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Abstract. We introduce a new method to bound `-torsion in class groups,
combining analytic ideas with reflection principles. This gives, in particular,

new bounds for the 3-torsion part of class groups in quadratic, cubic and

quartic number fields, as well as bounds for certain families of higher degree
fields and for higher `. Conditionally on GRH, we obtain a nontrivial bound

for `-torsion in the class group of a general number field.

1. Introduction

The goal of the present paper is to exhibit some bounds on the `-part of the class
group of a number field which improve on the trivial bound provided by the order of
the entire class group. As such, they represent evidence towards a conjecture that
the `-part of the class group of a number field L of fixed degree grows more slowly
than any power of the discriminant of L. Such conjectures have been suggested
by Duke [3], for CM fields by Zhang [14, page 10] as the “ε-conjecture,” and in a
stronger form by Brumer and Silverman [2, “Question CL(`, d)”]

Proposition 2 gives the bound |D|1/3+ε for the 3-part of the class group of
Q(
√
−D). This improves the known bounds of [7] and [11] and has several corollar-

ies (cf. [7, Section 4]). In combination with the techniques of [7] one obtains that
there are at most N0.169... elliptic curves over Q of conductor N . More directly, it
implies that there are � |D|1/3+ε cubic extensions of Q with discriminant D.

Proposition 4 is our most general unconditional result on `-torsion. A partic-
ular case of Proposition 4 is a nontrivial bound on the 3-torsion in even degree
extensions of Q with large Galois group; but it also has consequences for ` > 3
and entails, e.g., a nontrivial bound for the 5-torsion part of the class group of any
quadratic extension of Q(

√
5). Finally, in Corollary 1 we apply these results to

show a nontrivial bound on 3-torsion for cubic and quartic extensions of Q.
The main results combine the use of non-inert primes, an Arakelov version of

the class group, and reflection principles of Scholz type. Roughly, the point is that
small1 non-inert primes in a number field represent elements of the class group
which tend not to satisfy any relation with small coefficients. Thus the existence of
many such primes contributes significantly to the quotient of the class group by its
`-torsion, yielding the desired upper bounds. While it is known that unconditionally
establishing the existence of such primes is very difficult, the GRH guarantees their
existence, and this yields the conditional bound of Proposition 1. In order to remove
the dependence on conjectures in some cases, we combine the argument on small

1Small, in this context, will always mean “small relative to the discriminant of the number

field.” More precisely, we shall require the norm of the prime to be less than a certain fixed small
power of the discriminant.
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primes with a weak version of the Scholz reflection principle. This yields Proposition
2 and Proposition 4. In this process, it is essential to deal with number fields with
infinitely many units (even the bound for imaginary quadratic fields uses implicitly
real quadratic fields, for instance); for such number fields, the above argument
breaks down when implemented naively. Instead, we use an Arakelov version of the
class group, in which the archimedean places do not play any distinguished role.

1.1. Sketch of proof for quadratic fields. Say D is negative and D ≡ 1 mod
4. If J is an integral ideal of the imaginary quadratic field Q(

√
−D) with norm

Norm(J) < D, then J cannot be principal unless it is the extension of an ideal of
Q; for if we write J = (x + y

√
−D) and take norms, we see at once that y must

vanish.
This easily implies that if:
(1) p1, . . . , pr are distinct primes that split in Q(

√
−D), and ei ∈ Z,

(2) pj is a prime ideal above pj , and
(3)

∏r
j=1 p

|ei|
i < D

then the product
∏
i p
ei
i cannot represent a trivial element of the class group. In

other words, the pi satisfy no relation with small coefficients (there is a small “piece”
of the class group that tends to look free). Among other things, this means that
some explicit subset of the pi will represent distinct classes modulo `-torsion, so
given many such primes one gets an upper bound on the size of the `-torsion part.

To adapt this idea to the real quadratic case D > 0 is not trivial, since there
is no useful lower bound for the norm of a principal ideal. We fix this problem by
using an “Arakelov” version of the class group that allows one to treat imaginary
quadratic and real quadratic fields in a completely uniform way. This “Arakelov
class group” is, in the quadratic field case, an extension of the usual class group
by a circle; however, the “size” of the circle depends on the regulator. Using it we
adapt the argument above to the general case.

