Math 172
Problem Set 3 Solutions

1.4a Denote by \(\hat{C}_n \) the set obtained after the \(n \)th step in the construction of \(\hat{C} \). By construction, \(m(\hat{C}_n) = 1 - \sum_{k=1}^{n} 2^{k-1} \ell_k \). Each \(\hat{C}_n \) is obviously measurable, and hence so is \(\hat{C} = \cap_n \hat{C}_n \). It thus follows directly from monotonicity that \(m(\hat{C}) = 1 - \sum_{k=1}^{\infty} 2^{k-1} \ell_k \).

1.4b Each \(\hat{C}_n \) is the union of \(2^n \) intervals of equal length. Since a subinterval is removed from the center of each interval to obtain \(\hat{C}_{n+1} \) from \(\hat{C}_n \), for any \(x \in \hat{C} \) there is some point \(x_n \) belonging to one of the intervals removed in the \(n \)th step such that \(|x - x_n| < 2^{-n} \). Since \(x_n \notin \hat{C} \) for all \(n \), we conclude that the sequence \(\{x_n\} \) satisfies the given property.

1.4c The proof of this is essentially identical to the proof of exercise 1.1. Part b above implies that any open interval containing a point in \(\hat{C} \) also contains points outside of \(\hat{C} \), so this set contains no open intervals. On the other hand since each of the intervals comprising \(\hat{C}_n \) are of length less than \(2^{-n} \), we conclude that any neighborhood of a point \(x \in \hat{C} \) contains the endpoints of one such interval. Since these endpoints lie in \(\hat{C} \) by construction, \(x \) cannot be isolated and therefore \(\hat{C} \) is perfect.

1.4d A point belongs to \(\hat{C} \) if an only if it belongs to every \(\hat{C}_n \). Hence for each \(x \in \hat{C} \), we can produce a sequence \(\{a_i\} \) where \(a_i \in \{0, 1\} \) as follows. If \(x \) lies in the first interval of \(\hat{C}_1 \), set \(a_1 = 0 \) and set \(a_1 = 1 \) otherwise. The interval of \(\hat{C}_k \) in which \(x \) lies is broken into two intervals belonging to the collection of \(2^{k+1} \) disjoint intervals comprising \(\hat{C}_{k+1} \). If \(x \) lies in the first of these, set \(a_{k+1} = 0 \) and set \(a_{k+1} = 1 \) otherwise. Continuing in this way produces an infinite sequence of 1’s and 0’s for each \(x \), and the map sending points of \(\hat{C} \) to such sequences is easily seen to be a bijection. Since the latter set is uncountable, so is \(\hat{C} \).

17. Note first that since \(f_n \) is measurable, so is \(f_n/c \) for any \(c \neq 0 \). It follows that for any such \(c \), the set \(\{x : f_n(x)/c > 1/n\} \) is measurable. For a fixed \(n \), the set of points \(x \) where \(f_n(x)/c > 1/n \) holds for all \(c \) is precisely the set of all \(x \) satisfying \(|f_n(x)| = \infty \). This set has measure zero by assumption, so Corollary 3.3 in the text tells us that \(m(\{x : f_n(x)/c > 1/n\}) \to 0 \) as \(c \to \infty \). This means that for each \(n \), there is a \(c_n \) such that \(m(\{x : f_n(x)/c_n > 1/n\}) < 2^{-n} \). Having chosen
this sequence \(\{ c_n \} \), the set of points \(\{ x : f_n(x)/c_n \neq 0 \} \) \(\subset \{ x : f_n(x)/c_n > 1/n \) for infinitely many \(n \} = \cap_n \cup_{k \geq n} \{ x : f_k(x)/c_k > 1/k \}. \) However, this set has measure zero by the Borel-Cantelli lemma since the sum \(\Sigma_n 2^{-n} \) converges. This proves that \(f_n(x)/c_n \to 0 \) for almost every \(x \).

32a. By construction, \(\mathcal{N} \cap (\mathcal{N} + q) = \emptyset \) for any rational \(q \). This means that if \(E \) is any measurable subset, we also have \(E \cap (E + q) = \emptyset \). Now let \(\{ q_i \} \) be any infinite sequence of rational numbers in \([0,1]\). Since each translate of \(E \) is measurable, we see that

\[
m_{\infty} \left(\bigcup_{i=1}^{\infty} E + q_i \right) = \sum_{i=1}^{\infty} m(E + q_i) = \sum_{i=1}^{\infty} m(E) = \infty
\]

if \(m(E) > 0 \). This is a contradiction because the union of all these translates lives in \([-1,2] \), so we must have \(m(E) = 0 \).

