Problem 1. Suppose V is a finite dimensional vector space over $\mathbb{F} = \mathbb{R}$ or $\mathbb{F} = \mathbb{C}$. Its dual V^* is the vector space $\mathcal{L}(V, \mathbb{F})$ of linear maps from V to \mathbb{F}. The elements of V^* are called linear functionals on V.

(1) Show that V^* is finite dimensional, $\dim V^* = \dim V$, and in fact if e_1, \ldots, e_n is a basis of V then the linear functionals f_1, \ldots, f_n defined by

$$f_j(e_k) = \delta_{jk} = \begin{cases} 1, & j = k; \\ 0, & j \neq k, \end{cases}$$

and extended to V by linearity:

$$f_j\left(\sum_k a_k e_k\right) = \sum_k a_k f_j(e_k) = a_j,$$

are a basis of V^*. (Hint: Suppose that $f = \sum_j b_j f_j$ and find the b_j's. Now just define the b_j by the resulting formula, and show that they work.) $\{f_1, \ldots, f_n\}$ is called the basis dual to $\{e_1, \ldots, e_n\}$.

(2) If V is real (i.e. $\mathbb{F} = \mathbb{R}$) and has an inner product, there is a natural map $\iota \in \mathcal{L}(V, V^*)$, namely $\iota(v)(w) = (v, w)$, where $(.,.)$ on the right hand side is the inner product. (There's an analogous map if $\mathbb{F} = \mathbb{C}$, but it is conjugate linear.) Show that ι is a bijection, hence an isomorphism of vector spaces. Thus, given an inner product V can be identified with V^*, but the identification depends on the choice of the inner product.

(3) For $v \in V$, consider the map $j \in \mathcal{L}(V, \mathcal{L}(\mathbb{F}, V))$ given as follows: $j(v) \in \mathcal{L}(\mathbb{F}, V)$ is the map $j(v)a = av$, $a \in \mathbb{F}$. Show that j is a bijection from V to $\mathcal{L}(\mathbb{F}, V)$, hence V and $\mathcal{L}(\mathbb{F}, V)$ are isomorphic.

Solution. Part (1). Define f_j as stated. We just need to show that they form a basis of V^*, this automatically implies the first two statements. Let’s begin with linear independence. Suppose $a_1, \ldots, a_n \in \mathbb{F}$ and $a_1 f_1 + \cdots + a_n f_n = 0$. Evaluate this function at e_i gives $a_i = 0$. This holds for all $i = 1, \ldots, n$. So they are linearly independent. To see that they span the whole space V^*, pick any $f \in V^*$, we claim that $f = f(e_1)f_1 + \cdots + f(e_n)f_n$. Note that $f(e_1)f_1(e_i) + \cdots + f(e_n)f_n(e_i) = f(e_i)$ for any $i = 1, \ldots, n$. But any two linear functional agreeing on a set of basis must be the same. Thus, we are done.

Part (2). We first prove injectivity. Suppose $\iota(v) = 0$. Then by definition, $(v, w) = 0$ for all $w \in V$. In particular, take $w = v$, we have $(v, v) = \|v\|^2 = 0$, hence $v = 0$. Since V and V^* have the same dimension, we get surjectivity for free. Therefore, ι is a bijection.
Part (3). Again both V and $\mathcal{L}(F, V)$ have dimension n, it suffices to prove injectivity. Suppose $j(v) = 0$. That is, $av = 0$ for all $a \in \mathbb{F}$. In particular, when $a = 1$, we get $v = 0$. Hence finishing our proof.

Problem 2. If V, W are finite dimensional vector spaces over \mathbb{R}, $O \subset V$, and $F : O \to W$ is a C^1 map, we have defined its derivative $DF(p)$ at $p \in O$ as an element of $\mathcal{L}(V, W)$.