With this in hand, we can explain the bound for quadratic fields. By Scholz’s
theorem the 3-torsion in the class group of Q(

√
−D) and Q(

√
3D) have (up to a

bounded factor) the same sizes. On the other hand, it is clear that either Q(
√
−D)

or Q(
√

3D) must have many small split primes, because any prime of Q which is
inert in Q(

√
−3) will split in one or the other field! These primes can be used to

bound the size of the 3-torsion in the class group of one of the two fields – and by
the reflection principle one thus has an unconditional bound for both fields. This
yields a bound on order of D1/3+ε for the size of the 3-torsion part of the class
group of Q(

√
−D).

1.2. Relation to existing work. As remarked, the following might be considered
a “folk” conjecture. It is suggested in [3, Section 3]; it is explicitly conjectured in
[14], and also is implied by a still stronger conjecture enunciated in [4, Conjecture
1.3].

Conjecture 1. (ε-conjecture for class group torsion). Let d, ` be fixed positive
integers. Then the `-torsion in the class group of any degree d field K has size
�ε,`,d (discK)ε.

There are many arithmetic settings in which one wishes to bound the size of a
Galois cohomology group H1(Gal(Q/Q),M) for some finite abelian Galois module
M ; usually the hard part of such a problem is control of the size of an `-part of a
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class group. For instance, Conjecture 1 would imply strong bounds for the ranks
of elliptic curves.

As to our methods: the idea of using small split primes in the context of class
groups is an old one; in general, the difficulty in even proving that the class group
must be large for an imaginary quadratic field Q(

√
−D) is closely related to estab-

lishing the existence of enough small split primes.
In the context of torsion in class groups, this idea was already used (together

with GRH) in the work of Boyd and Kisilevsky [1] on the exponent of the class
group of imaginary quadratic fields; in the function field context, the same idea
appears in a paper of Madan and Madden [10]. (In the function field context, one
knows the analogue of GRH and the results are thus unconditional). It came to
our attention through the work of K. Soundararajan – implicitly in his paper [13]
and explicitly in private communication – and independently was suggested to us
in a slightly different context by P. Michel.

As remarked, Proposition 2 improves on the results of Helfgott-Venkatesh [7] and
Pierce [11] concerning the 3-part of quadratic class groups. However, the methods
of those two papers are, in certain ways, more robust than the method presented
here. For instance, in the proof of Corollary 1 we implicitly make recourse to the
methods of [7] to handle a case where our methods do not apply.

1.3. Acknowledgements. We are very grateful to both Soundararajan and Michel
for their generosity in discussing the idea of using small split primes to bound class
groups.

The first author was partially supported by NSF-CAREER Grant DMS-0448750
and a Sloan Research Fellowship; the second author was supported by a Clay re-
search fellowship, NSF Grant DMS–0245606 and NSF Grant DMS–0111298; he also
thanks the Institute for Advanced Study for providing superb working conditions.
We thank the Clay Mathematics Institute for supporting a visit of the second au-
thor to the University of Wisconsin in November 2005, during which most of the
ideas in this paper were developed.

1.4. Notation. If K is a number field, we denote by ClK the ideal class group of
K. If If G is a locally compact abelian group and m an integer, we denote by G[m]
the m-torsion subgroup of G.

We use the analytic number theory notation A�B C, for positive A,C, if there
is a function f(B) so that A ≤ f(B)C always. Similarly we define A �B C. We
write A �B C if C �B A�B C.

If K ⊂ L are global fields with rings of integers OK ⊂ OL, we say that a prime
ideal pK of OK remains inert in L if pKOL is a prime ideal of OL. In the case that
pKOL is a prime ideal pL, we say that pL is the extension of a prime ideal of K.
We denote by DL/K the relative discriminant of L/K; it is an integral ideal of OK .

We denote by discK the absolute discriminant of the field K (i.e., discK ∈ N is
a generator for DK/Q).

2. Small non-inert primes in the Arakelov class group

2.1. Introduction. In order to avoid problems arising from the group of units, we
work consistently with an Arakelov class group, to be defined below.