32b. Since \(m_*(G) > 0 \), there must be some interval \(I = [n,n+1] \) for which \(m_*(G \cap I) > 0 \). Now let \(\{ q_k \} \) be an enumeration of the rationals in \([0,1]\). By the construction of the nonmeasurable set \(\mathcal{N} \) above, we know that \(I \subset \cup_i (\mathcal{N} + q_i) \), and so

\[
0 < m_*(G \cap I) \leq m_* \left(\bigcup_{i=1}^{\infty} G \cap (N + q_i) \right) \leq \sum_{i=1}^{\infty} m_*(G \cap (N + q_i)).
\]

There is thus some \(\epsilon \) such that \(m_*(G \cap (N + q_i)) > 0 \). But then \(G \cap (N + q_i) - q_i \) is a subset of \(\mathcal{N} \) with positive outer measure. This set must be nonmeasurable by part a, and therefore so is its translate by \(q_i \), which is a nonmeasurable subset of \(G \).

33. Assume that \(U \) is as in the hint. The complement of \(U \) in \(\mathbb{R} \) is measurable, and hence so is its complement in \([0,1]\), namely \(V = U^c \cap [0,1] \). By Theorem 3.2 in the text, \(1 = m_*([0,1]) = m_*(U \cup V) = m_*(U) + m_*(V) \). Hence \(m_*(V) > \epsilon \), but \(V \) is a subset of \(\mathcal{N} \) by definition, so the measurability of \(V \) contradicts exercise 32a above. We thus conclude that \(m_*(\mathcal{N}) = 1 \). Now if \(m_*(\mathcal{N}) = 0 \), it would be measurable by Property 2 of measurable sets, so we necessarily have \(m_*(\mathcal{N}) > 0 \). Hence \(m_*(\mathcal{N}) + m_*(\mathcal{N}^c) = 1 = m_*(\mathcal{N} \cup \mathcal{N}^c) \).

1.34 Let \(C_{\xi} \) and \(C_{\xi'} \) be two Cantor sets as in exercise 1.3. If \(C_{\xi}^k, C_{\xi'}^k \) have their usual meaning, we may write \(C_{\xi}^k \) as the union of disjoint closed intervals

\[
C_{\xi}^k = \bigcup_{n=1}^{2^k} I_n^k
\]
where the intervals are ordered in the standard way (namely if \(i < j \), \(x \in \hat{I}_i^k \), \(y \in \hat{I}_j^k \), then \(x < y \)). Similarly, \((C_k^\xi)^c\) is a disjoint union of open intervals

\[
(C_k^\xi)^c = \bigcup_{j=1}^{2^{j-1}} I_n^j.
\]

Each \(I_n^j \) has length \(\xi^j \), and each \(\hat{I}_i^k \) has length \(2^{-j}(1 - \xi)^j \). We define

\[
C_k^\xi = \bigcup_{n=1}^{2^k} \hat{J}_n^k \quad \text{and} \quad (C_k^\xi)^c = \bigcup_{j=1}^{2^{j-1}} J_n^j
\]

analogously.

Now we define \(F : C_k^\xi \to C_k^\xi \) by prescribing \(F|_{I_n^k} \) to be the increasing linear function such that \(F(I_n^k) = J_n^k \). Notice that \(F \) is defined almost everywhere on \([0, 1]\), and it is continuous, increasing, and injective on its domain of definition. Next, we extend \(F \) to all of \([0, 1]\) as follows. We know from exercise 1.4 that for each \(x \in C_k^\xi \), we can always find either a strictly increasing sequence such that \(x_n \uparrow x \) or a strictly decreasing sequence such that \(x_n \downarrow x \) and \(x_n \in C_k^\xi \) for each \(n \). For any such sequence, \(\lim_{n \to \infty} F(x_n) \) exists since \(F \) is increasing and \([0, 1]\) is bounded. We define \(F(x) \) to be this limit. If we can show that this definition gives a well defined function on \([0, 1]\), we immediately have that \(F \) is injective because it is strictly increasing. Moreover, one easily checks that \(F(I_n^k) = \hat{J}_n^k \), and so the injectivity of \(F \) implies

\[
F(C_k^\xi) = F \left(\bigcap_{k=1}^{\infty} C_k^\xi \right) = \bigcap_{k=1}^{\infty} F(C_k^\xi) = \bigcap_{k=1}^{\infty} C_k^\xi = C_k^\xi.
\]

