac{l}{c\pi}$, $C_2 = \frac{1}{2c\pi}$ and $C_n = D_n = 0$ for the other n's.
Hence the solution is
$$u(x,t) = \frac{l}{2c\pi} \sin \left(\frac{2c\pi t}{l} \right) \cos \left(\frac{2\pi x}{l} \right) - \frac{l}{c\pi} \sin \left(\frac{ct}{l} \right) \sin \left(\frac{\pi x}{l} \right). \quad (27)$$

(iii) Consider \tilde{u}, the $2l$-periodic extension of u. Then \tilde{u} verifies the following PDE:
$$\tilde{u}_{tt} - c^2 \tilde{u}_{xx} = 0, \quad \tilde{u}(x,0) = 0, \quad \tilde{u}_t(x,0) = \cos \left(\frac{2\pi x}{l} \right) - \sin \left(\frac{\pi x}{l} \right). \quad (28)$$
By d’Alembert’s formula, we know that
$$\tilde{u}(x,t) = \frac{l}{2c\pi} \int_{x-ct}^{x+ct} \left(\cos \left(\frac{2\pi y}{l} \right) - \sin \left(\frac{\pi y}{l} \right) \right) dy$$
$$= \frac{l}{4c\pi} \left(\sin \left(\frac{2\pi y}{l} \right) \bigg|_{x-ct}^{x+ct} \right) + \frac{l}{2c\pi} \cos \left(\frac{\pi y}{l} \right) \bigg|_{x-ct}^{x+ct}$$
$$= \frac{l}{4c\pi} \left(\sin \left(\frac{2\pi (x+ct)}{l} \right) - \sin \left(\frac{2\pi (x-ct)}{l} \right) \right) + \frac{l}{2c\pi} \left(\cos \left(\frac{\pi (x+ct)}{l} \right) - \cos \left(\frac{\pi (x-ct)}{l} \right) \right)$$
$$= \frac{l}{2c\pi} \sin \left(\frac{2c\pi t}{l} \right) \cos \left(\frac{2\pi x}{l} \right) - \frac{l}{c\pi} \sin \left(\frac{ct}{l} \right) \sin \left(\frac{\pi x}{l} \right). \quad (29)$$

(iv) u will have singularities on lines $x \pm ct = x_0 + 2kl$, where $k \in \mathbb{Z}$.
Consider the strip to be a circle. In other words, the head and the tail are connected. The singularity at the beginning will propagate at speed c in both directions. At time t, it has run a distance of ct, so it has reached $x_0 \pm ct$. u has singularities at $(x_0 \pm ct \mod 2l, t)$, where $y \mod 2l$ means the unique point $z \in [-l,l)$ such that $y - z$ is a multiple of $2l$. In other words, singularities will keep traveling around the ring at speed c. And since the ring has perimeter $2l$, after traveling for time $\frac{2l}{c}$, or any integer multiple of this, they are back to where they started. From the perspective of the method of images (going to the reals, i.e. the universal cover), one has a singularity in the initial data at x_0 plus integer multiples of $2l$; these propagate in the standard manner for the wave equation on the real line (at speed c); if one takes $[-l,l]$ as the interval representing the circle, when one of these is in this interval (at some time), it gives rise to a singularity you observe.
Here is a sketch of what is going on:

Figure 1: Left: circular representation (perimeter is $2l$). Right: representation on the real line ($2l$-periodic function). $m \in \mathbb{Z}$, $k \in \mathbb{Z}$, $-l \leq x_0 \leq l$