Let K be a number field of degree d, and let IK be the group of all fractional
ideals of K. The usual ideal class group ClK is formed by taking the quotient
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IK/K×. If K has more than one place at ∞, this is in some sense an unnatural
choice: for instance, if K were the function field of a curve C over Fq, and R were
the coordinate ring of an affine neighborhood of C, the ideal class group of R would
be, not Pic0(C), but the quotient of Pic(C) by the subgroup generated by the places
in C\SpecR. It is more natural to treat all places of K on the same footing, which
means we have to consider archimedean places as well.

The idea of doing this to give uniform approaches to the class group is well-
known, although we do not know with whom it originates; see e.g. the exposition
of Schoof [12].

2.2. Definition. Let K be a number field of degree d and set K∞ := K⊗R. If MK

is the set of infinite places of K, i.e. equivalence classes of embeddings σ : K ↪→ C,
then each σ ∈ MK extends to a homomorphism σ : K ⊗ R → C, whose image is
either C or R according to whether σ is complex or real; we set deg(σ) = 2 in the
former case, and deg(σ) = 1 in the latter. For σ ∈ MK we shall sometimes write
|x|σ := |σ(x)|deg(σ).

There is a natural norm map Norm : K∞ → R+, given by

Norm(x) =
∏

σ∈MK

|x|σ =
∏

σ∈MK

|σ(x)|deg(σ).

Let K×
∞ be the multiplicative group of K∞, and K

(1)
∞ ⊂ K×

∞ the subgroup of
elements of norm 1.

Let IK be the (free abelian) group of fractional ideals of K, and write D̃iv
0

K

for the group {(x, J) ∈ K×
∞×IK : Norm(x) = Norm(J)}. D̃iv

0

K is a number-field
analogue of the group of “divisor classes of degree 0.” Then K× is diagonally
embedded in D̃iv

0

K ; for y ∈ K×, we refer to (y, (y)) ∈ D̃iv
0

K as the principal divisor
associated to y.

We define2 the Arakelov class group C̃lK to be D̃iv
0

K/K
×. (Compare with the

discussion of “modified Arakelov divisors” in [12].)
There is a natural projection map C̃lK → IK/K× = ClK . This induces an exact

sequence

(1) K(1)
∞ /O×

K → C̃lK → ClK

We now fix a measure on K
(1)
∞ . The choice is unimportant, so long as it done

consistently. In fact, K(1)
∞ is the kernel of the map K×

∞ → R× given by the norm,
and K×

∞ is the product of copies of C× and R×. We equip R× with the Haar
measure dx

x , and C× with the measure idz∧dz|z|2 . This induces a measure on K
(1)
∞ .

Since (by means of the exact sequence above) C̃lK is locally isomorphic to K(1)
∞ , we

obtain also a measure on C̃lK . Similarly D̃iv
0

K is locally isomorphic to K(1)
∞ , and

we obtain also a measure on D̃iv
0

K . We denote both these measures by “vol”, for
volume.

Lemma 1. With the normalization of measures above,

(discK)1/2−ε �ε,[K:Q] vol(C̃lK) �ε,[K:Q] (discK)1/2+ε

2An alternate definition, which we will not need here, is that the Arakelov class group consists
of OK -stable lattices inside OK ⊗Z R, up to the action of homotheties by R×.
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Proof. Up to bounded constants (depending only on [K : Q]) the volume of C̃lK ,
with our normalizations, is equal to the product of the class number of K and the
regulator at K. One then applies the Brauer-Siegel theorem. �

There is a natural notion of height on D̃iv
0

K . Namely, for each (x, J) we define

(2) H(x, J) =
∏

σ∈MK

max(|σ(x)|deg(σ), 1) ·
∏
p

max(Norm(p)−vp(J), 1)

where the latter product is taken over primes p, and vp(J) is the power of p occurring
in the prime factorization of J .

Then if (y, (y)) is the principal divisor associated to some y ∈ K×, the height
of (y, (y)) is precisely the usual height H(y) of y (considered as the point (y : 1) ∈
P1(K)). 3

We will need the following lemma, which says that principal divisors cannot be
of very low height unless they arise from subfields of K.

Lemma 2. Suppose K/K0 is an extension of number fields of degree d and dis-
criminant DK/K0 and let λ be an element of K× such that K0(λ) = K. Then

H(λ) �[K:Q] Norm(DK/K0)
1

2(d−1) .

