Math 172
Problem Set 6 Solutions

Problem 1 4.5a As suggested in the hint, we first consider a function $f(x) = |x|^{-\alpha}$ when $|x| \leq 1$, and zero everywhere else. Using polar coordinates, and letting ω_d denote the area of the unit sphere in \mathbb{R}^d, we compute

$$\|f\|^2_{L^2} = \int_{\mathbb{R}^d} |f|^2 = \omega_d \int_0^1 r^{d-1-2\alpha} dr,$$

which is finite if and only if $d - 1 - 2\alpha > -1 \iff \alpha < d/2$. A similar calculation reveals that $\|f\|_{L^1} = \omega_d \int_0^1 r^{d-1-\alpha} dr$, which is finite if and only if $\alpha < d$. Hence if we choose $d/2 < \alpha < d$, we find that $\|f\|_{L^1} < \infty$ while $\|f\|_{L^2} = \infty$, proving that $L^1(\mathbb{R}^d) \nsubseteq L^2(\mathbb{R}^d)$. If we define $g(x) = |x|^{-\alpha}$ when $|x| > 1$ and zero everywhere else, a virtually identical argument shows that, for α chosen in the same range as above, $\|g\|_{L^2} < \infty$ while $\|g\|_{L^1} = \infty$. We thus also conclude that $L^2(\mathbb{R}^d) \nsubseteq L^1(\mathbb{R}^d)$.

4.5b When f is supported in a set E of finite measure, using the Cauchy-Schwarz inequality we have

$$\|f\|_{L^1} = \int_{\mathbb{R}^d} |f| = \int_{\mathbb{R}^d} |f| \chi_E \leq \left(\int_{\mathbb{R}^d} |f|^2 \right)^{1/2} \left(\int_{\mathbb{R}^d} |\chi_E|^2 \right)^{1/2} = m(E)^{1/2} \|f\|_{L^2},$$

as claimed.

4.5c Of course when $|f| \leq M$ we have

$$\|f\|_{L^2} = \left(\int_{\mathbb{R}^d} |f|^2 \right)^{1/2} \leq \left(\int_{\mathbb{R}^d} M^2 \right)^{1/2} = M^{1/2} \|f\|_{L^1}^{1/2},$$

as claimed.

Problem 2 4.6a Let $f \in L^2(\mathbb{R}^d)$. First assume that f is real-valued, and write $f = f_+ - f_-$ as usual. There are non-negative simple functions $s_i \nearrow f_+$ and $r_i \nearrow f_-$, so if we define new simple functions $f_i = s_i - r_i$, we find that $|f - f_i|^2 \to 0$ pointwise. On the other hand, $|f - f_i|^2$ is dominated by the
integrable function \(|f|^2\). Hence the dominated convergence theorem implies that \(f_i \rightarrow f\) in \(L^2\), so we conclude that simple functions are dense in \(L^2\). If \(f\) is complex-valued, simply decompose \(f\) into its real and imaginary parts and apply the argument above to each part separately.

4.6b By part a, we need only show that for any positive simple function \(s\), we can find a sequence of compactly supported continuous functions \(h_i\) such that \(\|s - h_i\|_{L^2} \rightarrow 0\). Again, we assume that \(s\) is real-valued, as our argument extends trivially to the complex-valued case. Since all simple functions are bounded, there is some number \(M\) such that \(s \leq M\). Moreover, we know that we can find a sequence \(h_i\) such that \(\|s - h_i\|_{L^1} \rightarrow 0\). Without loss of generality, we may assume that \(|h_i| \leq M\) as well (for we can replace \(h_i\) with \(\min(h_i, M)\) where necessary). It then follows from exercise 4.5 above that we may bound \(\|s - h_i\|_{L^2}\) by

\[
\|s - h_i\|_{L^2} \leq (2M)^{1/2}\|s - h_i\|_{L^1} \rightarrow 0,
\]

proving the assertion.