To prove that \(F \) is well defined, assume for contradiction that \(x_n \to x \) and \(x'_n \to x \) while \(\lim_{n \to \infty} F(x_n) < \lim_{n \to \infty} F(x'_n) \). There are two cases to consider:

Case 1: One of the limits lies in some \(J_n^k \). Suppose \(\lim_{n \to \infty} F(x_n) \) is this limit. This implies that \(\text{dist}(F(x_n), C_k^\xi) \geq \epsilon > 0 \) for sufficiently large \(n \), and hence for such an \(n \) all \(x_n \) lie in \(I_n^k \) and \(\text{dist}(x_n, C_k^\xi) \) is bounded away from zero. This, of course, is a contradiction since \(x_n \to x \in C_k^\xi \).

Case 2: Both limits lie in \(C_k^\xi \). In this case we may find some \(k \) such that \(\lim_{n \to \infty} F(x_n) \in \hat{J}_n^k := [a_1, b_1] \) and \(\lim_{n \to \infty} F(x'_n) \in \hat{J}_{n+1}^k := [a_2, b_2] \). Hence for any \(\epsilon > 0 \) there is some sufficiently large \(n \) such that \(F(x_n) < b_1 + \epsilon \) and \(F(x'_n) > a_2 - \epsilon \), and therefore

\[
F(x'_n) - F(x_n) > a_2 - b_1 - 2\epsilon = (\xi')^k - 2\epsilon \Rightarrow x'_n - x_n > \left(\frac{\xi}{\xi'} \right)^k (\xi'^k - 2\epsilon).
\]

Since \(\epsilon \) was arbitrary, we can choose it so that this quantity is positive, which is a contradiction because \(x'_n - x_n \to 0 \). This proves that \(F \) is well defined.
Next we will show that F is continuous. Note that the continuity of F together with the fact that $F(0) = 0$ and $F(1) = 1$ implies that F is surjective by the intermediate value theorem. We again need to check three cases to ensure continuity of F at x:

Case 1: $x \in C^b_\ell$. In this case continuity is obvious because F is linear in a neighborhood of x.

Case 2: $x \in C_\ell$ and x is not an endpoint of some interval \hat{I}_{im} for any k, m. First note that this case covers points such as the real number with the ternary expansion .0202020202... in the standard Cantor set. In this case we can find a sequence $\{(k_i, m_i)\}$ such that $x \in \text{int}(\hat{I}_{im})$ for all i (here int() denotes the interior). Hence given any $\epsilon > 0$, choose k_i such that $2^{-k_i}(1 - \xi^i)^{k_i} < \epsilon$. Then there exists some $\delta > 0$ such that $|x - x'| < \delta$ implies $x' \in \text{int}(\hat{I}_{im})$. Hence $F(x), F(x') \in \hat{I}_{im}$, and therefore $|F(x) - F(x')| < 2^{-k_i}(1 - \xi^i)^{k_i} < \epsilon$.

Case 3: $x \in C_\ell$ and x is an endpoint of some \hat{I}_{im}. Note that this implies that x is an endpoint of \hat{I}_{im} for an increasing sequence of k's. Suppose x is a left endpoint. For any $\epsilon > 0$, if $x' < x$ we can use the definition of F on the open interval adjacent to \hat{I}_{im} explicitly compute that if $x - x' < (\xi/\xi^i)^k \epsilon$, then $F(x) - F(x') < \epsilon$. On the other hand, if $x' > x$, we again have that $x' \in \text{int}(\hat{I}_{im})$ whenever $x' - x$ is sufficiently small, so we can simply apply the same argument as in the previous case to that F is continuous from the right. An analogous argument applies if x is a right endpoint.

Now that we have shown $F : [0, 1] \to [0, 1]$ to be continuous, by the observations above we conclude that F has the desired properties.

