1 Consequences of Moser’s trick

Theorem 1 (Moser’s stability theorem). Assume ω_t is a smooth path (1-parameter family) of symplectic forms on a closed manifold M such that $[\omega_t] \in H_{dR}^2(M)$ is constant in t. Then there exists a smooth family ϕ_t of diffeomorphisms of M such that $\phi_t^*\omega_t = \text{const}$.

Proof. The proof is “the same is before”: use the flow of some vector field X_t to find ϕ_t such that
\[
\frac{d}{dt}(\phi_t^*\omega_t) = 0.
\]
By applying the chain rule to the equation above we get
\[
\frac{d}{dt}\omega_t + L_{X_t}\omega_t = 0
\]
which after using Cartan’s formula becomes
\[
\frac{d}{dt}\omega_t + d\omega_t + i_{X_t}\omega_t + i_{X_t}d\omega_t = 0.
\]
Note that $[\frac{d\omega_t}{dt}] = \frac{d}{dt}[\omega_t] = 0$ in $H_{dR}^2(M)$. Hence, for each t there exists 1-form β_t such that $\frac{d}{dt}\omega_t = d\beta_t$.

Hence, equation (1) holds if and only if
\[
d\beta_t + i_{X_t}\omega_t = 0.
\]
Since ω_t is nondegenerate we can find a vector field X_t such that
\[
i_{X_t}\omega_t = -\beta_t
\]
and so (1) is satisfied.

The last thing need to check is that we can choose β_t so that it depends smoothly on t. There are two ways to go about it.

The first way is to cover the manifold with “well-behaved” charts (i.e. intersections of charts are contractible). Then use Poincaré lemma and Mayer-Vietoris.

The second way is to use the Hodge decomposition: any k-form has a unique decomposition as a harmonic form plus an exact form plus a co-exact form:
\[
k\text{-forms} = \text{harmonic} \oplus \text{im } d \oplus \text{im } d^*
\]
as follows

\[\alpha = h([\alpha]) + dd^* G\alpha + d^* dG\alpha \]

where \(G \) is Green’s operator \((G := (dd^* + d^* d)^{-1} \) is the inverse of the Laplacian away from harmonic forms). In particular, the decomposition above defines an isomorphism between \(k^{th} \) de Rham cohomology group and the space of harmonic \(k \)-forms:

\[H^k_{dR}(M) \equiv \text{Harm}^k(M). \]

In our case take \(\alpha_t := \frac{d}{dt} \omega_t \). Hodge decomposition tells us that

\[\alpha_t = dd^* G\alpha_t \]

(we used that \(d\alpha_t = 0 \) and \([\alpha_t] = 0\), hence \(h(\alpha_t) = 0\)).

We can let \(\beta_t := d^* G\alpha_t \).

2 Symplectic tubular neighborhoods

Proposition 2. Assume \(W \) is a compact submanifold (without boundary) of a symplectic manifold \(M \). Consider two symplectic forms \(\omega_0 \) and \(\omega_1 \) on \(M \) which agree along \(W: \omega_0|_W = \omega_1|_W \) on \(TM|_W \) (the pullback of \(TM \) to \(M \)). Then there exist neighborhoods \(U_0 \) and \(U_1 \) of \(W \) in \(M \) and a diffeomorphism \(\phi: U_0 \to U_1 \) such that

1. \(\phi^* \omega_1 = \omega_0; \)
2. \(\phi|_W = \text{id}_W. \)

Corollary 3 (Darboux’s Theorem). Any symplectic manifold \((M, \omega)\) is locally symplectomorphic to \((\mathbb{R}^{2n}, \omega_0)\).

Proof of the Corollary. Darboux’s theorem follows by applying the proposition to \(W := p \), an arbitrary point of \(M \).

More explicitly, choose an neighborhood \(U \) of \(p \) in \(M \) that is diffeomorphic to an open subset \(V \) of \(\mathbb{R}^{2n} \) via \(\psi: U \to V \). By a linear change of coordinates on \(\mathbb{R}^{2n} \) we can assume that \((\psi^* \omega_0)_p = (\omega_1)_p\) (i.e. the standard symplectic form \(\omega_0 \) on \(\mathbb{R}^{2n} \) pulls back to \(\omega_1 \) at the point \(p \)). By abuse of notation, let \(\omega_0 \) denote the pullback \(\psi^* \omega_0 \) of the standard symplectic form \(\omega_0 \) on \(\mathbb{R}^{2n} \) to \(U \).

Apply the proposition to \(W := \text{point } p \) viewed as a compact submanifold of the symplectic manifold \(U \) with two symplectic forms \(\omega_0 \) (constructed above) and \(\omega_1 \) (coming from \(M \)) that agree at the point \(p \). We get that there exists open neighborhoods \(U_0 \) and \(U_1 \) of \(p \) in \(U \) and a diffeomorphism \(\phi: U_0 \to U_1 \) such that \(\phi^* \omega_1 = \omega_0 \) and \(\phi(p) = p \). Then \(\psi \circ \phi^{-1}: U_1 \to \mathbb{R}^{2n} \) defines a symplectomorphism from \((U_1, \omega_1)\) onto an open subset of \(\mathbb{R}^{2n} \) with the standard symplectic form \(\omega_0 \).