Problem 3 4.7 We first show that the set \(\{\varphi_{k,j}\}\) is orthonormal. To do this, we claim that for any \(1 \leq k, j, k', j' < \infty\) the product \(\varphi_{k,j} \overline{\varphi_{k',j'}}\) is integrable. Indeed we have

\[
\int_{\mathbb{R}^d} \left| \varphi_k(x) \varphi_j(y) \overline{\varphi_{k'}(x)} \overline{\varphi_{j'}(y)} \right| dx dy \\
\leq \left(\int_{\mathbb{R}^d} \left| \varphi_k(x) \varphi_j(y) \right|^2 dx dy \right)^{1/2} \left(\int_{\mathbb{R}^d} \left| \varphi_{k'}(x) \varphi_{j'}(y) \right|^2 dx dy \right)^{1/2} \\
= \left[\left(\int_{\mathbb{R}^d} \left| \varphi_k(x) \right|^2 dx \right) \left(\int_{\mathbb{R}^d} \left| \varphi_j(y) \right|^2 dy \right) \right]^{1/2} \left[\left(\int_{\mathbb{R}^d} \left| \varphi_{k'}(x) \right|^2 dx \right) \left(\int_{\mathbb{R}^d} \left| \varphi_{j'}(y) \right|^2 dy \right) \right]^{1/2},
\]

where we have used first the Cauchy-Schwarz inequality and then Tonelli’s theorem. Since this final expression is equal to 1, the product \(\varphi_{k,j} \overline{\varphi_{k',j'}}\) is integrable in \(\mathbb{R}^d \times \mathbb{R}^d\). This observation allows us to apply Fubini’s theorem to prove that

\[
(\varphi_{k,j}, \varphi_{k',j'})_{L^2} = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \varphi_k(x) \varphi_j(y) \overline{\varphi_{k'}(x)} \overline{\varphi_{j'}(y)} dx dy \\
= \left(\int_{\mathbb{R}^d} \varphi_k(x) \overline{\varphi_{k'}(x)} dx \right) \left(\int_{\mathbb{R}^d} \varphi_j(y) \overline{\varphi_{j'}(y)} dy \right) = \begin{cases} 1 & \text{if } (k,j) = (k',j') \\ 0 & \text{otherwise} \end{cases}.
\]

Hence the set \(\{\varphi_{k,j}\}\) is orthonormal in \(L^2(\mathbb{R}^d \times \mathbb{R}^d)\). To prove that this set is a basis, by Theorem 4.2.3 in the text it suffices to show that, given any \(F \in L^2\), if \((F, \varphi_{k,j})_{L^2} = 0\) for all \(k, j\), then \(F \equiv 0\). We define functions \(F_j\) as in the hint.
We observe that \((F, \varphi_{k,j})_{L^2} = 0\) implies
\[
\int_{\mathbb{R}^d \times \mathbb{R}^d} F(x,y)\overline{\varphi_k(x)}\overline{\varphi_j(y)}dxdy = \int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^d} F(x,y)\overline{\varphi_j(y)}dy\right)\overline{\varphi_k(x)}dx
= \int_{\mathbb{R}^d} F_j(x)\overline{\varphi_k(x)}dx = (F_j, \varphi_k)_{L^2} = 0.
\]
Since this holds for all \(k\), we must have \(F_j(x) = 0\) for all \(j\). But this implies that for all \(x \in \mathbb{R}^d\),
\[
0 = F_j(x) = \int_{\mathbb{R}^d} F(x,y)\overline{\varphi_j(y)}dy
\]
for all \(j\). Since an easy application of Fubini’s theorem shows that \(F^x \in L^2(\mathbb{R}^d)\) for a.e. \(x\), we conclude that \(F^x = 0\) identically for a.e. \(x\), and hence \(F = 0\) in \(L^2\).