1.35 Let Φ be as in the hint, and first note that $\Phi(N)$ is measurable since it is the subset of a set with outer measure zero. Hence if $f = \chi_{\Phi(N)}$, $f \circ \Phi$ cannot be measurable. If it were, we would have $(f \circ \Phi)^{-1}([1, \infty)) = \Phi^{-1} \circ f^{-1}([1, \infty)) = \Phi^{-1}(\Phi(N)) = N$ as a measurable set, a contradiction.

Next consider the set $\Phi(N)$. We have already observed that this set is measurable, and we claim that it is not Borel. Indeed, since Φ is a continuous function, the inverse image of any open set is open. Moreover, countable unions and intersections and complements are also preserved by Φ^{-1}, and so the inverse image of any set in the σ-algebra generated by the open sets under these operations (i.e. Borel sets) lands in the same σ-algebra (i.e. Borel algebra) under Φ^{-1}. However, all Borel sets are measurable, and therefore $N = \Phi^{-1}(\Phi(N))$ is not Borel. We thus conclude that $\Phi(N)$ is not Borel.

2.3 Let $I = [a, b]$. The hint is equivalent to the fact that I contains some point $(2n + 1)\pi$ where $n \in \mathbb{Z}$. Using the additivity property of Proposition 1.6 (of
Chapter 2 in the text), we have
\[\int_a^b f = \int_a^{(2n+1)\pi} f + \int_{(2n+1)\pi}^b f. \] (0.1)

Now use the translational invariance of the Lebesgue integral to conclude
\[\int_a^{(2n+1)\pi} f = \int_{a-2\pi}^{\pi} f \quad \text{and} \quad \int_{(2n+1)\pi}^b f = \int_{-\pi}^{b-(2n+2)\pi} f. \] (0.2)

However, we know that \((b - (2n + 2)\pi) - (a - 2n\pi) = b - a - 2\pi = 0\), and therefore we use (0.1), (0.2), and the additivity property again to conclude
\[\int_a^b f = \int_{a-2\pi}^{\pi} f + \int_{-\pi}^{b-(2n+2)\pi} f = \int_{-\pi}^{\pi} f. \]

2.6a We follow the hint and define a function
\[g = \sum_{n=2}^{\infty} \frac{n}{n^3} \chi_{[n,n+1/n^3)} \Rightarrow \int_{\mathbb{R}} g = \sum_{n=2}^{\infty} n \cdot m \left(\left[n, n + \frac{1}{n^3} \right) \right) = \sum_{n=2}^{\infty} \frac{1}{n^2} < \infty. \]
g is thus integrable, and clearly \(\limsup_{x \to \infty} g = \infty\), but \(g\) is not continuous. We define a new function \(\hat{f}\) on the interval \([n - 1/2^n, n]\) to be linear interpolation between the points \((n - 1/2^n, 0)\) and \((n, n)\), and similarly define \(\hat{f}\) on the interval \([n + 1/n^3, n + 1/n^3 + 1/2^n]\) to be linear interpolation between the points \((n + 1/n^3, n)\) and \((n + 1/n^3 + 1/2^n, 0)\). If we set \(\hat{f} = g\) everywhere else, it is easy to see that \(\hat{f}\) is continous and \(\limsup_{x \to \infty} \hat{f} = \infty\). Moreover, it is integrable because
\[\int_{\mathbb{R}} |\hat{f}| = \int_{\mathbb{R}} \hat{f} = \int_{\mathbb{R}} g + \sum_{n=2}^{\infty} \frac{1}{2^n} = \int_{\mathbb{R}} g + \frac{1}{2} < \infty. \]

Finally, in order to define a function \(f\) with this property which is everywhere positive, we can simply take any positive integrable function \(h\) (take \(h(x) = e^{-x^2}\), for example) and set \(f = \hat{f} + h\). Clearly \(\limsup_{x \to \infty} f = \infty\), while
\[\|f\|_{L^1} \leq \|\hat{f}\|_{L^1} + \|h\|_{L^1} < \infty. \]

\(f\) is thus integrable so we are done.

