Problem 1 (R-S, I.3) Let $\epsilon > 0$. x_n is a Cauchy sequence, so there is some k_1 such that for all $m, n > k_1$, $\rho(x_m, x_n) < \frac{\epsilon}{2}$. $x_n(i) \to x_\infty$, so there is some k_2 such that for all $i \geq k_2$, $\rho(x_{n(i)}, x_\infty) < \frac{\epsilon}{2}$.

Let $k = \max(k_1, k_2)$. Then, because $n(i) \geq i$ for all i, we have that $\rho(x_{n(i)}, x_\infty) < \frac{\epsilon}{2}$.

Now, if we have any $n > k$, then

$$\rho(x_n, x_\infty) \leq \rho(x_n, x_{n(k)}) + \rho(x_{n(k)}, x_\infty) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Problem 2 (R-S, I.4) Suppose not, so then there is some $\epsilon > 0$ such that for all k, there is an $n > k$ with $\rho(x_n, x_\infty) \geq \epsilon$.

We may thus inductively choose a subsequence $x_{n(i)}$ such that $\rho(x_{n(i)}, x_\infty) \geq \epsilon$ for all i. This sequence is bounded away from x_∞, so it cannot have a subsequence converging to x_∞, a contradiction. Thus $x_n \to x_\infty$.

Problem 3 (R-S, I.5) We consider Cauchy sequences in M. If x_n and y_n are two Cauchy sequences we say that x_n is equivalent to y_n ($x_n \sim y_n$) if $\lim_{n \to \infty} d(x_n, y_n) = 0$. We claim this is an equivalence relation. $d(x, x) = 0$ for all x, and d is symmetric, so this relation is reflexive and symmetric. Moreover, if $(x_n) \sim (y_n)$ and $(y_n) \sim (z_n)$, then the triangle inequality gives

$$\lim_{n \to \infty} d(x_n, z_n) \leq \lim_{n \to \infty} (d(y_n, z_n) + d(x_n, y_n)) = 0,$$

so the relation is transitive and thus an equivalence relation.

We now define \tilde{M} to be the set of equivalence classes of Cauchy sequences in M. If x_n and y_n are two such sequences, then

$$|d(x_n, y_n) - d(x_m, y_m)| \leq |d(x_n, y_n) - d(x_m, y_n)| + |d(x_m, y_n) - d(x_m, y_m)| \leq |d(x_n, x_m)| + |d(y_n, y_m)|,$$

so $d(x_n, y_n)$ is a Cauchy sequence, so it converges to a limit in \mathbb{R}. We define the distance between $[x_n]$ and $[y_n]$ (the equivalence classes represented by x_n and y_n, respectively) in \tilde{M}
to be this limit. We still have to show that $\tilde{d}([x_n], [y_n])$ is well-defined. If x'_n and y'_n are are two other representatives for $[x_n]$ and $[y_n]$, then

$$\left| \lim_{n \to \infty} (d(x'_n, y'_n) - d(x_n, y_n)) \right| \leq \lim_{n \to \infty} (|d(x'_n, y'_n) - d(x'_n, y_n)| + |d(x'_n, y_n) - d(x_n, y_n)|) \leq \lim_{n \to \infty} (d(y'_n, y_n) + d(x'_n, x_n)) = 0,$$

so the limit is well-defined.

Now we claim that \tilde{d} is a metric: \tilde{d} is clearly positive, and if $\tilde{d}([x_n], [y_n]) = 0$ then $[x_n] = [y_n]$ by the definition of our equivalence relation, so \tilde{d} is positive definite. \tilde{d} is symmetric because d is symmetric. \tilde{d} obeys the triangle inequality because d does:

$$\tilde{d}([x_n], [y_n]) = \lim_{n \to \infty} d(x_n, y_n) \leq \lim_{n \to \infty} d(x_n, z_n) + d(z_n, y_n) = \tilde{d}([x_n], [z_n]) + \tilde{d}([z_n], [y_n]),$$

and so \tilde{d} is a metric.

Now we let $\iota : M \to \tilde{M}$ be given by $x \mapsto [x]$, where $[x]$ is represented by the constant sequence $x_n = x$. $\tilde{d}(\iota(x), \iota(y)) = \lim d(x, y) = d(x, y)$, so ι is an isometry.

We now claim that $\iota(M)$ is dense in \tilde{M}. Let $[x_n] \in \tilde{M}$ and let $\epsilon > 0$. x_n is Cauchy, so there is some N such that if $m, n \geq N$ then $d(x_n, x_m) < \epsilon$, so then if we let $x = x_N$, we have that $\tilde{d}(\iota(x), [x_n]) = \lim d(x_N, x_n) < \epsilon$, so $\iota(M)$ is dense in \tilde{M}.