Problem 4 4.8a We check that \(L^2_\eta := L^2([a,b], \eta)\) satisfies all the properties of a Hilbert space:

(i) Since \(\eta\) is strictly positive and continuous on the compact set \([a,b]\), we see that there are positive constants \(m, M\) such that \(m \leq \eta \leq M\), and hence
\[
m\|f\|_{L^2} \leq \|f\|_{L^2_\eta} \leq M\|f\|_{L^2}.
\]
It follows from this that \(L^2 = L^2_\eta\) as sets, and therefore \(L^2_\eta\) is a vector space.

(ii-iii) Clearly \(f \mapsto (f, g)_{L^2_\eta}\) is linear for any fixed \(g\), and \((f, g)_{L^2_\eta} = \overline{(g, f)}_{L^2_\eta}\) since \(\eta\) is real-valued. Moreover, from part (i) we see that \((f, f)_{L^2_\eta} \geq m(f, f)_{L^2} \geq 0\), and in particular \((f, f)_{L^2_\eta} = 0\) if and only if \(f = 0\).

(iv) We observe that
\[
|(f, g)_{L^2_\eta}| = \left|\int (f\eta^{1/2})(g\eta^{1/2})d\eta\right| \leq \left(\int |f|^2\eta\right)^{1/2} \left(\int |g|^2\eta\right)^{1/2}
\]
which proves the Cauchy-Schwarz inequality on \(L^2_\eta\), where we have made use of the Cauchy-Schwarz inequality on \(L^2\). Next, since \(\|f\|_{L^2_\eta} = \|f\eta^{1/2}\|_{L^2}\), we have
\[
\|f + g\|_{L^2_\eta} = \|f\eta^{1/2} + g\eta^{1/2}\|_{L^2} \leq \|f\eta^{1/2}\|_{L^2} + \|g\eta^{1/2}\|_{L^2} = \|f\|_{L^2_\eta} + \|g\|_{L^2_\eta},
\]
so the triangle inequality holds as well.

(v) To show that \(L^2_\eta\) is complete, suppose \(\{f_i\}\) is a Cauchy sequence in \(L^2_\eta\). Then \(\{f_i\eta^{1/2}\}\) is a Cauchy sequence in \(L^2\), and so by the completeness of this space, there is some function \(f\eta^{1/2}\) such that \(f_i\eta^{1/2} \to f\eta^{1/2}\) in \(L^2\). But this clearly implies that \(f_i \to f\) in \(L^2_\eta\), so the latter is also complete.
(vi) \(L^2\) is separable, and so there exists a basis \(\{\varphi_i\}\). It is clear that \(\varphi, \eta^{-1}\) is a basis for \(L^2_\eta\), so we conclude that \(L^2_\eta\) is separable.

Now consider the map \(U : L^2_\eta \to L^2\) given by \(Uf = \eta^{1/2}f\). We have that
\[
\|Uf\|_{L^2} = \int |f|^2 \eta = \|f\|_{L^2_\eta}
\]
and so \(U\) is an isometry. Moreover, it is clearly invertible since \(\eta\) is bounded away from zero. Hence \(U\) gives a unitary correspondence.

Problem 5. To make \(f\) closest to \(\phi\) in \(L^2\) sense, we just take the corresponding coefficients to be the Fourier coefficients with respect to \(L^2\) basis (not necessarily normal) \(\{1, \sin(x), \cos(x), \sin(2x), \cos(2x), \ldots\}\) on \([-\pi, \pi]\). We do the following calculation:
\[
\int_{-\pi}^{\pi} 1 = 2\pi, \quad \int_{-\pi}^{\pi} |x| dx = \pi^2,
\]
\[
\int_{-\pi}^{\pi} |x| \cos x dx = -4, \quad \int_{-\pi}^{\pi} \cos^2(x) dx = \pi,
\]
\[
\int_{-\pi}^{\pi} |x| \cos(2x) dx = 0, \quad \int_{-\pi}^{\pi} \cos^2(2x) dx = \pi.
\]

