1 Hamiltonians

Recall. Last time we considered the classical physical system on \((\mathbb{R}^n \times \mathbb{R}^n, \omega_0 = \sum_{j=1}^n dx_j \wedge dy_j)\) governed by the energy \(H(x,y) := \frac{1}{2}|y|^2 + V(x)\).

In that case \(dH = \frac{1}{2} \sum_{j=1}^n \left(y_j dy_j + \frac{\partial V}{\partial x_j} dx_j\right)\), so using \(i_X \omega = dH\) we got that
\[
X = \frac{1}{2} \sum_{j=1}^n \left(y_j \frac{\partial}{\partial x_j} - \frac{\partial V}{\partial x_j} \frac{\partial}{\partial y_j}\right).
\]
The flow of \(X\) defines Hamilton’s equations:
\[
\begin{cases}
\frac{\partial x_j}{\partial t} &= y_j = \frac{\partial H}{\partial y_j}, \\
\frac{\partial y_j}{\partial t} &= -\frac{\partial V}{\partial x_j} = -\frac{\partial H}{\partial x_j}.
\end{cases}
\]

Recall. In general, given a function \(H : M \rightarrow \mathbb{R}\) called the Hamiltonian, one gets a vector field \(X_H\) via \(i_{X_H} \omega = dH\) which defines a flow \(\phi_t\) on \(M\) (the flow is defined globally assuming \(M\) is compact).

Theorem 1 (Conservation of the Hamiltonian). The Hamiltonian \(H\) is a conserved quantity under the flow \((\phi_t)\) or equivalently

- \(\frac{d}{dt} \phi_t^* H = 0\), which is the same as
- \(\phi_t\) preserves the level sets of \(H\), which in turn is the same as
- the trajectory of every point lies on a level set of \(H\).

Proof.
\[
\frac{d}{dt} \phi_t^* H = \phi_t^* \mathcal{L}_{X_H} \omega = \phi_t^* i_{X_H} \omega = \phi_t^* i_{X_H} i_{X_H} \omega = 0.
\]

We can generalize the discussion about Hamiltonian flows to the case of a time-dependent Hamiltonian, i.e. a smooth function \(H : \mathbb{R} \times M \rightarrow \mathbb{R}\) viewed as a 1-parameter family \((H_t)_{t \in \mathbb{R}}\) of Hamiltonians given by \(H_t(x) := H(t,x)\).

Given such a time dependent Hamiltonian \(H_t\), we define its (time-dependent) Hamiltonian vector field \(X_t := X_{H_t}\) as before by \(i_{X_t} \omega = dH_t\) which in turn defines a flow \((\phi_t)\) via the ODE
\[
\frac{d}{dt} \phi_t = X_t \circ \phi_t \tag{1}
\]
with the initial condition $\phi_0 = \text{id}_M$.

Definition 1. A symplectomorphism $\phi : (M, \omega) \to (M, \omega)$ which is a time t_0 map ($\phi = \phi_{t_0}$) for some $t_0 \in \mathbb{R}$ of some Hamiltonian flow (ϕ_t) is called a Hamiltonian symplectomorphism.

Note. After scaling time and H we can assume that any Hamiltonian symplectomorphism is a time 1 map ϕ_1 of some (time-dependent) Hamiltonian.

Proposition 2. The Hamiltonian symplectomorphisms of (M, ω) form path-connected normal subgroup Ham(M, ω) of Sympl(M, ω).

Proof. The space of Hamiltonian symplectomorphisms is obviously path connected: the flow $(\phi_t)_{t \in [0,1]}$ defines a path of Hamiltonian symplectomorphisms from id_M to ϕ_1.

Note that if $\phi \in \text{Diff}(M)$ and (ϕ_t) is a path in Diff(M), then the vector field X_t associated to ϕ_t (via the ODE (1)) is the same as the vector field associated to $\phi_t \circ \phi = \phi^*(\phi_t)$ via the same ODE.

Assume that the flows ϕ_t and ψ_t are generated by the Hamiltonians H_t and G_t, respectively. Then $\phi_t \circ \psi_t$ is generated by $H_t + G_t \circ \phi_t^{-1}$ and ϕ_t^{-1} is generated by $-H_t \circ \phi_t$ (check it!). Hence, Ham(M, ω) is, indeed, a subgroup of Sympl(M, ω).