2.6b Suppose \(\limsup_{x \to \infty} f \geq c > 0\), and we had a uniform continuity condition such as for every \(x\) and every \(\epsilon > 0\), there exists a uniform \(\delta > 0\) such that \(|x - x'| < \delta \Rightarrow |f(x) - f(x')| < \epsilon\). Now the \(\limsup\) condition implies that there exists a sequence of points \(\{x_n\}\) such that \(x_{j+1} - x_j > 1\) (so that \(x_n \to \infty\)) where \(f(x_n) \geq c/2\). Choosing \(\epsilon < c/4\), the uniform continuity condition then implies
that there is some $\delta > 0$ such that $f > c/4$ on each interval $(x_n - \delta, x_n + \delta)$. But this implies
\[f > \frac{\sum_{n=1}^{\infty} c}{4} \chi_{(x_n - \delta, x_n + \delta)} \Rightarrow \int_{\mathbb{R}} |f| > \frac{\sum_{n=1}^{\infty} 2\delta c}{4} = \infty. \]
Hence f is not integrable. The contradiction implies that if f is integrable, we must have $\limsup_{x \to \infty} f = 0$. Applying the same argument to $-f(x)$ and $f(-x)$ implies $\lim_{|x| \to 0} f = 0$.

2.9 Since $f \geq 0$, we have by construction that $f \geq \alpha \chi_{E_\alpha}$. Now since f is integrable and thus measurable, the set E_α is measurable, so we conclude that
\[\infty > \int_{\mathbb{R}^d} |f| = \int_{\mathbb{R}^d} f \geq \int_{\mathbb{R}^d} \alpha \cdot \chi_{E_\alpha} = \alpha \cdot m(E_\alpha) \Rightarrow m(E_\alpha) \leq \frac{1}{\alpha} \int_{\mathbb{R}^d} f. \]

2.10 We first verify that the first sum is finite if and only if the second is. One direction is trivial. Namely, E_{2k} is the disjoint union $F_k \cup F_{k+1} \cup \cdots$, so in particular
\[F_k \subset E_{2k} \Rightarrow m(F_k) \leq m(E_{2k}) \Rightarrow \sum_{k=-\infty}^{\infty} 2^k m(F_k) \leq \sum_{k=-\infty}^{\infty} 2^k m(E_{2k}). \]

For the other direction, observe that since $m(E_{2k}) = m(F_k) + m(F_{k+1}) + \cdots$, we have
\[\sum_{n=-N}^{N} 2^n m(E_{2n}) = \sum_{n=-N}^{N} 2^n \left(\sum_{k=-\infty}^{\infty} m(F_k) \right) = \sum_{k=-N}^{\infty} \left(\sum_{j=-\infty}^{\inf(N,k)} 2^j \right) m(F_k). \]
So letting $N \to \infty$, we find that
\[\sum_{n=-\infty}^{\infty} m(E_{2n}) = \sum_{k=-\infty}^{\infty} \left(\sum_{j=-\infty}^{\inf(N,k)} 2^j \right) m(F_k) = 2 \sum_{k=-\infty}^{\infty} 2^{k+1} m(F_k) = 2 \sum_{k=-\infty}^{\infty} 2^k m(F_k), \]
proving the other direction.

To show that $f \geq 0$ being integrable implies that the first (and thus second) sum is finite, first observe that each F_k is measurable by the measurability of f. Now by construction, $f > 2^k \chi_{F_k}$ for all k. Since the F_k’s are disjoint, we thus have
\[\int_{\mathbb{R}^d} f > \int_{\mathbb{R}^d} \sum_{k=-N}^{N} 2^k \chi_{F_k} = \sum_{k=-N}^{N} 2^k m(F_k). \]
Taking $N \to \infty$ shows that the first sum is bounded above by the integral of f, and so the first sum and second sums are finite. On the other hand, it’s clear that
\[f \leq \sum_{k=-\infty}^{\infty} 2^{k+1} \chi_{F_k} \Rightarrow \int_{\mathbb{R}^d} f \leq \sum_{k=-\infty}^{\infty} 2^{k+1} m(F_k), \]
but we just showed that this last quantity is equal to the value of the second sum. So if the second sum is finite, f must be integrable.