If x_n is a Cauchy sequence in M, then $\iota(x_n) \to [x_n]$ in M:

$$\tilde{d}(\iota(x_N), [x_n]) = \lim_{n \to \infty} d(x_N, x_n),$$

which tends to 0 as $N \to \infty$ because x_n is Cauchy. $\iota(M)$ is dense in \tilde{M}, so if $[x_n]^k$ is Cauchy in \tilde{M}, then we claim there is a Cauchy sequence $\iota(y^k)$ in $\iota(M)$ such that $\tilde{d}([x_n]^k, \iota(y^k)) \to 0$. Indeed, by density, for each k, there is an element $y^k \in M$ such that $\tilde{d}([x_n]^k, \iota(y^k)) < \frac{1}{k}$. $\iota(y^k)$ is Cauchy because

$$\tilde{d}(\iota(y^k), \iota(y^j)) \leq \tilde{d}(\iota(y^k), [x_n]^k) + \tilde{d}([x_n]^k, [x_n]^j) + \tilde{d}([x_n]^j, \iota(y^j)).$$

We thus know that $\iota(y^k)$ converges in \tilde{M} and so $[x_n]^k$ also converges in \tilde{M} by our condition on $\iota(y^k)$.

We must finally show that \tilde{M} is essentially unique. For $x \in M$, we let $j(\iota(x)) = \iota'(x)$ in \tilde{M}'. $\tilde{d}'(j(\iota(x)), j(\iota(y))) = d(x, y) = \tilde{d}(\iota(x), \iota(y))$, so j is an isometry on $\iota(M)$. If $x \in \tilde{M}$, there is a sequence x_n in $\iota(M)$ such that $x_n \to x$ by the density of $\iota(M)$. We then have that

$$\tilde{d}'(j(x_n), j(x_m)) = \tilde{d}(x_n, x_m) \to 0,$$

so $j(x_n)$ is a Cauchy sequence in \tilde{M}', and so has a limit which we’ll call $j(x)$. $j(x)$ is well-defined because if $x_n, y_n \in \iota(M)$ both converge to x, then $\tilde{d}'(j(x_n), j(y_n)) = d(x_n, y_n) \to 0$. j is an isometry because we have that

$$\tilde{d}(j(x), j(y)) = \lim \tilde{d}'(j(x_n), j(y_n)) = \lim \tilde{d}(x_n, y_n) = \tilde{d}(x, y).$$
We now must only show that \(j \) is invertible. \(j \) is injective (and continuous) because it is an isometry. If \(j \) is also surjective then its inverse will be continuous because its inverse will also be an isometry. Let \(z \in M' \). \(\iota'(M) \) is dense in \(M' \), so we can take \(z_n \in \iota'(M) \) with \(z_n \to z \). \(z_n \in \iota'(M) \), so \(z_n = \iota'(x_n) = j(\iota(x_n)) = j(y_n) \) for \(y_n \in \iota(M) \). \(z_n \to z \), so \(z_n \) is Cauchy, so \(y_n \) is also Cauchy because \(j \) is an isometry, and so \(y_n \to y \in M \), and

\[
\bar{d}(j(y), z) = \lim_{n} \bar{d}(j(y_n), z) = \lim_{n,m} \bar{d}(j(y_n), j(y_m)) = 0,
\]

so \(j \) is surjective and hence invertible.

Problem 4 (R-S, I.7)

(4) implies (3): If \(T \) is bounded, then \(||Tx|| \leq C ||x|| \) for all \(x \), so \(||Tx - Ty|| \leq C ||x - y|| \), so \(T \) is uniformly continuous.

(3) implies (2): This is true by definition.

(2) implies (1): Also true by definition.

(1) implies (4): Now suppose that \(T \) is continuous at \(x_0 \), so for all \(\epsilon > 0 \), there is some \(\delta > 0 \) such that \(||x - x_0|| < \delta \) implies \(||Tx - Tx_0|| < \epsilon \). Then if \(||y|| < \delta \) we have \(||Ty|| = ||T(y + x_0) - Tx_0|| < \epsilon \), so we may assume \(x_0 = 0 \).

If we let \(\epsilon = 1 \), we have that \(||y|| < \delta \) implies \(||Ty|| < 1 \). So, if we take an arbitrary \(x \neq 0 \) (\(T \) is linear so \(T(0) = 0 \)) and we consider \(y = \frac{\delta}{2||x||}x \), so \(||y|| = \delta/2 < \delta \), so \(||Ty|| < 1 \). So, \(||Tx|| = \frac{2||x||}{\delta}||Ty|| \leq \frac{2}{\delta} ||x|| \), so \(T \) is bounded.

