Do the following problems from the textbook: Lesson 17: 1,3,4, Lesson 18.1,3, Lesson 19.1,2, as well as the following problem:

Problem 1. Calculate the Fourier transform of the function \(f(x) = e^{-ax^2}, a > 0, \) as follows. First rewrite the integral

\[
\frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-i\xi x} e^{-ax^2} \, dx = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-(ax^2 + i\xi x)} \, dx
\]

by completing the square in \(x \). Pull out a Gaussian factor in \(\xi \), i.e. \(e^{-b\xi^2} \) for some \(b > 0 \), so that you are left with an integral of the form

\[
\frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-a(x+i\alpha \xi)^2} \, dx
\]

for some \(\alpha \). Then show that this is independent of \(\xi \) by showing that its \(\xi \) derivative is 0: when you differentiate, do it under the integral sign, and rewrite to have an expression (still in the integrand) that is of the form \(\frac{\partial}{\partial \xi} \) for some \(g \) which decays as \(|x| \to \infty \), so by the fundamental theorem of calculus the integral (in \(x \)!) is 0. Finally, evaluate

\[
\frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-a(x+i\alpha \xi)^2} \, dx
\]

when \(\xi = 0 \): there is a standard trick in calculus for doing this. (Take the square of this expression, writing the two factors as integrals in different variables \(x \) and \(y \), and convert to polar coordinates.)