Problem 1. Recall that a map F between complex vector spaces is called differentiable (in the complex sense) at x if there is a complex linear map L such that $F(x + y) = F(x) + Ly + R(x,y)$ with $\lim_{\|y\| \to 0} \frac{\|R(x,y)\|}{\|y\|} = 0$. If F is differentiable as a complex map, with DF continuous, one calls F holomorphic, or complex analytic.

Identify \mathbb{C}^n with \mathbb{R}^{2n} by writing $z \in \mathbb{C}^n$ as $z = x + iy$, $x, y \in \mathbb{R}^n$. Multiplication by i on \mathbb{C}^n becomes multiplication by a matrix J_n on \mathbb{R}^{2n}, $J_n = \begin{bmatrix} 0 & -I \\ I & 0 \end{bmatrix}$, where I is the identity operator on \mathbb{R}^n.

Show that for $O \subset \mathbb{C}^n$ open, $F : O \to \mathbb{C}^m$ is holomorphic if and only if F is C^1 as a real map (i.e. identifying \mathbb{C}^n with \mathbb{R}^{2n}, \mathbb{C}^m with \mathbb{R}^{2m}), and $DF \in \mathcal{L}(\mathbb{R}^{2n}, \mathbb{R}^{2m})$, regarded as a real linear map, satisfies $J_mDF(z) = DF(z)J_n$

for all $z \in O$.

Write out $DF(z)$ as a block matrix corresponding to $\mathbb{R}^{2n} = \mathbb{R}^n \oplus \mathbb{R}^n$, and similarly with \mathbb{R}^{2m}, writing $F = u + iv$, $u, v : O \to \mathbb{R}^m$, and deduce the Cauchy-Riemann equations $D_xu = D_yv, \ D_yu = -D_xv$

hold if and only if F is holomorphic.

Solution. Let $O \subset \mathbb{C}^n$ be an open set.

First, assume that $F : O \to \mathbb{C}^m$ is holomorphic. Let $z = x + iy \in O$. There is a complex linear map $DF(z) : \mathbb{C}^n \to \mathbb{C}^m$ such that $\lim_{\|w\| \to 0} \frac{\|F(z+w) - F(z) - DF(z)(w)\|}{\|w\|} = 0$. Moreover, the linear maps DF depends continuously on z, namely, if we pick a basis on \mathbb{C}^n and write DF as a matrix with respect to the basis, then all the entries are continuous functions of $z \in O$. $DF(z)$ is complex linear, in particular, can be regarded as a real linear map from \mathbb{R}^{2n} to \mathbb{R}^{2m}. Since all vector spaces are finite dimensional here, $DF(z)$ is automatically continuous, i.e. bounded. In other words, $DF(z) \in \mathcal{L}(\mathbb{R}^{2n}, \mathbb{R}^{2m})$ for all $z \in O$. In addition, it means that F is differentiable in the real sense since DF is also real linear. By the corresponding result for real differentiable maps, we know that F is C^1 as a real map. It remains to verify that for any $z \in O$, we have $J_mDF(z) = DF(z)J_n$. But this is obvious since the action of J_m on a vector is multiplication by i and $DF(z)$ is a complex linear map.
Next, we assume that F is C^1 as a real map, $DF(z) \in L(\mathbb{R}^{2n}, \mathbb{R}^{2m})$ and $J_mDF(z) = DF(z)J_n$ for all $z \in O$. We want to show that F is holomorphic. Since $J_mDF(z) = DF(z)J_n$, $DF(z)$ is actually a complex linear map from \mathbb{C}^n to \mathbb{C}^m. Therefore, F is complex differentiable at every $z \in O$. Also, F is C^1 implies that $DF(z)$ is continuous as a function of z. All these together means that F is holomorphic on O.