Next we show that the function

$$f(x) = \begin{cases} \frac{|x|^a}{d} & \text{if } |x| < 1 \\ 0 & \text{otherwise} \end{cases}$$

is integrable if and only if $a < d$. We need only show that the second sum in the first part of the problem is finite if and only if this is true. Now for $k \leq 0$, $E_{2k} = B_1$, the closed unit ball, so in this case $m(E_{2k}) = \omega_d$. For $k > 1$, we have $E_{2k} = \{x : |x|^{-a} > 2^k\} = \{x : |x| < 2^{-k/a}\}$, which is the open unit ball of radius $2^{-k/a}$. Hence

$$\sum_{k=-\infty}^{\infty} 2^k m(E_k) = \sum_{k=0}^{0} 2^k \omega_d + \sum_{k=1}^{\infty} \omega_d \frac{1}{2} = \omega_d \left(\frac{2}{1 - 2^{-k/a}}\right).$$

This last sum is a geometric series, which converges if and only if $1 - 2^{-k/a} < 0$ if and only if $a < d$.

The argument for integrability of the second function

$$g(x) = \begin{cases} \frac{|x|^{-b}}{d} & \text{if } |x| > 1 \\ 0 & \text{otherwise} \end{cases}$$

is similar. g is obviously not integrable if $b \leq 0$, so assume $b > 0$. In this case $E_{2k} = \emptyset$ for $k \geq 0$. Moreover, for $k < 0$, we have $E_{2k} = \{x : |x|^{-b} > 2^k\} = B_2 \cdot 2^{-k/b} - B_1$. We thus have $m(E_{2k}) = \omega_d (2^{-kd/b} - 1)$, so that

$$\sum_{k=-\infty}^{\infty} 2^k m(E_{2k}) = \sum_{k=0}^{0} 2^k \omega_d (2^{-kd/b} - 1) = \omega_d \left(\frac{2}{1 - 2^{-k/b}}\right) - \omega_d.$$

Again, the final sum is a geometric series which converges if and only if $1 - 2^{-k/b} > 0$ if and only if $a < d$.

2.16 Given a measurable set E and a d-tuple $(\delta_1, \ldots, \delta_d)$ with each $\delta_i > 0$, we define the set $E^\delta = \{(\delta_1 x_1, \ldots, \delta_d x_d) : (x_1, \ldots, x_d) \in E\}$. Recall that we showed in exercise 1.7 (in problem set 1) that

$$m(E^\delta) = \delta_1 \cdots \delta_d m(E).$$

A nearly identical proof shows that if we let $\delta_i < 0$ as well, we in fact have

$$m(E^\delta) = |\delta_1| \cdots |\delta_d| m(E).$$

Now first suppose $f > 0$. It follows from Theorem 4.1 in Chapter 1 of the text that we may find an increasing sequence of nonnegative simple functions s_i which converges to f pointwise. It then follows from the dominated convergence theorem that f is integrable.
theorem that, in fact, \(s_i \to f \) in \(L^1 \). Of course the pointwise convergence implies that \(s_i(\delta x) \to f(\delta x) = f^\delta(x) \) for all \(x \) as well, so we again conclude from the dominated convergence theorem that \(s_i^\delta \to f^\delta \) in \(L^1 \). Next observe that

\[
s_i = \sum_{j=1}^{N_i} a_{ij} \chi_{E_{ij}} \Rightarrow s_i^\delta = \sum_{j=1}^{N_i} a_{ij} \delta \chi_{E_{ij}} = \sum_{j=1}^{N_i} a_{ij} \chi_{E_{ij}^{1/\delta}},
\]

where we are using the notation \(E_{ij}^{1/\delta} = \{(\delta_1^{-1}x_1, \ldots, \delta_d^{-1}x_d) : (x_1, \ldots, x_d) \in E \} \). We have

\[
\int_{\mathbb{R}^d} \chi_{E_{ij}^{1/\delta}} = m(E_{ij}^{1/\delta}) = |\delta_1|^{-1} \cdots |\delta_d|^{-1} m(E),
\]

and therefore

\[
\int_{\mathbb{R}^d} s_i^\delta = |\delta_1|^{-1} \cdots |\delta_d|^{-1} \int_{\mathbb{R}^d} s_i.
\]

The \(L^1 \)-convergence of \(s_i^\delta \to f^\delta \) thus implies that

\[
\int_{\mathbb{R}^d} f^\delta = |\delta_1|^{-1} \cdots |\delta_d|^{-1} \int_{\mathbb{R}^d} f.
\]

Of course the general case follows by applying this argument to both \(f_+ \) and \(f_- \) separately.