(1) Book problems: 11.3.1, 11.3.2, 18.1.4, 18.2.4.
(2) (Converse to Schur's lemma:) Let G be a finite group and V a G-representation over \mathbf{C} such that any G-homomorphism $V \rightarrow V$ is a multiple of the identity. Prove that V is irreducible. Give a counterexample when G is infinite.
(3) Consider the representation of S_{4} on $\left\{(x, y, z, w) \in \mathbf{C}^{4}:(x+y+z+w)=0\right\}$. Choose a basis and write out matrices for an element of each conjugacy class in S_{4}. Therefore compute the character of this representation.
(4) Let G be a group and A an abelian subgroup of index $\leq N$. Prove that every irreducible representation of G has dimension $\leq N$.
(5) Let V, W be finite-dimensional vector spaces over a field F.
(a) Construct a natural isomorphism (i.e., without choosing bases) between $(V \otimes W)^{*}$ and $V^{*} \otimes W^{*}$.
(b) Let M be the vector space of all linear transformations from V to W. Define a bilinear map $V^{*} \times W \rightarrow M$ sending $\left(v^{*}, w\right)$ to the linear transformation

$$
v \mapsto w\left\langle v^{*}, v\right\rangle .
$$

Show that this defines (via the universal property) an isomorphism $\Phi: V^{*} \otimes W \rightarrow M$.
(c) Define the rank of an element of $V^{*} \otimes W$ be the least integer r such that it can be written as $\sum_{i=1}^{r} v_{i}^{*} \otimes w_{i}$. Show that the rank of $x \in V^{*} \otimes W$ coincides with the matrix rank of $\Phi(x) \in M$.
(d) Now suppose that $V=W$. In this case, there is a linear transformation $\ell: V^{*} \otimes V \rightarrow F$ which sends $v^{*} \otimes v$ to $\left\langle v^{*}, v\right\rangle$. Prove that $\ell(x)=$ trace $\Phi(x)$.
(6) Let F be a field and $P \in F\left[x_{1}, \ldots, x_{n}\right]$ a polynomial of degree d in n variables. Write $V=F^{n}$ and consider P as a function $V \rightarrow F$.
(a) Suppose that the characteristic of F is zero. Show that $P(v)=$ $B(v, v, \ldots, v)$ where

$$
B: \underbrace{V \times V \times \cdots \times V}_{d} \rightarrow F
$$

is a symmetric ${ }^{1}$ multilinear form form on d copies of V. Show also that such a B is unique.
(b) Show that (a) can be false when the characteristic of F is nonzero.

[^0]
[^0]: ${ }^{1}$ Symmetric means that $B\left(v_{1}, \ldots, v_{d}\right)$ is unchanged by any permutation of $\left(v_{1}, \ldots, v_{d}\right)$.