1. If V is a vector space, $\gamma : I \to V$ a C^1 curve with $\gamma(0) = p$, show that $D\gamma(0)$ can be naturally identified with an element $\gamma'(0)$ of V.
2. Show that the tangent space T_pV of V at p, defined as the set of vectors v in V for which there is a curve γ with $\gamma(0) = p$ and $\gamma'(0) = v$ is all of V. We define the tangent bundle of V as the disjoint union of the T_pV, $p \in V$, i.e. since $T_pV = V$, as $TV = V \times V$.
3. If $O \subset V$, $p \in O$, $f : O \to \mathbb{R}$, then $Df(p) \in \mathcal{L}(V, \mathbb{R}) = V^*$. One usually writes $df(p) = DF(p)$. Show that the cotangent space T^*_pV of V at p, defined as the set of elements α of V^* for which there is a C^1 function f defined near p with $df(p) = \alpha$, is all of V^*. We define the cotangent bundle of V as the disjoint union of the T^*_pV, $p \in V$, i.e. as $T^*_pV = V^*$, as $T^*V = V \times V^*$. (Note that TV can be identified with T^*V if one is given an inner product, but the identification depends on the inner product.)
4. Notice that T^*V itself is a vector space: $T^*V = V \oplus V^*$. Write elements of T^*V as $w = (v, \alpha)$. We define a map $\Omega : T^*V \times T^*V \to \mathbb{R}$ by
 $$\Omega((v_1, \alpha_1), (v_2, \alpha_2)) = \alpha_1(v_2) - \alpha_2(v_1).$$
 Show that Ω is bilinear, i.e.
 $$\Omega(cv_1, w_2) = c\Omega(w_1, w_2) = \Omega(w_1, cw_2), \quad c \in \mathbb{R}, \quad w_1, w_2 \in T^*V,$$
 $$\Omega(w_1 + w_2, w_3) = \Omega(w_1, w_3) + \Omega(w_2, w_3), \quad w_1, w_2, w_3 \in T^*V,$$
 with similar additivity in the second slot, Ω is antisymmetric, i.e.
 $$\Omega(w_1, w_2) = -\Omega(w_2, w_1), \quad w_1, w_2 \in T^*V,$$
 and is non-degenerate, i.e. for $w_1 \in T^*V$ non-zero, there is $w_2 \in T^*V$ such that $\Omega(w_1, w_2) \neq 0$.
5. Note that Ω (indeed, any bilinear form on $T^*V \times T^*V$) defines a map $J : T^*V \to (T^*V)^*$ as follows: for $w \in T^*V$, $J(w)w' = \Omega(w', w)$. Show that this map is an isomorphism using that Ω is non-degenerate.

For each $p \in T^*V$, T_pT^*V can be identified with T^*V, hence one obtains a non-degenerate bilinear antisymmetric map ω_p on T_pT^*V. It is called the *symplectic form*.

Solution. Part (1). We can identify $D\gamma(0)$ with $\gamma'(0)$ by assigning $D\gamma(0)$ with an element of V, namely $D\gamma(0)(1)$. This is a natural choice because
 $$D\gamma(0)(1) = \frac{d}{dt} \gamma(t) \bigg|_{t=0}.$$
Part (2). This is obvious since for any \(v \in V \), we can simply take the curve \(\gamma(t) = p + tv \). So \(T_pV \) is all of \(V \).

Part (3). Let \(\alpha \in V^* \). By the result of problem 1, fixing a basis \(\{e_1, \ldots, e_n\} \) of \(V \), we have a canonical dual basis \(\{f_1, \ldots, f_n\} \) of \(V^* \). Under this basis, write \(\alpha = a_1f_1 + \cdots + a_nf_n \). Define a \(C^1 \) function near \(p \), \(f(x) = a_1f_1(x) + \cdots + a_nf_n(x) \). To see that \(df(p) = \alpha \), we just need to look at their actions on the basis elements \(e_i \). By definition,

\[
df(p)(e_i) = \left. \frac{d}{dt} f(p + te_i) \right|_{t=0} = a_i = \alpha(e_i).
\]

So we are done.

