- (1) Compute the character table of A_4 .
- (2) Let $X=(12)-e\in \mathbf{C}S_3$ and $Y=(123)+3(12)\in \mathbf{C}S_3$. Compute the product XY. Now compute the images of X,Y,XY under the isomorphism $\mathbf{C}S_3\to M_2(\mathbf{C})\times \mathbf{C}\times \mathbf{C}$ that we discussed in class.
- (3) Let N be the group of upper triangular matrices in $GL_3(\mathbf{F}_p)$ with all diagonal entries equal to 1. Let Z be the center of N; it is a cyclic p-group.
 - (a) Describe the conjugacy classes in N.
 - (b) Show that N has exactly p^2 one-dimensional representations, and describe them explicitly.
 - (c) Prove that there are p-1 remaining representations of N, that they are all p-dimensional, and for each such representation V_i the trace χ_i

is zero on any elements
$$\begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix}$$
 unless $a = c = 0$.

- (4) Let $G \subset GL_n(\mathbf{C})$ be a finite group, so that G acts on $V = \mathbf{C}^n$. Prove that every irreducible representation of G occurs in $V^{\otimes k}$ for some $k \geq 1$.
- (5) Let $X = e + (12) + (123) + (1234) \in \mathbf{C}S_4$. Prove that there are only finitely many $\lambda \in \mathbf{C}$ such that $X + \lambda$ is noninvertible. Find all such λ .
- (6) (This one is tricky:) Let P be the representation of S_n on $\{(x_1,...,x_n) \in \mathbb{C}^n : \sum x_i = 0.\}$ Prove that $P \otimes P$ s the sum of exactly four irreducible non-isomorphic representations.