A direct calculation shows that

$$DF(z) = \begin{bmatrix} D_xu(z) & D_xv(z) \\ D_yu(z) & D_yv(z) \end{bmatrix}.$$

Therefore, the condition $J_mDF(z) = DF(z)J_n$ translates into

$$\begin{bmatrix} -D_yu & -D_yv \\ D_xu & D_xv \end{bmatrix} = \begin{bmatrix} 0 & -I \\ I & 0 \end{bmatrix} \begin{bmatrix} D_xu & D_xv \\ D_yu & D_yv \end{bmatrix} = \begin{bmatrix} 0 & -I \\ I & 0 \end{bmatrix} \begin{bmatrix} D_xv & -D_xu \\ D_yv & -D_yu \end{bmatrix}.$$

Comparing their entries gives the Cauchy Riemann Equations:

$$D_xu = D_yv, \quad D_yu = -D_xv.$$

Problem 2. Show that all norms on a finite dimensional vector space V are equivalent, i.e. if $\|\cdot\|_1$ and $\|\cdot\|_2$ are norms on V then there is a constant $C > 0$ such that $\|v\|_1 \leq C\|v\|_2$ and $\|v\|_2 \leq C\|v\|_1$ for all $v \in V$. (Hint: You may assume V is real as every complex vector space is also a real vector space. Use a basis to reduce the question to norms on \mathbb{R}^n. Now use the fact that the unit sphere in \mathbb{R}^n is compact in the Euclidean topology, and show that all norms on \mathbb{R}^n are equivalent to the Euclidean norm.)

Solution. Following the hints, we just need to show that any norm on \mathbb{R}^n is equivalent to the Euclidean norm. Let B denote the unit sphere in the Euclidean topology which is compact. Let $\|\cdot\|'$ be a norm on \mathbb{R}^n and $\|\cdot\|$ be the usual Euclidean norm. Since $\|\cdot\|': \mathbb{R}^n \to \mathbb{R}$ is continuous, by extreme value theorem, $\|\cdot\|'$ attains its maximum, say $C_1 > 0$, and minimum, say $C_2 > 0$, on B. Thus $C_2\|v\| \leq \|v\|' \leq C_1\|v\|$ for all $v \in \mathbb{R}^n$. Hence the two norms are equivalent.

Problem 3. (*Taylor Ex.I.2.3*) Let M be a compact, smooth surface in \mathbb{R}^n. Suppose $F: \mathbb{R}^n \to \mathbb{R}^n$ is a smooth map (vector field) such that, for each $x \in M$, $F(x)$ is tangent to M, that is, the line $\gamma_x(t) = x + tF(x)$ is tangent to M at x, at $t = 0$. Show that if $p \in M$, then the initial-value problem

$$y' = F(y), \quad y(0) = p$$

has a solution for all $t \in \mathbb{R}$, and $y(t) \in M$ for all t. (Hint: Locally, straighten out M to be a linear subspace of \mathbb{R}^n, to which F is tangent. Use uniqueness. Material in section 3 will help do this local straightening.) Reconsider this problem after reading section 7.
For this problem, take the following extrinsic definition of a smooth surface in \mathbb{R}^n: A smooth k-dimensional surface $M \ (0 \leq k \leq n)$ is a subset of \mathbb{R}^n, with the relative topology, such that for each $p \in M$ there is a neighborhood O of p in \mathbb{R}^n and a smooth map: $\Phi : O \to \mathbb{R}^{n-k}$ such that

$$M \cap O = \Phi^{-1}(\{0\}) = \{x \in O : \Phi(x) = 0\}$$

and $D\Phi(p) : \mathbb{R}^n \to \mathbb{R}^{n-k}$ is a surjective linear map.

A smooth hypersurface is a smooth $n-1$-dimensional surface in M, in which case Φ is simply a real valued function, and the assumption is that $D\Phi(p) \neq 0$.

The meaning of smooth depends on the context, it usually means either C^1 or C^∞. (C^1 suffices here.)

Also use the following definition of tangency. First, a curve in M is a smooth map $\gamma : I \to \mathbb{R}^n$ and $\gamma(t) \in M$ for $t \in I$; here I is an interval. A vector $V \in \mathbb{R}^n$ is tangent to M at $p \in M$ if there is a curve $\gamma : I \to M$, I a neighborhood of 0, $\gamma(0) = p$, such that $\gamma'(0) = V$. A vector field $F : \mathbb{R}^n \to \mathbb{R}^n$ is tangent to M if for all $x \in M$, $F(x)$ is tangent to M at x.

In order to do the ‘straightening out’ of the hint, use the implicit function theorem by breaking up the standard coordinate functions on \mathbb{R}^n into two groups (which you may then rearrange), $(x, z), x \in \mathbb{R}^k, z \in \mathbb{R}^{n-k}$, such that $D_z\Phi(p)$ is invertible, so on a neighborhood $O' \subset O$ of p, $M \cap O' = \{(x, f(x)) : x \in U\}, \ U \subset \mathbb{R}^k$ open, f smooth.