And since \(\phi(x) = |x|\) is even function on \([-\pi, \pi]\), its sine Fourier coefficients are all 0. So we conclude
\[
a_0 = \frac{\pi}{2}, a_1 = -\frac{4}{\pi}, a_2 = 0, b_1 = b_2 = 0.
\]

Problem 6. We use Zorn’s lemma, which can be shown to be equivalent to the Axiom of Choice. Recall Zorn’s lemma states that every partially ordered set contains a maximal element. In other words, if \((X, \leq)\) is a partially ordered set, there exists some element \(m\) such that \(m \leq x \Rightarrow m = x\). In our case, let \(X\) be the set of all linearly independent subsets of the Hilbert space \(H\), and we partially order this set by inclusion (i.e. if \(S_1, S_2\) are linearly independent sets and \(S_1 \subset S_2\) we set \(S_1 \leq S_2\)). By Zorn’s lemma, this set has a maximal element \(S = \{e_\alpha\}\). It is easy to see that this maximal linearly independent set is an algebraic basis, for if there were some \(\hat{e} \in H\) which were not expressible as a finite linear combination of the \(e_\alpha\)’s, then we could form a new linearly independent set \(\{\hat{e}\} \cup S \supset S\), which contradicts the maximality of \(S\). Now select (using induction and the axiom of choice, for example) a denumerable subset \(\{e_n\} \subset \{e_\alpha\}\), and define a functional \(\ell\) on \(H\) such that \(\ell(e_n) = n\) and \(\ell(e_\alpha) = 0\) if \(e_\alpha \notin \{e_n\}\). Since \(\ell\) is defined on an algebraic basis, it extends linearly to all of \(H\). Since it is clearly not bounded, we are done.

Problem 7.
(i) The Fourier sine series for the given function is \(\sum_{n=1}^{\infty} B_n \sin \left(\frac{n\pi x}{\ell} \right) \), where \(B_n \) is given by
\[
B_n = \frac{2}{\ell} \int_{0}^{\ell} x(\ell - x) \sin \left(\frac{n\pi x}{\ell} \right) \, dx = \begin{cases}
0 & \text{if } n \text{ even} \\
\frac{8\ell^2}{n^2 \pi^2} & \text{if } n \text{ odd}
\end{cases}
\]
One may thus write the Fourier sine series for the given function as
\[\sum_{k=0}^{\infty} \frac{8\ell^2}{(2k+1)^3 \pi^3} \sin \left(\frac{(2k+1)\pi x}{\ell} \right). \]
Since the given function is clearly in \(L^2 \), this series converges to the given function on \([0, \ell]\), and to its odd and \(2\ell\)-periodic extension on all of \(\mathbb{R} \).

(ii) The Fourier cosine series for the given function is given by
\[A_0 + \sum_{n=1}^{\infty} A_n \cos \left(\frac{n\pi x}{\ell} \right), \]
where \(A_0 \) is given by
\[A_0 = \frac{1}{\ell} \int_{0}^{\ell} x(\ell - x) \, dx = \frac{\ell^2}{6} \]
and the other coefficients are given by
\[A_n = \frac{2}{\ell} \int_{0}^{\ell} x(\ell - x) \cos \left(\frac{n\pi x}{\ell} \right) \, dx = \begin{cases}
-\frac{4\ell^2}{n^2 \pi^2} & \text{if } n \text{ even} \\
0 & \text{if } n \text{ odd}
\end{cases} \]
One may thus write the Fourier cosine series for the given function as
\[\frac{\ell^2}{6} - \sum_{k=0}^{\infty} \frac{4\ell^2}{n^2 \pi^2} \cos \left(\frac{(2k+1)\pi x}{\ell} \right). \]
We similarly conclude that this series converges to the given function on the interval \([0, \ell]\), and its even and \(2\ell\)-periodic extension on all of \(\mathbb{R} \).