Part (4). We first verify that \(\Omega \) linear in the first slot:

\[
\Omega(c(v_1, \alpha_1), (v_2, \alpha_2)) = \Omega((cv_1, c\alpha_1), (v_2, \alpha_2)) \\
= c\alpha_1(v_2) - \alpha_2(cv_1) \\
= c(\alpha_1(v_2) - \alpha_2(v_1)) \\
= c\Omega((v_1, \alpha_1), (v_2, \alpha_2)).
\]

\[
\Omega((v_1, \alpha_1) + (v_2, \alpha_2), (v_3, \alpha_3)) = \Omega((v_1 + v_2, \alpha_1 + \alpha_2), (v_3, \alpha_3)) \\
= (\alpha_1 + \alpha_2)(v_3) - \alpha_3(v_1 + v_2) \\
= \alpha_1(v_3) - \alpha_3(v_1) + \alpha_2(v_3) - \alpha_3(v_2) \\
= \Omega((v_1, \alpha_1), (v_3, \alpha_3)) + \Omega((v_2, \alpha_2), (v_3, \alpha_3)).
\]

Next, we prove antisymmetry:

\[
\Omega((v_1, \alpha_2), (v_2, \alpha_2)) = \alpha_1(v_2) - \alpha_2(v_1) = -(\alpha_2(v_1) - \alpha_1(v_2)) = \Omega((v_2, \alpha_2), (v_1, \alpha_1)).
\]

These two things together implies linearity in the second slot. We still have to show that it is non-degenerate. Suppose there is a \(w_1 = (v_1, \alpha_1) \in T^*V \) such that \(\Omega(w_1, w) = 0 \) for all \(w \in T^*V \). Take \(w = (0, \alpha) \), we have \(\alpha(v_1) = 0 \) for all \(\alpha \in V^* \). This implies that \(v_1 = 0 \). On the other hand, if we take \(w = (v, 0) \), we get \(\alpha_1(v) = 0 \) for all \(v \in V \), thus \(\alpha_1 = 0 \). In conclusion, we are forced to have \(w_1 = 0 \). This proves that \(\Omega \) is a non-degenerate 2-form on \(T^*V \).

Part (5). Again by dimension argument, we just need to show that \(J \) is one-to-one. Suppose \(J(w) = 0 \). Equivalently, for all \(w' \in T^*V \), \(J(w)(w') = \Omega(w', w) = 0 \). By non-degeneracy of \(\Omega \), we must have \(w = 0 \). This finishes the whole proof.

Problem 3. (Taylor I.3.5). Let \(\mathcal{O} \subset \mathbb{R}^n \) be open, \(p \in \mathcal{O} \), and \(f : \mathcal{O} \to \mathbb{R}^n \) be real analytic, with \(Df(p) \) invertible. Take \(f^{-1} : V \to U \) as in Theorem 3.1. Show that \(f^{-1} \) is real analytic. (Hint: Consider a holomorphic extension \(F : \Omega \to \mathbb{C}^n \) of \(f \), and apply Exercise 3.) (Assume that if \(F : \mathcal{O} \to \mathbb{C}^m \) is holomorphic, where \(\mathcal{O} \subset \mathbb{C}^n \) is open, and \(p \in \mathcal{O} \), then the Taylor series of \(F \) converges in a neighborhood of \(p \). We will prove this in the second half of the course.)
Solution. First, extend \(f \) to a holomorphic function \(F : \Omega \to \mathbb{C}^n \). We check that \(DF(p) \) as a linear map between \(\mathbb{R}^{2n} \) is invertible. Note that

\[
DF(p) = \begin{bmatrix} Df(p) & O \\ O & Df(p) \end{bmatrix}.
\]

So \(DF(p) \) is invertible. By inverse function theorem, locally there is a \(C^1 \) inverse function \(F^{-1} \) with \(D(F^{-1})(F(p)) = (DF(p))^{-1} \). Since \(F \) is holomorphic, it satisfies \(JDF(p) = DF(p)J \). This implies that \(JD(F^{-1})(F(p)) = D(F^{-1})(F(p))J \). Hence \(F^{-1} \) is also holomorphic and it has a power series expansion around \(F(p) = f(p) \). Restricting on the real line gives a power series of \(f^{-1} \) locally, therefore \(f^{-1} \) is real analytic.