Now define a vector field $\tilde{F} : U \to \mathbb{R}^k$ such that solutions of $x'(t) = \tilde{F}(x(t))$ lift to solve the original ODE, i.e. letting $y(t) = (x(t), f(x(t))), y'(t) = F(y(t))$.

Solution. We assume that the surface M is of dimension $0 \leq k \leq n$.

Note that we want $y(0) = p \in M$. We first show that the differential equation is solvable locally around p. By the very definition of a smooth k-dimensional surface, there is a neighborhood O of p in \mathbb{R}^n and a smooth map $\Phi : O \to \mathbb{R}^{n-k}$ such that

$$M \cap O = \Phi^{-1}(\{0\}) = \{x \in O : \Phi(x) = 0\}$$

and $D\Phi(p) : \mathbb{R}^n \to \mathbb{R}^{n-k}$ is a surjective linear map.

This means that $D\Phi(p)$ is full rank and thus there is an $(n - k) \times (n - k)$ invertible submatrix. WLOG, assume it is formed by the last $n - k$ rows(variables) of \mathbb{R}^n. By implicit function theorem, you can break up the standard coordinate functions on \mathbb{R}^n into two groups (which you may then rearrange), $(x, z), x \in \mathbb{R}^k, z \in \mathbb{R}^{n-k}$, such that $D_z\Phi(p)$ is invertible, so on a neighborhood $O' \subset O$ of p, $M \cap O' = \{(x, f(x)) : x \in U\}, \ U \subset \mathbb{R}^k$ open, f smooth. In more technical terms, the map $\psi : U \to \mathbb{R}^n$, $\psi(x) = (x, f(x))$ gives a local coordinate system of the surface around p.
Next, we will solve the ODE locally around p using this coordinate system. Consider the following first order ODE on $U \subset \mathbb{R}^k$:

$$x'(t) = F_1(\psi(x(t))) = F_1(x(t), f(x(t))), \quad x(0) = p_1$$

where $F = (F_1, F_2)$ and $p = (p_1, p_2)$ are written as a pair of k-vectors and $(n-k)$-vectors, i.e. F_1 and p_1 are the first k coordinates of F and p respectively.

Since F is smooth on \mathbb{R}^n, so does F_1. Because M is compact, F_1 and its derivatives are uniformly bounded on M. This implies that F_1 is Lipschitz and thus we can apply the existence and uniqueness theorem for first order ODE to conclude that the system (*) has a unique solution around a small neighborhood of $t = 0$. Suppose $x(t)$ is the solution for $t \in (-\epsilon, \epsilon)$. We claim that this solution lifts to a solution $y(t) = (x(t), f(x(t))) = \psi(x(t))$ for the original system of ODE. The initial condition is obviously satisfied since $y(0) = (x(0), f(x(0))) = (p_1, f(p_1)) = p$. To see that $y'(t) = F(y(t))$, it requires a bit more work.

By chain rule, we have $y'(t) = (x'(t), Df_{x(t)}(x'(t))) = (F_1(x(t), f(x(t))), Df_{x(t)}(x'(t)))$. Therefore, it suffices to prove that $Df_{x(t)}(x'(t)) = F_2(x(t), f(x(t)))$ for all $t \in (-\epsilon, \epsilon)$. Since $F(y)$ is tangent to M at y for all $y \in M$, this means that for any fixed $t \in (-\epsilon, \epsilon)$, there is a curve $\gamma(t) : I \to U$ such that $\psi(\gamma(0)) = y(t)$ and $\frac{d}{ds}\psi(\gamma(s))|_{s=0} = F(y(t))$. Equivalently, $(\gamma(0), f(\gamma(0))) = y(t) = (x(t), f(x(t)))$, thus $\gamma(0) = x(t)$, and $(\gamma'(0), Df_{\gamma(0)}(\gamma'(0))) = F(x(t), f(x(t)))$, thus $Df_{x(t)}(F_1(x(t), f(x(t)))) = Df_{x(t)}(x'(t)) = F_2(x(t), f(x(t)))$. Therefore, we have shown that $y(t)$ actually solves the original system on $t \in (-\epsilon, \epsilon)$.

The last thing we have to show is that this solution actually extends to all $t \in \mathbb{R}$. Suppose $t_0 = \sup\{t > 0 : y(t) \text{ can be extended to the interval } (-\epsilon, t)\}$.