(iii) We conclude the decay rate of Fourier sine coefficients is approximately \(\sim n^{-3} \) while the decay rate of Fourier cosine series is approximately \(\sim n^{-2} \), so the sine coefficients decay faster. Observe from above that the even extension of \(\phi \) is only continuous on \(\mathbb{R} \) but not differentiable (at \(x = 0 \)), and its odd extension is continuously differentiable on all \(\mathbb{R} \). Therefore Fourier cosine series \(\phi_c \) is only continuous on \(\mathbb{R} \) but not differentiable, while the Fourier sine series \(\phi_s \) is \(C^1 \). This leads us to suspect (correctly, in this case) that a higher degree of differentiability usually indicates a more rapid decay in the Fourier coefficients. And the fact that you don’t need to know is, the biggest possible \(k \) so that the Fourier series coefficients \(a_n \) satisfies \(n^k a_n \) is bounded is equal to the biggest order that the function \(f \) is (weakly) differentiable.
Problem 8.

(i) Observe that \(\phi(\ell) = \ell \), and hence the \(L^2 \)-limit of the Fourier sine series is discontinuous at the points \(\{ n\ell : n \in \mathbb{Z} \} \). Hence the convergence of the Fourier sine series cannot be uniform, since the uniform limit of continuous functions is continuous.

(ii) We know that the \(L^2 \)-limit of the Fourier sine series \(\phi_s \) for \(\phi \) is an odd \(2\ell \)-periodic function which is smooth away from the points \(\{ n\ell : n \in \mathbb{Z} \} \). However, one easily verifies that \(\phi_s \) is differentiable at these points since \(\phi(0) = \phi(\ell) = 0 \). Hence \(\phi_s \in C^1(\mathbb{R}) \) and therefore Theorem 0.2 of the handout implies that the Fourier sine series converges uniformly.

Problem 9.

(i) Clearly, we have
\[
|C_n| = \frac{1}{2\pi} \left| \int_{-\pi}^{\pi} e^{-inx} \phi(x) dx \right| \leq \frac{1}{2\pi} \int_{-\pi}^{\pi} |e^{-inx} \phi(x)| dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} |\phi(x)| dx,
\]
and this last expression is simply \(\frac{1}{2\pi} \| \phi \|_{L^1} \).

(ii) First observe that it follows directly from the definition of \(C_n \) that
\[
-2\pi C_n = \int_{-\pi}^{\pi} \phi(x)e^{-inx}e^{i\pi} dx = \int_{-\pi}^{\pi} \phi(x)e^{-in(x-\pi/n)} dx
\]
\[
= \int_{-\pi}^{\pi} \phi_{\text{per}}(x + \pi/n)e^{-inx} dx.
\]
Subtracting this expression from the one given for \(C_n \), we find that
\[
4\pi C_n = \int_{-\pi}^{\pi} [\phi_{\text{per}}(x + \pi/n) - \phi(x)] e^{-inx} dx \Rightarrow 4\pi |C_n| \leq \| \phi^{(\pi/n)} \|_{L^1}.
\]
Here, of course, \(\phi^{(\pi/n)}(x) = \phi_{\text{per}}(x + \pi/n) \). A standard argument using the triangle inequality on \(L^1 \) and the density of continuous functions in \(L^1([-\pi, \pi]) \) shows that \(\| \phi^{(\pi/n)} \|_{L^1} \to 0 \) as \(n \to \infty \), and hence we conclude \(|C_n| \to 0 \) as \(n \to \infty \), so we are done.