Proof. By embedding Gm in P1 we may think of λ as a point (α : β) in P1(K),
with α, β ∈ OK . Define

(3) P =
∏
i 6=j

(αiβj − βiαj)

where αi, βi run over the conjugates of α, β by the absolute Galois group of K0.
Then P ∈ OK0 .

Any finite module M under OK0 is of the form ⊕jOK0/lj , where lj are certain
integral ideals. The product

∏
j lj is an integral ideal which depends only on M .

We refer to it as ind(M).
Let L be the OK0-span of αd−1, αd−2β, . . . , βd−1. Let

L∗ := {λ ∈ K : trK/K0(λL) ⊂ OK0},
the dual of L w.r.t. the trace form. Then L ⊂ L∗ and ind(L∗/L) = (P ), the
principal ideal generated by P – as follows by a direct computation.

On the other hand, clearly L ⊂ J := 〈α, β〉d−1, the (d− 1)st power of the princi-
pal ideal generated by α, β. Moreover, ind(J∗/J) equals NormK/K0(J)2d−2DK/K0 .
Consequently, (P ) is divisible by the ideal DK/K0 .NormK/K0(J)2d−2 and, in par-
ticular:

NormK0/Q(P ) ≥ Norm(DK/K0)NormK/Q(J)2d−2.

However, a direct computation of archimedean sizes in the definition (3) shows
that

|NormK0/Q(P )| �[K:Q] H∞(α : β)2d−2

where H∞(α : β) =
∏
σ∈MK

max(|α|σ, |β|σ). We conclude that

H∞(α : β)2d−2NormK/Q(J)−2d+2 �[K:Q] Norm(DK/K0)

but it is easy to verify that H(λ) = H∞(α : β)NormK/Q(J)−1. �

3That is: H(y, (y)) = H(y) :=
Q

v max(|y|v , 1) where the product is taken over all places of

K, and |y|v is normalized to be the multiplicative factor by which x 7→ xy affects Haar measure
on the completion Kv .
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Note that in the analogous case where K = Fq(t), Lemma 2 corresponds to the
following fact: if a curve C has a degree d map f to P1, and if g : C → P1 is
another map such that the map f × g : C → P1 × P1 is a birational embedding,
then deg(g) ≥ g(C)

d−1 + 1. (This follows from application of the adjunction formula
for curves on P1 × P1. )

2.3. Use of small non-inert primes. If p is any fractional ideal of K, we can
choose a “preferred representative” p̃ ∈ D̃iv

0

K by setting p̃ = (Norm(p)1/d, p). Here
Norm(p)1/d ∈ R is considered as an element of K∞ via the inclusion R ↪→ K∞.
Then the class of p̃ in C̃lK projects to the ideal class of p under the exact sequence
(1).

Lemma 3. Suppose K/K0 is an extension of number fields of degree d, let ` be a
positive integer, and let δ < 1

2`(d−1) . Suppose that {p1, . . . , pM} are prime ideals of
norm at most Norm(DK/K0)

δ that are unramified and are not extensions of prime
ideals from any proper subfield of K containing K0.

Then #ClK [`] �[K:Q],ε,` (discK)1/2+εM−1.

Proof. Let G be the group D̃iv
0

K , let P be the group K×, and let P` be `G + P .
Then C̃lK = G/P and C̃lK/`C̃lK = G/P`. Note that C̃lK [`] and C̃lK/`C̃lK are
finite groups; in view of (1), both of them have order that differs from #ClK [`] by
O[K:Q](1). So to bound #ClK [`] above it suffices to bound vol(P`/P ) from below.

Let T be the subset of G consisting of all elements of the form (x, J) where J is
one of the pi and x satisfies

2−1/` < |y|v1/|y|v2 < 21/`

for all v1, v2 in MK .
Set T ` := {t` : t ∈ T}. We claim that the map T ` → C̃lK has finite fibers, of

size bounded by a constant depending only on [K : Q]. To see this, suppose that
t1, t2 ∈ T are such that u := t`1t

−`
2 lies in K×.