We claim that $t_0 = \infty$. Suppose not. Then t_0 is some finite positive real number. Since M is compact, F is bounded on M and hence $y(t)$ is bounded and has bounded derivatives. Therefore $y(t)$ is Lipschitz and uniformly continuous on $(-\epsilon, t_0)$, so it can be extended continuously to $[-\epsilon, t_0]$. By uniqueness and existence theorem applied to the initial point at $y(t_0)$, we know that $y(t)$ actually extends further, say to $t_0 + \delta$, which contradicts the maximality of t_0. Therefore, $t_0 = \infty$. A similar argument shows that $y(t)$ can be extended to any negative t. So we are done.

Problem 4. (Taylor Ex.I.3.1) Suppose that $F : U \to \mathbb{R}^n$ is a C^2-map, U is open in \mathbb{R}^n, $p \in U$, and $DF(p)$ is invertible. With $q = F(p)$, define a map N on a neighborhood of p by

$$N(x) = x + DF(x)^{-1}(q - F(x)).$$

Show that there exists $\epsilon > 0$ and $C < \infty$ such that, for $0 \leq r < \epsilon$,

$$\|x - p\| \leq r \Rightarrow \|N(x) - p\| \leq Cr^2.$$
Conclude that if \(\| x_1 - p \| \leq r \), with \(r < \min(\epsilon, 1/2C) \), then \(x_{j+1} = N(x_j) \) defines a sequence converging very rapidly to \(p \). This is the basis of Newton’s method, for solving \(F(p) = q \) for \(p \). (Hint: Write \(x = p + y \), \(F(x) = F(p) + DF(x)y + R \), with \(R \) given as in (1.27), with \(k = 2 \). Then \(N(x) = p + \overline{y} \), \(\overline{y} = -DF(x)^{-1}R \).)

Solution. Write \(x = p + y \), doing Taylor series expansion up to the first order term:

\[
F(x) = F(p) + DF(x)y + R(y)
\]

where

\[
R(y) = \sum_{|\alpha| = 2} \frac{2}{\alpha!} \left(\int_0^1 (1 - s) F^{(\alpha)}(sy) \, ds \right) y^\alpha.
\]

Hence, \(N(x) = x + DF(x)^{-1}(F(p) - F(x)) = p - DF(x)^{-1}(R(y)) \). Since \(F \) is \(C^2 \) and \(DF(p) \neq 0 \), we can choose a small \(\epsilon > 0 \) such that \(DF(x) \neq 0 \) and \(\|DF(x)^{-1}\| \leq C \) for all \(\|x - p\| < \epsilon \) for some \(C > 0 \). Moreover it is easy to see from the expression of \(R(y) \) that \(\|R(y)\| \leq Cy^2 \) for some \(C > 0 \). Thus, for any \(0 \leq r < \epsilon \) and \(\|x - p\| \leq r \),

\[
\|N(x) - p\| \leq \|DF(x)^{-1}\||R(y)|| \leq Cr^2.
\]

If \(\|x_1 - p\| \leq r \), with \(r < \min(\epsilon, 1/2C) \), then

\[
\|x_2 - p\| = \|N(x_1) - p\| \leq Cr^2 \leq \frac{1}{2} r.
\]

An induction argument show that \(\|x_n - p\| \leq \frac{1}{2^n} r \) for all \(n \), which converges to 0 exponentially fast. Therefore, \(x_n \) converges to \(p \) rapidly provided that our initial guess \(x_1 \) is close enough to \(p \).

Problem 5. (Taylor Ex.1.3.4) Let \(\mathcal{O} \subset \mathbb{R}^n \) be open. We say that a function \(f \in C^\infty(\mathcal{O}) \) is real analytic provided that for each \(x_0 \in \mathcal{O} \), we have a convergent power-series expansion

\[
f(x) = \sum_{\alpha \geq 0} \frac{1}{\alpha!} f^{(\alpha)}(x_0) (x - x_0)^\alpha,
\]

valid in a neighborhood of \(x_0 \). Show that we can let \(x \) be complex in (3.14), and obtain an extension \(f \) to a neighborhood of \(\mathcal{O} \) in \(\mathbb{C}^n \). Show that the extended function is holomorphic, that is, satisfies the Cauchy-Riemann equations. **Remark.** It can be shown that, conversely, any holomorphic function has a power-series expansion. See (2.30) of Chapter 3 for one such proof. For the next exercise, assume this to be known.