Problem 4. (Taylor I.6.1). Let \(\Omega \) be open in \(\mathbb{R}^{2n} \), identified with \(\mathbb{C}^n \), via \(z = x + iy \). Let \(X : \Omega \to \mathbb{R}^{2n} \) have components \(X = (a_1, \ldots, a_n, b_1, \ldots, b_n) \), where \(a_j(x,y) \) and \(b_j(x,y) \) are real-valued. Denote the solution to \(du/dt = X(u) \), \(u(0) = z \) by \(u(t, z) \). Assume \(f_j(z) = a_j(z) + ib_j(z) \) is holomorphic in \(z \), that is, its derivative commutes with \(J \), acting on \(\mathbb{R}^k = \mathbb{C}^k \) as multiplication by \(i \). Show that, for each \(t \), \(u(t, z) \) is holomorphic in \(z \), that is, \(D_z u(t, z) \) commutes with \(J \). (Hint: Use the linearized equation (6.2) to show that \(K(t) = [W(t), J] \) satisfies the ODE

\[
K' = DX(z)K, \quad K(0) = 0.
\]

Solution. Define \(K(t) = [W(t), J] = W(t)J - JW(t) \). Then clearly, \(K(0) = W(0)J - JW(0) = IJ - JI = J - J = 0 \). Also,

\[
\]

Since \(W \) is holomorphic by the assumptions on its coefficients \(a_i, b_i \), \(JDW(z) = DW(z)J \). We have

\[
K'(t) = DX(z)W(t)J - DX(z)JW(t) = DX(z)K(t).
\]

Since \(K(t) \) satisfies such a linear ODE, we know that \(K(t) \) is defined on all \(t \) and by uniqueness of solutions, we have \(K(t) = 0 \) for all \(t \), which means that \(W(t) \) and \(J \) commutes, i.e. \(u(t, z) \) is holomorphic in \(z \).

Problem 5. (Taylor I.6.2). If \(\mathcal{O} \subset \mathbb{R}^n \) is open and \(F : \mathcal{O} \to \mathbb{R}^n \) is real analytic, show that the solution \(y(t, x) \) to (6.1) is real analytic in \(x \). (Hint: With \(F = (a_1, \ldots, a_n) \), take holomorphic extensions \(f_j(z) \) of \(a_j(x) \) and use Exercise 1.) Using the trick leading to (6.18), show that \(y(t, x) \) is real analytic jointly in \((t, x) \).

Solution. Write \(F = (F_1, \ldots, F_n) \), by assumption each \(F_i \) is real analytic, we can thus locally extend to a holomorphic function \(f_i \), put \(f_i = a_i + ib_i \). Then \(X = (a_1, \ldots, a_n, b_1, \ldots, b_n) \) defines a vector field on \(\mathbb{R}^{2n} \) satisfying all the hypothesis in problem 4. Therefore the solution \(u(t, z) \) to the ODE \(du/dt = X(u) \), \(u(0) = z \), is holomorphic in \(z \), thus \(y(t, x) \) is real analytic in \(x \).
To show that it is actually real analytic jointly in \((t, x)\), consider the solution \(y(t, \tau, x)\) to the family of equations:
\[
y' = \tau F(y) , y(0) = x.
\]
In this case, by uniqueness theorem, \(y(t, \tau, x) = y(\tau t, 1, x)\). Hence \(dy/d\tau = tF(y), y(\tau = 0) = x\). Using the same trick in (6.18) and apply the result we have just proved, \(y(t, x)\) is real analytic jointly in \((t, x)\).

Problem 6. (Taylor I.7.1). Suppose \(h(x, y)\) is homogeneous of degree 0, that is, \(h(rx, ry) = h(x, y)\), so \(h(x, y) = k(x/y)\). Show that the ODE
\[
\frac{dy}{dx} = h(x, y)
\]
is changed to a separable ODE for \(u = u(x)\), if \(u = y/x\).

Solution. Do the substitution \(u = u(x) = y/x\). We have \(y = ux\),
\[
\frac{dy}{dx} = x\frac{du}{dx} + u = h(x, y) = k(u)
\]
Rearranging, we get a separable ODE
\[
\frac{1}{k(u) - u} \frac{du}{dx} = \frac{1}{x}.
\]

Problem 7. (Taylor I.7.2). Using Exercise 1, discuss constructing the integral curves of a vector field
\[
X = f(x, y) \frac{\partial}{\partial x} + g(x, y) \frac{\partial}{\partial y}
\]
when \(f(x, y)\) and \(g(x, y)\) are homogeneous of degree \(a\), that is,
\[
f(rx, ry) = r^a f(x, y)\text{ for } r > 0,
\]
and similarly for \(g\).