Problem 10. Consider the set of all sequences of continuous functions which are Cauchy with respect to the usual \(L^1 \) norm (defined with respect to the Riemann integral), and let \(L^1([0,1]) \) denote the set of equivalence of all Cauchy sequences, where we say two sequences \(\{a_n\}, \{b_n\} \) are equivalent if \(\{a_1, b_1, a_2, b_2, \ldots\} \) is
Cauchy. We define $L^2([0,1])$ analogously. Thus if $\{\varphi_n\}$ represents an element of L^2, given any $\epsilon > 0$ there is some N such that

$$\int_0^1 |\varphi_m - \varphi_n|^2 < \epsilon$$

for every pair $m,n \geq N$. But for such pairs, an easy application of Cauchy-Schwarz gives

$$\int_0^1 |\varphi_m - \varphi_n| \leq \left(\int_0^1 |\varphi_m - \varphi_n|^2\right)^{1/2} \left(\int_0^1 1^2\right)^{1/2} < \sqrt{\epsilon}.$$

We thus conclude that $\{\varphi_n\}$ is Cauchy with respect to the L^1-norm we have defined, and so $L^2 \subset L^1$. This implies that the identity map ι on $C([0,1])$ extends to a map $L^2 \to L^1$ (where, as usual, a continuous function ψ is represented in either completion by the sequence $(\psi) := \{\psi, \psi, \psi, \ldots\}$). Moreover, by a similar argument one concludes that ι is continuous as a map $L^2 \to L^1$, for it again follows from the Cauchy-Schwarz inequality and the compactness of the interval $[0,1]$ that

$$\int_0^1 |\varphi| \leq \left(\int_0^1 |\varphi|^2\right)^{1/2},$$

and hence

$$\|\{\varphi_n\}\|_{L^1} = \lim_{n \to \infty} \int_0^1 |\varphi_n| \leq \lim_{n \to \infty} \left(\int_0^1 |\varphi_n|^2\right)^{1/2} = \|\{\varphi_n\}\|_{L^2},$$

where we are abusing notation slightly to denote by “$\{\varphi_n\}$” the equivalence class containing the sequence $\{\varphi_n\}$ in either completion. Hence the extension $\iota : L^2 \to L^1$ is bounded and thus continuous.

To show that this is the unique continuous extension of $C([0,1])$ with these properties, suppose that ι' is another. Indeed we have

$$\|\iota\{\varphi_n\} - \iota'\{\varphi_n\}\|_{L^1} \leq \|\iota\{\varphi_n\} - \iota(\varphi) + \iota'(\varphi) - \iota'(\varphi_n)\|_{L^1}$$

$$\leq \|\iota\{\varphi_n\} - \iota(\varphi)\|_{L^1} + \|\iota'(\varphi) - \iota'(\varphi_n)\|_{L^1} \to 0$$

as $k \to \infty$ by the continuity of ι, ι'. We thus conclude that $\iota = \iota'$.

To show that $\iota : L^2 \to L^1$ is injective, we argue as in the hint. Supposing ι were not injective, we could find some $\{\varphi_n\}$ such that $\|\{\varphi_n\}\|_{L^2} \neq 0$ while $\|\{\varphi_n\}\|_{L^1} = 0$. One easily checks that this implies there is some continuous function $\varphi_m \in \{\varphi_n\}$ such that, for every $n \geq N$, we have $\langle \varphi_n, \varphi_m \rangle_{L^2} \geq \delta > 0$. Now define a map $F : L^2 \to C$ by $\{\psi_n\} \mapsto \lim_{n \to \infty} \langle \psi_n, \varphi_m \rangle$. It’s easy to check that this map is well-defined. Moreover, since φ_m is continuous on $[0,1]$, there is some $M > 0$ such that $|\varphi_m| \leq M$, and hence

$$|F(\{\psi_n\})| = \left|\lim_{n \to \infty} \int_0^1 \psi_n \varphi_m\right| \leq \lim_{n \to \infty} \int_0^1 |\psi_n| |\varphi_n| \leq M \|\{\psi_n\}\|_{L^1}.$$

This proves that F extends to a continuous map $L^1 \to C$. Notice that if $\|\{\varphi_n\}\|_{L^1} = 0$, then $F(\{\varphi_n\}) = 0$, but this contradicts the definition of φ_m. This contradiction proves that $\iota : L^2 \to L^1$ is injective.