Solution. Since a convergent power series actually converges absolutely and uniformly on some small neighborhood around the point of expansion, therefore, allowing \(x \) to be complex numbers close enough to \(x_0 \), the series actually converges absolutely. This defines an extension of \(f \).
Next observe that uniform convergence implies that we can put \(\frac{\partial}{\partial x^i} \) \((i = 1, \ldots, n)\) into the summation sign and hence
\[
\frac{\partial}{\partial x^i} f(x) = \sum_{\alpha \geq 0} \frac{1}{\alpha!} f^{(\alpha)}(x_0) \frac{\partial}{\partial x^i}(x - x_0)^\alpha.
\]
Because one can check that polynomials are holomorphic, we have \(\frac{\partial}{\partial x^i}(x - x_0)^\alpha = 0 \) for all \(\alpha \). Hence \(f \) is analytic in a small neighborhood of \(x_0 \).

Remark: Recall that the Cauchy Riemann equations for a function \(f(z) \) to be analytic can be written as \(\frac{\partial}{\partial z} f(z) = 0 \) where \(\frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right) \) with \(z = x + iy \).

Problem 6. *(Taylor Ex.I.4.3)* Let \(X \) be an \(n \times n \) matrix. Show that \[
\det e^X = e^{Tr X}.
\]
(Hint: Use a normal form.)

Solution. Choose a basis such that \(X \) is upper triangular, i.e. choose an invertible matrix \(Q \) so that \(X = QYQ^{-1} \), where \(Y \) is upper triangular. An elementary calculation shows that \(e^X = Qe^YQ^{-1} \). Observe that
\[
Y^k = \begin{pmatrix} y_{11}^k & * & \cdots & * \\
* & y_{22}^k & \cdots & * \\
& \ddots & \ddots & \ddots \\
& & \ddots & y_{nn}^k
\end{pmatrix}.
\]
Therefore,
\[
e^Y = \begin{pmatrix} e^{y_{11}} & * & \cdots & * \\
* & e^{y_{22}} & \cdots & * \\
& \ddots & \ddots & \ddots \\
& & \ddots & e^{y_{nn}}
\end{pmatrix}.
\]
Taking determinant gives \(\det e^X = \det e^Y = e^{Tr Y} = e^{Tr X} \).

Problem 7. *(Taylor Ex.I.4.4)* Let \(M_n \) be the space of complex \(n \times n \) matrices. If \(A \in M_n \), and \(\det A = 1 \) we say that \(A \in SL(n, \mathbb{C}) \). If \(X \in M_n \) and \(Tr X = 0 \), we say that \(X \in \text{sl}(n, \mathbb{C}) \). Let \(X \in \text{sl}(2, \mathbb{C}) \). Suppose \(X \) has eigenvalues \(\{ \lambda, -\lambda \} \), \(\lambda \neq 0 \). Such an \(X \) can be diagonalized, so we know that there exist matrices \(Z_j \in M_2 \) such that
\[
e^{tX} = Z_1 e^{t\lambda} + Z_2 e^{-t\lambda}.
\]
Evaluating both sides at \(t = 0 \), and the \(t \)-derivative at \(t = 0 \), show that \(Z_1 + Z_2 = I \), \(\lambda Z_1 - \lambda Z_2 = X \), and solve for \(Z_1, Z_2 \). Deduce that
\[
e^{tX} = (\cosh t\lambda)I + \lambda^{-1}(\sinh t\lambda)X.
\]
Solution. We know that $e^{tX} = Z_1 e^{t\lambda} + Z_2 e^{-t\lambda}$. Differentiate this expression gives

$Xe^{tX} = \lambda Z_1 e^{t\lambda} - \lambda Z_2 e^{-t\lambda}$.

Evaluate at $t = 0$ gives a system of linear equations:

\begin{align*}
Z_1 + Z_2 &= I \\
\lambda Z_1 - \lambda Z_2 &= X
\end{align*}

Solving it, we have

\begin{align*}
Z_1 &= \frac{1}{2}(I + \lambda^{-1}X) \\
Z_2 &= \frac{1}{2}(I - \lambda^{-1}X)
\end{align*}

Put it back into the equation $e^{tX} = Z_1 e^{t\lambda} + Z_2 e^{-t\lambda}$, we have

$e^{tX} = (\cosh t\lambda)I + \lambda^{-1}(\sinh t\lambda)X$.