Exercises. Problems 1–3 are some examples that use (not much beyond) the definition of representation. Problem 4 considers the question of classifying representations that admit a vector fixed under a prescribed subgroup. Problems 5–7 use ideas related to Maschke’s theorem and composition series to establish a notion of “reduction modulo p” for representations. Problems after *** are more difficult, and not for assessment.

1. Let k be a field. Find, with proof, all subrepresentations of k^n as an S_n-representation.

2. Find all the (isomorphism classes of) irreducible representations of the additive group $\mathbb{Z}/23\mathbb{Z}$ over the field \mathbb{F}_2. (Hint: the group algebra decomposes as a sum of fields.)

3. Suppose G is a p-group and K a field of characteristic p.
 (a) Prove that an irreducible representation of G over K is trivial.
 (b) Prove that G embeds in the subgroup of upper triangular matrices in $\text{GL}_n(K)$, for some n.

4. Let G be a finite group and H a subgroup. Let $A \subset CG$ be the subalgebra of elements $\{\alpha : h\alpha h' = \alpha\}$ for all h, h'. For any complex representation V of G, we denote by V^H the elements of V that are fixed by H.
 (a) Prove that for $v \in V^H$ and $a \in A$, we have also $a \cdot v \in V^H$.
 (b) Prove that if V is irreducible as a G-representation, then V^H is irreducible (i.e., simple) as an A-module.
 (c) Prove that if V, W are two irreducible G-representations for which V^H and W^H are isomorphic nontrivial A-representations, then V is isomorphic to W.

Hint for part (c): Let $\theta : V^H \to W^H$ an A-module isomorphism. Let S be the smallest G-invariant subspace of $V \oplus W$ containing the graph of θ. Then $S \neq V \oplus W$. Now the projection maps $S \to V, S \to W$ are both isomorphisms; thus S defines the graph of an isomorphism between V and W.

Remark. In fact, the association $V \mapsto V^H$ gives a bijection between irreducible representations of G with an H-fixed vector, and simple modules for A: can you describe the inverse?

5. Let G be a group and $0 \to F_1 \to F_2 \to \cdots \to F_k \to 0$ an exact complex of G-representations over a field k. Let F_j^{ss} be the semisimplification of F_j. Prove that $\bigoplus_{j \text{ odd}} F_j^{ss}$ and $\bigoplus_{j \text{ even}} F_j^{ss}$ are isomorphic.

6. Let G be a finite group and $\rho : G \to \text{GL}(V)$ a representation of G on the finite-dimensional \mathbb{Q}-vector space V. Prove that we can choose a basis for V so that every $\rho(g)$ acts by a matrix with *integral entries*.

Hint. Choose any basis e_1, \ldots, e_n, let $L = \sum \mathbb{Z}e_i$, and “average” L to make it G-invariant.

7. We continue with the setup of the prior problem. Suppose e_1, \ldots, e_n and f_1, \ldots, f_n are two different bases for V so that $\rho(G)$ has integral entries; let $\sigma_1, \sigma_2 : G \to \text{GL}_n(\mathbb{Z})$ be the corresponding homomorphisms. Let σ_1, σ_2 be the corresponding representations

$$
\sigma_j : G \overset{\sigma_j}{\to} \text{GL}_n(\mathbb{Z}) \to \text{GL}_n(\mathbb{Z}/p\mathbb{Z}).
$$

Prove that σ_1 and σ_2—considered as representations of G over the field $\mathbb{Z}/p\mathbb{Z}$—have isomorphic semisimplifications (in other words, they have the
same composition factors with the same multiplicity; they need not, in
general, be actually isomorphic).

Hint. Let L, L' be the \mathbb{Z}-modules spanned by e_1, \ldots, e_n and f_1, \ldots, f_n; it suffices to check in the case when $L' \subseteq L$ (why?); now let X be the finite
abelian group L/L', on which G acts, so that one has an exact sequence
\[
\{x \in X : px = 0\} \to L'/pL' \to L/pL \to X/pX;
\]
use (a slight variant of) 5.

(8) Let k, k' be two algebraically closed fields whose characteristic doesn’t di-
vide $|G|$. Does G have “the same” irreducible representations over k and
k'? Discuss (e.g., formulate a precise statement).

(9) Let $G = \text{PSL}_2(\mathbb{F}_{23})$ act on $X = \mathbb{P}^1(\mathbb{F}_{23}) = \mathbb{F}_{23} \cup \infty$. Let $V = \mathbb{F}_2X$, the permutation module with coefficients in the field of size 2. Prove that there exist exactly two invariant subspaces of dimension 12. [Hint: Use the
subgroup \[
\begin{pmatrix}
a & x \\ 0 & a^{-1}
\end{pmatrix}
\]
of order 11×23.]

If U is either one of these subspaces, then U contains no vector (x_i) with
fewer than 8 nonzero entries. Up to automorphism, there is a unique 12-
dimensional subspace of \mathbb{F}_2^{24} with this property; it is the so-called extended Golay code, and its automorphism group is the simple group M_{24}.