Evidently the height of u is �[K:Q] Norm(DK/K0)
`δ. So K1 := K0(u) is a

proper subfield of K if Norm(DK/K0) is sufficiently large, by Lemma 2. Note that
it suffices to prove the Lemma for Norm(DK/K0) larger than any specified function
of [K : Q], `, so we may assume that indeed it is “sufficiently large” in this sense.

But the non-archimedean part of u is now an fractional ideal in K1 which has
valuation 0 everywhere, since the pi are not induced from K1 by hypothesis; so
u lies in O×

K1
. Now any nontrivial u ∈ O×

K1
has an archimedean valuation of size

at least c = c[K:Q] > 1 by virtue of the fact that Norm(u − 1) ≥ 1. It follows
that the number of u ∈ O×

K1
in the archimedean region defined by the inequalities

1/4 < (|u|v1/|u|v2) < 4 is bounded by a constant depending only on [K : Q] .
But T ` ⊂ P`, so what we have shown is that

vol(P`/P ) �[K:Q] vol(T `)

Now the volume of T ` is at least c`,[K:Q]M (where the constant c`,[K:Q] keeps
track of the volume of the ball cut out by the archimedean conditions.) This proves
the proposition. �
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3. Bounds on `-torsion, conditional and unconditional.

3.1. Conditional bounds under GRH.

Proposition 1. Let K be an extension of Q of degree d. Then, assuming GRH,

#ClK [`] �d,ε (discK)1/2−
1

2`(d−1)+ε

Proof. The proof is immediate from Lemma 3, together with the “effective Cheb-
otarev” theoreom of Lagarias and Odlyzko [9] which, subject to GRH, guarantees
for any η > 0 the existence of � (discK)η−ε primes of Q of size ≤ (discK)η which
split completely in K. �

3.2. A version of the reflection principle. We turn now to unconditional
bounds. As remarked, producing “small” split primes in a number field without
GRH is a major problem in analytic number theory; in particular there is little
hope of an unconditional result via direct application of Prop. 1. The main idea is
to use a weak (but fairly general) form of the Scholz reflection principle.

The idea can be most clearly seen in the analogous case where K is the function
field of a curve C/Fq; the `-torsion in the Arakelov class group of K is then just
Jac(C)[`](Fq). Now Jac(C)[`](F̄q) admits a µ`-valued symplectic pairing (the Weil
pairing); this splits the Frobenius eigenspaces on Jac(C)[`](F̄q) into pairs of dual
eigenspaces. If the Frobenius acts nontrivially on µ`, then this shows that the
Frobenius-fixed eigenspace Jac(C)[`](Fq) has the same dimension as the eigenspace
where Frobenius acts as multiplication by q. In particular, when q ∼= −1(`) one has
that Frobenius has equally many +1 and −1 eigenvalues on Jac(C)[`](F̄q).

The number field version of this argument yields reflection principles: a good
account of much more general and precise theorems of this form than those used
here can be found in the paper of Gras [6].

Lemma 4. Let ` > 2 be a prime and ζ` an `th root of unity. Let K0 = Q(ζ`+ζ−1
` ),

and let K be an extension of K0 which does not contain ζ`. Let L = K(ζ`), which
is a quadratic extension of K. Let Cl+ and Cl− be, respectively, the positive and
negative eigenspaces for the action of Gal(L/K) on ClL[`].Then∣∣rank Cl+ − rank Cl−

∣∣ ≤ O[L:Q](1)

In the statement of the Lemma, and in the proof below, rank denotes dimension
as a Z/`-vector space.

Proof. This is standard, but we include a proof here to make the present paper
self-contained.

Let Ã be the subgroup of L× consisting of elements whose valuations at all
primes are multiples of `, and let A = Ã/(L×)`. Then there is a surjection

A→ ClL[`]

which sends x to the class of the fractional ideal whose `’th power is (x). The kernel
of this map is O×

L /(O
×
L )`, whose dimension is O[L:Q](1).

