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2. Interlude: The Euler characteristic of SL2(Z) is ζ(−1)

As an amusing diversion, we shall compute the Euler characteristic of
SL2(Z) (it is −1

12 ). We interpret this as meaning: any torsion-free subgroup
of index N has Euler characteristic −N/12. This also shows that any prime
dividing the denominator of ζ(−1) must be torsion in SL2(Z).

It suffices to show that PSL2(Z) has Euler characteristic −1/6. Indeed,
consider some torsion-free subgroup of PSL2(Z) of index k and Euler char-
acteristic e; it is necessarily a free group, and so its preimage in SL2(Z) is a
split extension of it. In particular, SL2(Z) contains an isomorphic subgroup
of index 2k and Euler characteristic e.

Explicitly: PSL2(Z) has a subgroup of index 6, the kernel of the morphism
to PSL2(F3) ∼= S3. This subgroup is isomorphic to the free group on two
generators; indeed, the corresponding quotient of H is analytically isomor-
phic to the moduli space of elliptic curves with marked 2-torsion, which is
parameterized by P1 − {0, 1,∞}.

Exercise. Deduce the formula for the genus of X0(N).
If it is so easy, what is the point? The method of proof will be very soft

and general, and will generalize to many other arithmetic groups.

2.1. In this section, we will begin to consistently work with X(1), the space
of lattices of area 1; we shall also use the series E∗

f (Λ) :=
∑

v∈Λprim
f(v).

Here Λprim consists of primitive vectors in the lattice Λ.
We often use the word “lattice” to mean “lattice of area 1.”
The inclusion X(1) ↪→ X induces a bijection X(1)/SO2

∼= X/C×. Thus,
the quotient X(1)/SO2 is identified with SL2(Z)\H. Explicitly: given z ∈
SL2(Z)\H, we associate to it the lattice 1√

y 〈1, z〉; given a lattice L ∈ X(1),
we rotate it so its shortest vector is of length 1, and let z be any other vector
which generates L.

Now the measure dx dy
y2 on PSL2(Z)\H normalizes a measure on X(1). It

is enough to give a functional on continuous compactly supported functions;
given a function on X(1), average it so it is rotation invariant; it is then
identified with a function on PSL2(Z)\H, so integrate it with respect to
dx dy

y2 . The result is – not wholly obviously – an SL2(R)-invariant measure
µ on X(1).

In the actual lecture I droned on and on and on and on about this measure.

2.2. We now claim that
∫

E∗
fdµ = 2

π

∫
f for any f ∈ Cc(R2).

The map f (→
∫

E∗
f defines a functional on Cc(R2), i.e., a measure on

R2. We claim the only SL2(R)-invariant measures are linear combinations
of δ0 and Lebesgue. To see this, it suffices to show that any signed measure
µ satisfying µ{0} = 0 is a multiple of Lebesgue; now, µ is SL2(R)-invariant,
and by a “smoothing” argument it is absolutely continuous with respect to
Lebesgue measure; finally, the R-N theorem implies that µ has a density
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with respect to Lebesgue measure, which is an SL2(R)-invariant function,
thus constant.

Therefore,

(2)
∫

E∗
f dµ = a

∫
f + bf(0)

for certain a, b ≥ 0.
Now let us take f to be the characteristic function of a disc of radius

R (we can easily check that (2) remains valid). For R ≤ 1, the function
E∗

f – thought of as a function on PSL2(Z)\H – is twice the characteristic
function of that part of the standard fundamental domain for PSL2(Z)\H
where y ≥ R−2; this implies that b = 0 and a = 2

π .

2.3. Continue to let f be the characteristic function of a disc of radius
R. Recall that the fraction of pairs of integers with coprime coordinates is
1/ζ(2). For any fixed lattice Λ,

E∗
f (Λ) ∼ 1

ζ(2)

∫
f + O(R).

Note that Ef (Λ) ≤ const ·
∫

f . The point is that a lattice cannot have too
many primitive points in a large disc. So, in the formula

∫
Ef∫

f
=

2
π

we may let R →∞ and switch order of limit and integral, to arrive at

ζ(2)−1vol(PSL2(Z)\H) =
2
π

whence vol(PSL2(Z)\H) = 2
π ζ(2).

2.4. Recall the Gauss-Bonnet formula: the total curvature of a Riemannian
surface M equals 2πχ(M). This follows from the angle defect formula: the
angle defect of a geodesic triangle equals the integral of curvature over it.
Apply1 this to H/PSL2(Z). The Euler characteristic is now −ζ(2)

π2 ; the Euler
characteristic of SL2(Z) is thus −ζ(2)

2π2 = ζ(−1).
This shows that ζ(−1) ∈ Q.

2.5. The same proof works more generally (i.e., to compute Euler charac-
teristics of arithmetic groups). We will see later how to set things up so that
there is no difference between Q and a number field. One of the key ideas
in simplifying the general story is the construction of a canonical measure,
the Tamagawa measure, making our ad hoc constructions unnecessary.

Examples.

1In fact, this is noncompact; one should therefore consider the manifold with boundary
obtained by setting y ≤ T on a standard fundamental domain; the Gauss-Bonnet theorem
remains true up to an error term which comes measures the “kink” at the boundary of
this manifold. This approaches 0 as T →∞.
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(1) See A Gauss-Bonnet formula for discrete arithmetically defined groups
by Harder, 1971), The Euler characteristic of the symplectic group
is

ζ(−1)ζ(−3) . . . ζ(1− 2n).
It may be interesting to compare this expresion with the formula for
the size of Sp(Fp), i.e.

#Sp = qdim(1− q−2)(1− q−4) . . . (1− q−2n)

So we have obtained yet another proof that ζ(negative odd) ∈ Q.
(2) The Euler characteristic of SLn(Z) is zero for n ≥ 3.

2.6. Exercise. Show that space X(1)
n of lattices in Rn of volume 1 carries

an SLn(R)-invariant finite measure µ; it follows there exists an SLn(R)-
invariant probability measure, i.e., a notion of a random lattice.

Moreover, if E∗
f is defined identically, prove that for some b > 0,

∫
E∗

f = b

∫
f.

Deduce that if S is a sphere of volume < 1, there exists a lattice L ∈ X(1)
n

with L∩S = ∅. In other words: there exists a sphere packing in Rn of density
≥ 2−n. This theorem – originally due to Minkowski, but this simple proof is
due to Siegel– has not been improved except for multiplication by a linear
factor in n !