Finally, we show that Ham(M, ω) is normal in Sympl(M, ω). (Note: it not necessarily normal in Diff(M)!) Indeed, given $\phi \in \text{Sympl}(M, \omega)$, $\phi \circ \phi_t \circ \phi^{-1}$ is generated by $H_t \circ \phi^{-1}$ (check it!), hence $\phi \circ \phi_t \circ \phi^{-1}$ is an element of Ham(M, ω).

Recall. For a symplectic vector field X, $i_X \omega$ is closed and for a Hamiltonian vector field X, $i_X \omega$ is exact. Thus, the obstruction to X being Hamiltonian is $[i_X \omega] \in H^1_{dR}(M)$.

Similarly, the obstruction to a path $(\phi_t)_{t \in [0,1]}$ of symplectomorphisms to be symplectically deformed to a path of Hamiltonian symplectomorphisms is the flux

$$\text{Flux}(\phi_t) := \int_0^1 [i_{X_t} \omega] dt \in H^1_{dR}(M).$$

Exercise 1. The flux is invariant under symplectic deformations of (ϕ_t) relative the end points.

2 Arnold conjectures

Conjecture 3 (Arnold conjecture, version 1). Assume (M, ω) is a compact symplectic manifold and $\phi \in \text{Ham}(M, \omega)$ has nondegenerate fixed points, then the number of fixed points of ϕ is at least the sum of Betti numbers of M, i.e. $\sum_{i=0}^{2n} \text{rk} H^i(M)$.

Note. Proven for coefficients in \mathbb{R}.

Conjecture 4 (Arnold conjecture, version 2). Under the same assumptions the number of fixed points of ϕ is at least the minimal number of critical points of a Morse function on M.

The motivation of the first version is question of existence of closed orbits of a time-dependent Hamiltonian (or 1-periodic orbits of a 1-periodic Hamiltonian).

Note that the time t periodic orbits of a flow (ϕ_t) are in a bijective correspondence with the initial conditions $x_0 \in M$ such that $\phi_t(x_0) = x_0$, i.e. the fixed points of ϕ_t which can be viewed as the intersection points of the graph Γ_{ϕ_t} of ϕ_t and the diagonal Δ inside $M \times M$.

2
Definition 2. A fixed point x_0 of $\phi \in \text{Diff}(M)$ is called *nondegenerate* if the graph Γ_ϕ of ϕ intersects the diagonal Δ transversely at x_0. This is equivalent to $(d\phi(x_0) - \text{id}_{T_x M})$ being invertible, i.e. 1 not being an eigenvalue of $d\phi(x_0)$.

Note. The *Lefschetz fixed point theorem* says that if $\phi \in \text{Diff}(M)$ has nondegenerate fixed points then the number of fixed points of ϕ is at least

$$\left| \sum_{i=0}^{2n} (-1)^i \text{rk} H^i(M) \right| = |\chi(M)|.$$

In general, *any* smooth function $\phi : M \to M$ with nondegenerate fixed points has at least

$$\left| \sum_{i=0}^{2n} (-1)^i \text{Tr}(\phi^*|_{H^i_{dR}(M)}) \right|$$

fixed points.

Note. Arnold conjecture fails for symplectomorphisms $\phi : M \to M$ which do *not* come from Hamiltonian functions. For example consider the 2-torus $M = (T^2 = \mathbb{R}^2/\mathbb{Z}^2, \omega_0)$ with the standard symplectic form and let ϕ be the time 1/2 map of the symplectic flow generated by $\partial / \partial x + \alpha \partial / \partial y$ for some $\alpha \in \mathbb{R} - \mathbb{Q}$ does not have closed orbits of *any* period (check it!).

Proposition 5. Assume (M, ω) compact and $H^1_{dR}(M) = 0$. Then any symplectomorphism ϕ of M that is sufficiently C^1-close to the identity id_M has at least two fixed points.

Proposition 6. Assume L is a compact Lagrangian in (M, ω) with $H^1_{dR}(L) = 0$. Then any sufficiently C^1-small Lagrangian deformation of L intersects L in at least two points.

Note. Lagrangian deformation = deformation through Lagrangians.

Note. Proposition 5 implies Proposition 6 by taking L to be the diagonal Δ inside $(M \times M, -\omega \oplus \omega)$. Then the graph Γ_ϕ of a C^1-small deformation ϕ of id_M is C^1-small Lagrangian deformation of L.

3