Proof of the Proposition. As before, consider the linear interpolation between the two symplectic forms as a path of closed forms:

\[\omega_t := t\omega_0 + (1-t)\omega_1. \]

We know that \(\omega_0|_W = \omega_1|_W \), so \(\omega_t|_W = \omega_0|_W \) for every \(t \). In particular, \(\omega_t \) is nondegenerate at all points of \(W \). Nondegeneracy is an open condition, i.e. the subset of nondegenerate 2-forms is open in the set of all 2-forms (viewed as a topological vector space). Hence, \(\omega_t \) is nondegenerate in a neighborhood of \(U \) of \(W \).
Since \(W \) is compact we can assume that \(U \) is a tubular neighborhood (i.e. diffeomorphic to a disk bundle over \(W \)).

We have that \(\omega_t \) is a path of symplectic forms on \(U \) such that are constant in \(t \) on all points of \(W \). We want to produce an open set neighborhood \(U_0 \) of \(W \) in \(U \) and a path of maps \(\phi_t : U_0 \to M \) that are diffeomorphisms onto their images such that

\[
\begin{aligned}
\phi_t^* \omega_t &= \omega_0; \\
\phi_t | W &= \text{id}_W; \\
\phi_0 &= \text{id}_{U_0}.
\end{aligned}
\]

We look for a path of vector fields \(X_t \) on \(U \) such that its flow \(\phi_t \) is defined at least for time \(t \in [0,1] \) (on some smaller open set \(U_0 \subset U \)) and \(\phi_t \) satisfies \((2) \).

We need \(\frac{d}{dt}(\phi_t^* \omega_t) = 0 \). As before, this is equivalent to

\[
\frac{d}{dt} \omega_t + d i_{X_t} \omega_t = 0.
\]

By definition, \(\frac{d}{dt} \omega_t = \omega_0 - \omega_1 \), let’s call this difference \(\alpha \). We know that \(\alpha \) is a closed form on \(U \) and \(\alpha | W = 0 \) by our assumptions.

We will show that there exists a 1-form \(\beta \) on \(U \) such that

\[
\begin{aligned}
\alpha &= d \beta \\
\beta | W &= 0
\end{aligned}
\]

using relative de Rham theory as follows.

Consider the following long exact sequence associated with the embedding \(W \hookrightarrow U \):

\[
\cdots \to H^1_{dR}(U) \to H^1_{dR}(W) \to H^2_{dR}(U,W) \to H^2_{dR}(U) \to H^2_{dR}(W) \to \cdots
\]

By assumption, \(U \) is a tubular neighborhood of \(W \), so, in particular, \(W \) is a deformation retract of \(U \). Hence, the inclusion \(W \hookrightarrow U \) induces an isomorphism between the de Rham cohomologies of \(W \) and \(U \). In particular, the maps \(H^1_{dR}(U) \to H^1_{dR}(W) \) and \(H^2_{dR}(U) \to H^2_{dR}(W) \) above are isomorphisms. Hence, \(H^2_{dR}(U,W) = 0 \).

Let’s recall what \(H^2_{dR}(U,W) \) means explicitly: it is the quotient of all closed 2-forms on \(U \) that vanish on \(W \) by the differentials of 1-forms on \(U \) that vanish on \(W \). Hence, \(H^2_{dR}(U,W) \) being zero means that \(\alpha = d \beta \) for some 1-form \(\beta \) vanishing on \(W \).

Recall, that we are trying to solve \(\frac{d}{dt} \omega_t + d i_{X_t} \omega_t = 0 \) for a vector field \(X_t \) on \(U \) that is zero on \(W \). By definition of \(\beta \) this equation is the same as

\[
d \beta + d i_{X_t} \omega_t = 0.
\]

As before, we can solve \(i_{X_t} \omega_t = -\beta \) for \(X_t \) in \(U \) since \(\omega_t \) is nondegenerate.

A little note on smoothness that did not come up in class: view each \(\omega_t \) as a isomorphisms (of vector bundles on \(U \)) \(\tilde{\omega}_t : T U \to T^* U \) via \(\tilde{\omega}_t(Y) = \omega_t(Y, \bullet) \) for a vector field \(Y \) and note that it depends smoothly on \(t \). By considering its inverse (which also depends smoothly on \(t \)) we can let \(X_t := \tilde{\omega}_t^{-1}(\beta) \). Hence, \(X_t \) depends smoothly on \(t \).

Also, since \(\beta \) vanishes on \(W \), so does \(X_t \).
Since W is compact and X_t is zero on W, we can choose a neighborhood U_0 of W in U such that X_t stays “sufficiently small” in U_0, namely so that the flow ϕ_t is defined on U_0 for all $t \in [0, 1]$ (this uses some standard but slightly messay-to-prove facts about ODEs).

Then $\phi_t|_W = \text{id}_W$ (because $X_t|_W = 0$).

In particular, $\phi_1^* \omega_1 = \omega_0$ and $\phi_1|_W = \text{id}_W$, so ϕ_1 is the desired diffeomorphism.

Corollary 4 (Lagrangian Tubular Neighborhood Theorem, due to Weinstein). Assume W is a compact Lagrangian submanifold of a symplectic manifold (M, ω). Then there exists a neighborhood U_0 of the zero section in T^*W, a neighborhood U_1 of W in M and a diffeomorphism $\phi : U_0 \rightarrow U_1$ such that $\phi^* \omega = \omega_{\text{can}}$ and $\phi|_W = \text{id}|_W$.

Proof. (Only the basic idea, more details in the next lecture)

The previous result implies that if U is a sufficiently small neighborhood of any submanifold of (M, ω) then ω on U is determined (up to a change of choordinates) by $\omega|_W$ on $TM|_W$.

Hence, we need to check that for a Lagrangian submanifold W, (T_pM, ω_p) is naturally isomorphic to $(T_pW \oplus T^*_pW, \omega_{\text{can}})$ as a symplectic vector space for every point $p \in W$.

\[\square\]