Let L′ be the field obtained by adjoining x1/` to L for all x ∈ Ã, and let B =
Gal(L′/L). Then A is naturally identified (as Gal(L/K)-module) with Hom(B,µ`)
by Kummer theory, i.e.:

x ∈ A 7→ (σ ∈ B 7→ (x1/`)σ(x1/`)−1) ∈ Hom(B,µ`)
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On the other hand, let G be the Galois group of the maximal abelian `-extension
of L unramified away from `. Since L′ is contained in this abelian `-extension, G
naturally surjects onto B, and the kernel of this map has F`-dimension O[L:Q](1)
by a consideration of inertia at `.

What’s more, by class field theory, G differs from ClL⊗ZZ/` (in the Grothendieck
group of the category of F`[Gal(L/K)]-modules) by a representation of dimension
O[L:Q](1). Thus, up to representations of dimension O[L:Q](1), we have

ClL[`] ∼= Hom(ClL ⊗ Z/l, µ`) = Hom(ClL, µ`)

Now, Gal(L/K) acts by −1 on µ` and so this means precisely that the positive
and negative eigenspaces of Gal(L/K) on ClL[`] differ in dimension by O[L:Q](1),
as claimed. �

It is worth making explicit how this implies (a slightly weaker version of) the
usual Scholz reflection principle:

Lemma 5. Let E be a fixed number field, K = E(
√
η) a quadratic extension of E

not containing
√
−3. Then

(4) |rank ClE(
√
−3η)[3]− rank ClE(

√
η)[3]| ≤ O[E:Q](1)

Proof. Set L = E(
√
η,
√
−3) = K(ζ3).

Let χ1 be the nontrivial character of Gal(K/E), and let χ2 be the nontrivial
character of Gal(E(

√
−3)/E). We regard them both as characters of Gal(L/E).

Then ClL[3] splits as a direct sum of eigenspaces:

ClL[3] = ClL[3]1 ⊕ ClL[3]χ1 ⊕ ClL[3]χ2 ⊕ ClL[3]χ1χ2

where, for any character ψ of Gal(L/E), the notation ClL[3]ψ denotes {x ∈ ClL[3] :
gx = ψ(g)x, ∀g ∈ Gal(L/E)}. In this language, Lemma 4 says precisely that the
rank of ClL[3]1⊕ClL[3]χ1 and the rank of ClL[3]χ2 ⊕ClL[3]χ1χ2 differ by O[E:Q](1).
The same is true for ClL[3]1 ⊕ ClL[3]χ1χ2 and ClL[3]χ1 ⊕ ClL[3]χ2 ; it follows that
the ranks of ClL[3]χ1 and ClL[3]χ1χ2 differ by O[E:Q](1), which implies the stated
result.

�

3.3. Unconditional bounds for `-torsion. We begin with the most concrete
application, which is to quadratic fields.

Proposition 2. Let D be a squarefree integer. The 3-torsion part of the class
group of Q(

√
D) has size �ε |D|1/3+ε.

Proof. Any prime not dividing 6D which is inert in Q(
√
−3) splits in either Q(

√
D)

or Q(
√
−3D). In particular, for at least one d ∈ {D,−3D} there are � |d|1/6−2ε

primes p ∈ [|d|1/6−ε, 2|d|1/6−ε] which split in Q(
√
d). This shows, via Lem. 3, that

the size of the 3-torsion part of the class group of Q(
√
d) is � |d|1/3+ε.

However, Scholz’s reflection principle (Lemma 5) shows that the 3-ranks of the
class groups of Q(

√
D) and Q(

√
−3D) differ by a bounded amount (indeed, Scholz’s

more precise formulation asserts that these differ by at most 1). �
The argument above applies much more generally. For instance, ifK0 is a number

field which contains ζ` + ζ−1
` but does not contain ζ`, then we can bound the `-

torsion in the class groups of quadratic extensions K = K0(
√
α) of K0. Note that

K0(ζ`) is a quadratic extension which may write as K0(
√
β) for some β ∈ K0. Let

δ < 1
2` and let X = Norm(DK/K0)

δ; then, once X is sufficiently large (depending
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on K0) there are on order of X/ logX primes of K0 with norm below X which are
inert in K0(ζ`)/K0. Then, as above, Lemma 3 applies to either K or K0(

√
αβ) (as

long as we exclude the case α = β, which is harmless) and applying Lemma 5, one
obtains the following:

Proposition 3. Let K0 be a number field which contains ζ` + ζ−1
` but does not

contain ζ`. Let K/K0 be a quadratic extension. Then

#ClK [`] �ε,K0 (discK)
1
2−

1
2` +ε.

