TAKE HOME FINAL EXAM

Notations:

- Let G be a compact connected Lie group.
- If \mathfrak{g} is a Lie algebra, a representation of \mathfrak{g} on a vector space W is a Lie algebra homomorphism $\mathfrak{g} \to \operatorname{End}(W)$, where $\operatorname{End}(W)$ has Lie bracket [A, B] = AB - BA. Equivalently, it is an "action" $\mathfrak{g} \times W \to W$ with the property that X(Yv) - Y(Xv) = [X, Y]v for $X, Y \in \mathfrak{g}$.
- \mathfrak{sl}_2 is th Lie algebra of $SL_2(\mathbf{C})$, i.e. the complex 2×2 matrices. We denote

$$e = \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right), \ \ f = \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right), \ \ h = [e, f].$$

- 1. Let V be an irreducible finite-dimensional representation of G, i.e. a continuous (automatically smooth) map $G \to \operatorname{End}(V)$. By differentiating we get a map $\operatorname{Lie}(G) \to \operatorname{End}(V)$, i.e. a representation of $\operatorname{Lie}(G)$ on V.
 - (a) Explain why the action of Lie(G) on V is also irreducible (i.e. no proper nontrivial subspace W satisfies $XW \subset W$ for all $X \in \text{Lie}(G)$).
 - (b) Let $\langle -, \rangle$ denote a *G*-invariant inner product on Lie(*G*) and let X_i be an orthonormal basis. Let $\mathcal{C}: V \to V$ be the "Casimir operator"

$$v\mapsto \sum X_i^2 v$$

where $X_i^2 v$ means $X_i(X_i v)$. Show that \mathcal{C} commutes with every element of G and deduce that \mathcal{C} is a scalar multiple of the identity.

- (c) For $G = SU_2$ compute the scalar by which C acts on the *n*-dimensional irreducible representation (to define C we need a *G*-invariant inner product on Lie(*G*); just be clear about which one you use).
- 2. Let $G = SO_n$. Let V_k be the vector space of homogeneous polynomials of degree k on \mathbb{R}^n . Construct a morphism $f : V_{k-2} \to V_k$ commuting with the *G*-action, and show that the cokernel $V_k/f(V_{k-2})$ is an irreducible representation of SO_n with highest weight (k, 0, 0, ..., 0)

(We discussed the n = 3 case of this result in class.)

- 3. Have you ever wanted to diagonalize the Fourier transform? The following question gives one very nice answer, related to the quantum harmonic oscillator. Let V be the space of functions on **R** of the form $P(x)e^{-x^2/2}$, where P is a polynomial.
 - (a) Show that the rules

$$eF = \frac{ix^2}{2}F, \quad fF = \frac{i}{2}\frac{d^2F}{dx^2} \quad hF = x\frac{dF}{dx} + F/2$$

define an action of \mathfrak{sl}_2 on V.

- (b) Set $K = i(f e) \in \mathfrak{sl}_2$. Find elements $P, Q \in \mathfrak{sl}_2$ such that [K, P] = 2P, [K, Q] = -2Q, [P, Q] = K. Use P and Q as "raising" and "lowering" operators to prove that there is a basis v_0, v_1, \ldots , for V with the properties that $Kv_i = (i + 1/2)v_i$.
- (c) Define the Fourier transform \mathcal{F} by $\mathcal{F}f(k) = \frac{1}{\sqrt{2\pi}} \int f(x)e^{ikx}dx$. Verify that \mathcal{F} preserves V and check the rules $\mathcal{F}e = -f\mathcal{F}, \mathcal{F}f = -e\mathcal{F}, \mathcal{F}h = -h\mathcal{F}$. Deduce that $\mathcal{F}v_k = i^k v_k$.