(1) Compute the character table of A_{4}.
(2) Let $X=(12)-e \in \mathbf{C} S_{3}$ and $Y=(123)+3(12) \in \mathbf{C} S_{3}$. Compute the product $X Y$. Now compute the images of $X, Y, X Y$ under the isomorphism $\mathbf{C} S_{3} \rightarrow M_{2}(\mathbf{C}) \times \mathbf{C} \times \mathbf{C}$ that we discussed in class.
(3) Let N be the group of upper triangular matrices in $\mathrm{GL}_{3}\left(\mathbf{F}_{p}\right)$ with all diagonal entries equal to 1 . Let Z be the center of N; it is a cyclic p-group.
(a) Describe the conjugacy classes in N.
(b) Show that N has exactly p^{2} one-dimensional representations, and describe them explicitly.
(c) Prove that there are $p-1$ remaining representations of N, that they are all p-dimensional, and for each such representation V_{i} the trace χ_{i} is zero on any elements $\left(\begin{array}{ccc}1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1\end{array}\right)$ unless $a=c=0$.
(4) Let $G \subset \mathrm{GL}_{n}(\mathbf{C})$ be a finite group, so that G acts on $V=\mathbf{C}^{n}$. Prove that every irreducible representation of G occurs in $V^{\otimes k}$ for some $k \geq 1$.
(5) Let $X=e+(12)+(123)+(1234) \in \mathbf{C} S_{4}$. Prove that there are only finitely many $\lambda \in \mathbf{C}$ such that $X+\lambda$ is noninvertible. Find all such λ.
(6) (This one is tricky:) Let P be the representation of S_{n} on $\left\{\left(x_{1}, \ldots, x_{n}\right) \in\right.$ $\left.\mathbf{C}^{n}: \sum x_{i}=0.\right\}$ Prove that $P \otimes P$ s the sum of exactly four irreducible non-isomorphic representations.

