MATH 131P: PRACTICE FINAL
DECEMBER 12, 2012

This is a closed book, closed notes, no calculators/computers exam.
There are 6 problems. Write your solutions to Problems 1-3 in blue book #1, and your
solutions to Problems 4-6 in blue book #2 to facilitate grading. You may solve the problems in
any order. Total score: 150 points. Problem 4(iv) is extra credit only; do it only if you are done
with the rest of the exam.

Problem 1. (20 points) Solve the PDE
\[u_x + 2x u_y = 2u, \quad u(0, y) = y^2, \]
and sketch the characteristics of the PDE.

Problem 2. (20 points) Consider the PDE
(i) \(u_{xx} - u_{xy} - 2u_{yy} = 0, \)
(ii) \(u_{xx} + 3u_{xy} + 3u_{yy} = 0. \)
What is the type of these PDE? One of the PDE is hyperbolic. Find its general solution.

Problem 3. Consider Laplace’s equation on the rectangle \(R: \)
\[u_{xx} + u_{yy} = 0 \text{ on } R = (0, a) \times (0, b), \]
with boundary conditions \(u(0, y) = 0, \ u(a, y) = y, \ u_x(x, 0) = 0, \ u_y(x, b) = 0. \)
(i) (7 points) Interpret the PDE and the boundary conditions: if \(u \) is the steady state
temperature on a metal plate, what is imposed at the various edges of the plate? Draw
a picture.
(ii) (12 points) Use separation of variables to solve the PDE. Find all coefficients in your
expansion explicitly.

Problem 4. Consider the wave equation \(u_{tt} = c^2 u_{xx} \) on the half-line, i.e. on \((0, \infty), \times \mathbb{R}, \)
with homogeneous Neumann boundary condition \(u_x(0, t) = 0, \) and with initial conditions \(u(x, 0) = f(x) \) and \(u_t(x, 0) = g(x) \) for \(x \geq 0. \)
(i) (12 points) Find \(u \) in terms of \(f, g. \) Make your answer as explicit and simplified as
possible.
(ii) (6 points) What are the time symmetric solutions \(u, \) i.e. solutions \(u \) such that \(u(x, t) = \\
u(x, -t) \) for all \(x, t? \)
(iii) (12 points) Suppose that \(c = 1, \) \(g \equiv 0, \) and \(f(x) = 1 \) for \(1 < x < 2, \) \(f(x) = 0 \) for \(x > 1 \)
and for \(0 < x < 1. \) Find \(u(0,t) \) explicitly for \(t = 1/2, \) \(t = 1, \) \(t = 3/2 \) and \(t = 2, \) and
sketch the profiles.
(iv) (Bonus: 15 points) Assume \(u \) is a solution of the wave equation with Neumann boundary
condition, and on finite intervals \([-T, T], \) \(u \) vanishes for large \(x. \) The kinetic energy of the
wave at time \(t \) is (up to a constant factor) \(K(t) = \frac{1}{2} \int_{-\infty}^{\infty} u_t(x, t)^2 \, dx, \) while the potential
energy is \(P(t) = \frac{1}{2} \int_{-\infty}^{\infty} c^2 u_x(x, t)^2 \, dx. \) Let \(E(t) = K(t) + P(t) \) be the total energy of the
wave, and show that \(\frac{dE}{dt} = 0, \) hence \(E \) is constant (independent of \(t). \)
You may use in any part of the problem that if \(v \) solves \(v_{tt} - c^2 v_{xx} = 0 \) on \(\mathbb{R} \times \mathbb{R}, \) then
\[v(x, t) = \frac{v(x - ct, 0) + v(x + ct, 0)}{2} + \frac{1}{2c} \int_{x-ct}^{x+ct} u_t(x', 0) \, dx'. \]

Problem 5. Consider Laplace’s equation \(\Delta u = 0 \) on the annular region \(A(1, 2) \) with inner and
outer radii \(r_1 = 1 \) and \(r_2 = 2, \) namely
\[\Delta u = 0, \quad u(r_1, \theta) = f(\theta), \quad u(r_2, \theta) = g(\theta), \quad \theta \in [0, 2\pi]. \]
f, g given functions. Recall that \(\Delta u = u_{rr} + r^{-1}u_r + r^{-2}u_{\theta\theta} \) in polar coordinates.
(i) (13 points) If \(f(\theta) = a \) and \(g(\theta) = b \) are constants, find \(u \), and sketch the graph of \(u \) in each of the cases \(a > b \), \(a = b \) and \(a < b \). What is the maximum value of \(u \) on the annulus?

(ii) (12 points) If \(f(\theta) = \sin(2\theta) \) and \(g(\theta) = \sin(3\theta) \), find \(u \).

Problem 6. The purpose of this problem is to solve \(\Delta u = f \) on \(\mathbb{R}^3 \) when \(f(\vec{x}) \) vanishes for large \(|\vec{x}| \), more precisely to find the decaying solution \(u \) of this equation.

(i) (7 points) Fourier transform the PDE to obtain the solution \(u \) as an inverse Fourier transform.

(ii) (5 points) Rewrite the inverse Fourier transform so that \(u \) is a convolution of \(f \) with a function which is the inverse Fourier transform of an explicit function.

(iii) (8 points) Calculate the Fourier transform of the function \(g(\vec{x}) = \frac{1}{|\vec{x}|} \) by considering \(g_\epsilon(\vec{x}) = e^{-\epsilon |\vec{x}|} \frac{1}{|\vec{x}|} \) first for \(\epsilon > 0 \), computing the Fourier transform of \(g_\epsilon \), and letting \(\epsilon \to 0 \).

(iv) (5 points) Write \(u \) as an explicit convolution without any (inverse) Fourier transforms. Recall that the volume integral in \(\mathbb{R}^3 \) takes the form

\[
\int_{\mathbb{R}^3} h(\vec{x}) \, d\vec{x} = \int_0^\infty \int_0^\pi \int_0^{2\pi} h(r, \theta, \phi) r^2 \sin \theta \, d\phi \, d\theta \, dr
\]

in spherical coordinates \((r, \theta, \phi)\) where \(x = r \sin \theta \cos \phi, \ y = r \sin \theta \sin \phi, \ z = r \cos \theta \).