Solution. We have to solve the ODE
\[
\frac{dy}{dx} = \frac{g(x, y)}{f(x, y)} = h(x, y).
\]
Note that \(g\) and \(f\) are homogeneous of the same degree, \(h\) is homogeneous of degree 0. By the result of problem 6, we get an ODE for \(u(x) = y/x\):
\[
\frac{1}{k(u) - u} \frac{du}{dx} = \frac{1}{x} , \text{where } k(u) = \frac{g(1, u)}{f(1, u)}.
\]

Problem 8. (Taylor I.7.3). Describe the integral curves of
\[
(x^2 + y^2) \frac{\partial}{\partial x} + xy \frac{\partial}{\partial y}.
\]
Solution. Apply the method of problem 7, we have to solve
\[
\frac{1}{1+u^2} \frac{du}{dx} = \frac{1}{x} \quad \quad \text{and} \quad \quad -\frac{1+u^2}{u^3} du = \frac{1}{x} dx
\]
Integrating both sides,
\[
\frac{1}{2u^2} - \ln u + C = \ln x,
\]
rearranging gives
\[
y = Ce^{\frac{x^2}{2u^2}}.
\]

Problem 9. (Taylor I.7.9). Suppose all the eigenvalues of \(A\) have negative real part. Construct a quadratic polynomial \(Q : \mathbb{R}^n \to [0, \infty)\), such that \(Q(0) = 0\), \((\partial^2 Q/\partial x_j \partial x_k)\) is positive-definite, and for any integral curve \(x(t)\) of \(X\) as in (7.25),
\[
\frac{d}{dt} Q(x(t)) < 0 \quad \text{if} \quad t \geq 0,
\]
provided \(x(0) = x_0 (\neq 0)\) is close enough to 0. Deduce that for small enough \(C\), if \(\|x_0\| \leq C\), then \(x(t)\) exists for all \(t \geq 0\) and \(x(t) \to 0\) as \(t \to \infty\). (Hint: Take \(Q(x) = \langle x, x \rangle\), using Exercise 10 below.) Assuming that \(A \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^n)\) has \(n\) real linearly independent eigenvectors, and each eigenvalue is negative. (Hint: show that \(A\) is self-adjoint with respect to some inner product \(\langle \cdot, \cdot \rangle\) on \(\mathbb{R}^n\), i.e. \(\langle Au, v \rangle = \langle u, Av \rangle\) for \(u, v \in \mathbb{R}^n\).)

Solution. By assumption, \(A\) has \(n\) real linearly independent eigenvectors \(v_1, \ldots, v_n\) with \(Av_i = -\lambda_i v_i\) where \(-\lambda_i < 0\) are the eigenvalues of \(A\). Define an inner product on \(\mathbb{R}^n\) for setting \(v_1, \ldots, v_n\) to be an orthonormal basis of this inner product \(\langle \cdot, \cdot \rangle\). Take \(Q(x) = \langle x, x \rangle\), then by the properties of inner product, it is clear that \(Q(0) = 0\) and \((\partial^2 Q/\partial x_j \partial x_k)\) is positive-definite. Let \(x(t)\) be an integral curve of \(X\) with \(x(0) = x_0\) close to zero enough such that \(X(x) \approx Ax\). Then
\[
\frac{d}{dt} Q(x(t)) = 2\langle x(t), x'(t) \rangle = 2\langle x(t), X(x(t)) \rangle = 2\langle x(t), Ax(t) \rangle.
\]
If we write \(x = x_1 v_1 + \cdots + x_n v_n\), then
\[
\frac{d}{dt} Q(x(t)) = -x_1^2 \lambda_1 - \cdots - x_n^2 \lambda_n < 0.
\]
For the last statement, simply note that \(Q(x(t)) = \|x(t)\|^2\) is a strictly decreasing function in \(t\) and the local behaviour of \(X\) around 0 forces \(x(t) \to 0\) as \(t \to \infty\).