We generalize this method to higher degree extensions in the following Proposi-
tion.

Proposition 4. Let ` be an odd prime, K0 = Q(ζ`+ζ−1
` ), and let K be an extension

of K0 of even degree d > 2 such that ζ` /∈ K and such that the extension K(ζ`)/K0

has no proper subextensions apart from K and Q(ζ`). Then

#ClK [`] �ε,d,` (discK)1/2−
1

2`d(2d−1)+ε

Note that the condition on intermediate subextensions of K(ζ`)/K0 excludes the
case d = 2, but we have treated this case immediately above (obtaining a bound
better than that of Proposition 4).

Proof. Let L = K(ζ`).
One verifies that:
(1) disc(L) �` disc(K)2; and
(2) No prime of K0 remains inert in L (this is where we use the fact that d is

even.)
Let S be the set of primes p of K0 that are unramified in L and inert in Q(ζ`).

Take δ < 1
`d(2d−1) and X = (Norm(DK/K0))

δ.
Then there are �d,` X/ log(X) primes p in S with norm between X/2 and X.

Call this set of primes SX . One of the following possibilities occurs:
• The number of primes in SX which are inert in K is �`,d X/ logX; or
• The number of primes in SX which are not inert in K is �`,d X/ logX.

Suppose the latter. For each such p, there is more than one prime pK of K divid-
ing p; thus there exists such a pK whose norm is at mostXd/2 < (Norm(DK/K0))

1
2`(2d−1) .

Note that pK cannot come from a proper subextension of K/K0, since the only such
subextension is K0 itself by hypothesis, and we have assumed p is not inert in K.
It follows from Lemma 3 that

(5) #ClK [`] �d,`,ε (discK)1/2−δ+ε.

Now suppose the former, and let p be a prime of S which is inert in K; we have
seen it is not inert in L. Let pL be a prime ideal of L dividing p. Then pL is not
the extension of a prime ideal of Q(ζ`), nor the extension of a prime ideal of K: for
p remains inert in both of these fields. As above, we may thus choose pL to have
norm at most

Xd < (Norm(DK/K0))
1

`(2d−1) �`,d (Norm(DL/K0))
1

2`(2d−1)

Now another application of Lemma 3 yields

(6) #ClL[`] �d,`,ε (discL)1/2−δ/2+ε.
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The (two-element) Galois group Gal(L/K) acts on ClL[`], splitting it into posi-
tive and negative eigenspaces, and the positive eigenspace is exactly ClK [`]. In this
context Lemma 4 asserts that the `-ranks of these eigenspaces differ by at most
Od,`(1); so in particular we have

#ClK [`] �d,` #ClL[`]1/2.

This, together with the fact that either (5) or (6) holds, and that δ < 1
`d(2d−1) is

arbitrary, yields the desired conclusion on #ClK [`]. �
It is possible that the condition on intermediate subfields might be significantly

weakened by techniques similar to those used for the proof of the Corollary that
follows. On the other hand, one cannot remove this completely: it is clear that the
method of this paper fails entirely if ζ` ∈ K.

We conclude with the following Corollary:

Corollary 1. Let K be an extension of Q with [K : Q] = d ≤ 4. Then there is
δ = δ(d) > 0 so that the 3-torsion part of the class group ClK [3] satisfies the bound

#ClK [3] � disc(K)1/2−δ(d)

Any δ(2) = δ(3) < 1/6 is admissible.

Proof. Most cases follow quite easily from our results and existing results about
cubic fields. Indeed, most of the proof will be concerned with dealing with the
“non-generic” case of quadratic extensions of a quadratic field.

(1) If K is quadratic, we may apply Proposition 2 directly.
(2) If K is a non-cyclic cubic extension, we apply the main result of [5] to

reduce the question to that of the 3-torsion of the quadratic resolvent.4

(3) If K is a cyclic cubic extension, then one has much better bounds through
a suitable generalization of Gauss’ genus theory. Indeed, if t is the number
of ramified primes of K, the 3-rank is � t. . This implies #ClK [3] �ε

(discK)ε.
(4) If K is a quartic extension of Q such that ζ3 /∈ K and K(ζ3) has no

subfields other than K,Q(ζ3), and Q, Proposition 4 shows that #ClK [3] �
disc(K)1/2−δ for some δ > 0.