Problem 5 (R-S, I.32) \([0,1] \times [0,1] \) is compact, so \(F \) is uniformly continuous, so for all \(\epsilon > 0 \) there is some \(\delta > 0 \) such that if \(|x_1 - x_2| + |y_1 - y_2| < \delta \) then \(|F(x_1, y_1) - F(x_2, y_2)| < \epsilon \).

Then if \(\epsilon > 0 \), take \(\delta > 0 \) as above, and if \(|x_1 - x_2| < \delta \),

\[
|F(x_1) - F(x_2)| = \left| \int_0^1 (F(x_1, y) - F(x_2, y)) f(y) \, dy \right| \leq \int_0^1 |F(x_1, y) - F(x_2, y)| f(y) \, dy \leq \int_0^1 \epsilon \, dy = \epsilon,
\]

so the family is equicontinuous.

Arzela-Ascoli (since \(||f_n|| \leq 1 \) gives the uniform bound) then gives the convergent subsequence.

Problem 6 (R-S, II.1)

(1) We have that

\[
|(x_n, y_n) - (x_m, y_m)| \leq |(x_n - x_m, y_n)| + |(x_m, y_n - y_m)| \leq ||x_n - x_m|| ||y_n|| + ||x_m|| ||y_n - y_m|| \leq \epsilon (||y|| + 1) + \epsilon (||x|| + 1)
\]

3
for large enough n, m, so (x_n, y_n) is Cauchy and must converge. This is well defined: Suppose $x'_n \to x$ and $y'_n \to y$, then

$$|(x_n, y_n) - (x'_n, y'_n)| \leq |(x_n - x'_n, y_n)| + |(x'_n, y_n - y'_n)| \to 0.$$

This is the right norm, too:

$$||x||^2 = \lim ||x_n||^2 = \lim (x_n, x_n) = (x, x).$$

We finally check that this satisfies the correct properties. (\cdot, \cdot) is bilinear (or sesqui-linear if we’re working over \mathbb{C}) because limits are linear and the inner product is. It is symmetric (or conjugate-symmetric) and positive for the same reason. $(x, x) = 0$ if and only if $(x_n, x_n) \to 0$, so $x_n \to 0$, so $x = 0$, so it is positive-definite. Thus (\cdot, \cdot) extends to \bar{V}.

(2) For each $x \in V$, (\cdot, \cdot) is a bounded linear functional. \mathbb{C} is complete, so we may extend it to an element f_x of \bar{V}^* by the BLT theorem, and f_x is bounded by $||x||$. We now consider the map $V \to \bar{V}^*$ given by $x \mapsto \bar{f}_x$ (here the bar denotes complex conjugate). In order to use the BLT theorem again, we need to show that this map is linear. Suppose $\alpha \in \mathbb{C}, x, y, z \in V$. $\bar{f}_{\alpha x}(y) = (\alpha x, y) = \alpha (x, y) = \alpha \bar{f}_x(y)$, so $\bar{f}_{\alpha x}$ and \bar{f}_x agree on V. Similarly, \bar{f}_{x+z} and $\bar{f}_x + \bar{f}_z$ agree on V. V is dense in its completion \bar{V}, and these functionals are all continuous, so they must agree on \bar{V}. Thus $x \mapsto \bar{f}_x$ is linear on V.

We thus know that $x \mapsto f_x$ is a linear transformation $V \to \bar{V}^*$ with bound $||f_x|| \leq ||x||$, so we may apply the BLT theorem again to extend it to $\bar{V} \to \bar{V}^*$.

This gives us $(x, y) = \bar{f}_x(y)$ and we must only check that it satisfies the correct properties. $f_x(y)$ is linear in y, so this is conjugate-linear in y; we just showed that \bar{f}_x is linear in x. The same argument with the limits from part (1) gives the conjugate symmetry of (\cdot, \cdot) because f_x and $x \mapsto f_x$ are both continuous, and for $x, y \in V$, $f_x(y) = \bar{f}_y(x)$.

Finally, positive definiteness also follows from a similar argument with the limits.

Problem 7 (R-S, II.6) If $x, y \in \mathcal{M}^\perp$, $\alpha \in \mathbb{C}$, then for all $z \in M$, $(x, z) = (y, z) = 0$, so $(\alpha x, z) = (x + y, z) = 0$, so $\alpha x, x + y \in \mathcal{M}^\perp$.

If $x_n \to x, x_n \in \mathcal{M}^\perp$, then for all $z \in \mathcal{M}$, $(x_n, z) = 0$. $(x_n, z) \to (x, z)$, so $(x, z) = 0$ and $x \in \mathcal{M}^\perp$, so \mathcal{M}^\perp is a closed linear subspace of \mathcal{H}.