If the Galois group attached to K/Q is A4 or S4, then K(ζ3) has no unexpected
subfields and we are in the case treated above. It remains to deal with the case
when K is quartic and contains a quadratic subfield E = Q(

√
d). In that case,

K = E(
√
η) for some η ∈ E. The basic idea is this: we show that ClK [3] is small

either by showing ClE [3] is small – this is enough if |d| is large compared to discK
– or by treating K as a quadratic extension of E, thinking of E as “almost fixed”,
and applying Lemma 3 to the extension K/E.

Let σ be the nontrivial element of Gal(K/E) and let Cl±K = {x ∈ ClK : xσ =
x±1}. The natural map Cl+K×Cl−K → ClK induces an isomorphism ClK [3] =
Cl+K [3]×Cl−K [3]. There is a natural map, induced by extension of ideals,

(7) ι : ClE ↪→ Cl+K ,

which induces an isomorphism5 on 3-torsion; in particular, #Cl+K [3] �ε |d|1/3+ε.

4We thank J. Klüners for bringing this type of result to our attention.
5To see this, note that, on prime-to-2 components, the inclusion (7) is split by the norm map

ClK → ClE .
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To bound the size of Cl−K , we use the natural map ClE
ι→ ClK → ClK/Cl−K ;

the cardinality of the kernel is at most the size of the 2-torsion of ClE , which has
size |d|ε by genus theory. Thus #ClE .#Cl−K �ε |d|ε#ClK . On the other hand, if
RK and RE denote the regulator of K and E respectively, we have the Brauer-
Siegel bound RK#ClK

RE#ClE
�ε (discK)1/2+ε|d|−1/2. It is easy to verify that RK � RE .

Therefore #Cl−K � (discK)1/2+ε|d|−1/2+ε.
We conclude that

(8) #ClK [3] �ε (discK)1/2+ε|d|−1/6 (Q(
√
d) ⊂ K)

(8) is sufficient to give a nontrivial bound if d is large compared to disc(K), but we
still need to obtain a good bound when d is small relative to disc(K). The idea is
to treat K as a quadratic extension of E = Q(

√
d) and, if

√
−3 /∈ K, proceed as in

Proposition 3, but this time paying attention to the dependence on E. It is clear,
in view of (8), that we will have the desired result so long as we can show

(9) #ClK [3] �ε disc(K)1/2−δ|d|A

for some positive δ,A.

(1) The case
√
−3 /∈ K.

In order to do this, we note that, if p ∈ [X/2, X] is any (rational) prime
which is split in Q(

√
d) but inert in Q(

√
−3), then any prime pE above p

remains inert in E(
√
−3). In particular, such a prime pE splits in either

E(
√
η) or E(

√
−3η). Using a quantitative version of Linnik’s theorem on

primes in arithmetic progression [8, Cor. 18.8], we see that there are at
�ε X

1−ε|d|−3/2 such primes pE , as long as X ≥ |d|L. Here L is an absolute
constant.

Assume henceforth that X ≥ |d|L. We have shown that for at least one
η′ ∈ {η,−3η}, there exists �ε X

1−ε|d|−3/2 primes pE(
√
η′) in E(

√
η′), of

norm in [X/2, X], which are not extensions of prime ideals from E. By
Lemma 5, we know that #ClK [3] � #ClE(

√
η′)[3]. We can apply Lemma 3

to the extension E(
√
η′)/E as long as X < Norm(DE(

√
η′)/E)1/6.01, which

is possible once discK is greater than some large power of |d|. Carrying
this out yields (9).

(2) The case of
√
−3 ∈ K. To deal with that case, the methods of this paper

do not suffice, but the result of [7] is also valid over a number field (this
is remarked in the introduction to [7], although a full proof over a number
field is not written). Thus, if K contains

√
−3, we treat K as a quadratic

extension of Q(
√
−3) and obtain the bound

(10) #ClK [3] � (discK)0.45 (
√
−3 ∈ K)

�
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