Now, if $x_n \in \mathcal{M}, x_n \to x \in \mathcal{M}$, then if $z \in \mathcal{M}^\perp, (x_n, z) = 0$, so $(x, z) = 0$, so $x \in (\mathcal{M}^\perp)^\perp$, so we get one inclusion.

We also have that $\mathcal{H} = \mathcal{M} \oplus \mathcal{M}^\perp = \bar{\mathcal{M}} \oplus \mathcal{M}^\perp$ and that $\mathcal{H} = \mathcal{M}^\perp \oplus \mathcal{M}^{\perp \perp}$. So, let $y \in \mathcal{M}^{\perp \perp}$. We may write y uniquely as $y = z + w$ with $z \in \mathcal{M}, w \in \mathcal{M}^\perp$. The above inclusion tells us that $z \in \mathcal{M}^\perp$. We know that we may write y uniquely as a sum of an element of $\mathcal{M}^{\perp \perp}$ and one of \mathcal{M}^\perp. One such expression is $y = y + 0$, so the uniqueness tells us that $z = y$ and $w = 0$. $z \in \mathcal{M}$, so this gives us the other inclusion.
Problem 8 (R-S, III.4) Let $||·||_0$ be the Euclidean norm (with respect to a basis e_1, \ldots, e_n) and let $||·||$ be any other norm on \mathbb{R}^n.

We claim that $x \mapsto ||x||$ is continuous with respect to the Euclidean norm. Write $x = c_1 e_1 + \ldots + c_n e_n$. Then by the triangle inequality,

$$||x|| \leq |c_1|||e_1|| + \ldots + |c_n|||e_n|| \leq (n \max ||e_i||) \max |c_i| \leq C ||x||_0,$$

where $C = n \max ||e_i||$, so if $||x - y||_0 \leq \frac{\epsilon}{C}$, then $||x - y|| \leq \epsilon$, so the map is continuous.

Now consider the region $K = \{ x : ||x||_0 = 1 \}$. This is just the unit sphere in \mathbb{R}^n with the Euclidean norm, which is compact. $x \mapsto ||x||$ is continuous, so it attains a minimum m and maximum M on K. Note that $m > 0$ because $0 \notin K$. Thus, for $x \in K$, $m \leq ||x|| \leq M$. Now, for $x \in \mathbb{R}^n$, $x \neq 0$, $\frac{x}{||x||_0} \in K$, so

$$m \leq \frac{||x||}{||x||_0} \leq M,$$

i.e. $m ||x||_0 \leq ||x|| \leq M ||x||_0$,

so the two norms are equivalent.

Problem 9 (R-S, II.9) f is a bounded linear functional on \mathcal{M}, so it extends to $\overline{\mathcal{M}}$ by the BLT theorem. The Riesz lemma then tells us that $f(x) = (x, z)$ for a unique $z \in \overline{\mathcal{M}}$. $\overline{\mathcal{M}} \subset \mathcal{H}$, so this extends to $\overline{f}(x) = (x, z)$ for all $x \in \mathcal{H}$. Now uniqueness: If \overline{f}' is another such extension, then $\overline{f}'(x) = (x, z + y)$ for some $y \in \mathcal{H}$. For $x \in \overline{\mathcal{M}}$, $\overline{f}'(x) = (x, z)$, so $(x, y) = 0$ and $y \in \mathcal{M}^\perp$, so the bound for \overline{f}' is $\sqrt{||z||^2 + ||y||^2} > ||z|| = C$ unless $y = 0$.

Problem 10 (R-S, II.5) Write $x = \sum_{n=1}^{N}(x_n, x)x_n + z$, and observe that for $n \leq N$,

$$(x_n, z) = (x_n, x) - \sum_{k=1}^{N}(x_k, x)(x_n, x_k) = (x_n, x) - (x_n, x) = 0,$$

so $z \perp x_n$ for all such n. Then we write $x - \sum_{n=1}^{N}c_n x_n = \sum_{n=1}^{N}(x_n, x) - c_n)x_n + z$, where $z \perp \sum_{n=1}^{N}(x_n, x) - c_n)x_n$, so

$$||x - \sum_{n=1}^{N}c_n x_n||^2 = ||z||^2 + \left|\sum_{n=1}^{N}(x_n, x) - c_n)x_n\right|^2 =

= ||z||^2 + \sum_{n=1}^{N}||(x_n, x) - c_n||^2,$$

which attains its minimum if $c_n = (x_n, x)$ for all n.

\[5\]