- (1) Book problems: 11.3.1, 11.3.2, 18.1.4, 18.2.4.
- (2) (Converse to Schur's lemma:) Let G be a finite group and V a G-representation over \mathbb{C} such that any G-homomorphism $V \to V$ is a multiple of the identity. Prove that V is irreducible. Give a counterexample when G is infinite.
- (3) Consider the representation of S_4 on $\{(x, y, z, w) \in \mathbf{C}^4 : (x+y+z+w) = 0\}$. Choose a basis and write out matrices for an element of each conjugacy class in S_4 . Therefore compute the character of this representation.
- (4) Let G be a group and A an abelian subgroup of index $\leq N$. Prove that every irreducible representation of G has dimension $\leq N$.
- (5) Let V, W be finite-dimensional vector spaces over a field F.
 - (a) Construct a natural isomorphism (i.e., without choosing bases) between $(V \otimes W)^*$ and $V^* \otimes W^*$.
 - (b) Let M be the vector space of all linear transformations from V to W. Define a bilinear map $V^* \times W \to M$ sending (v^*, w) to the linear transformation

$$v \mapsto w\langle v^*, v \rangle$$
.

Show that this defines (via the universal property) an isomorphism $\Phi: V^* \otimes W \to M$.

- (c) Define the rank of an element of $V^* \otimes W$ be the least integer r such that it can be written as $\sum_{i=1}^r v_i^* \otimes w_i$. Show that the rank of $x \in V^* \otimes W$ coincides with the matrix rank of $\Phi(x) \in M$.
- (d) Now suppose that V = W. In this case, there is a linear transformation $\ell: V^* \otimes V \to F$ which sends $v^* \otimes v$ to $\langle v^*, v \rangle$. Prove that $\ell(x) = \operatorname{trace} \Phi(x)$.
- (6) Let F be a field and $P \in F[x_1, \ldots, x_n]$ a polynomial of degree d in n variables. Write $V = F^n$ and consider P as a function $V \to F$.
 - (a) Suppose that the characteristic of F is zero. Show that $P(v) = B(v, v, \ldots, v)$ where

$$B: \underbrace{V \times V \times \cdots \times V}_{d} \to F$$

is a symmetric 1 multilinear form form on d copies of V. Show also that such a B is unique.

(b) Show that (a) can be false when the characteristic of F is nonzero.

¹Symmetric means that $B(v_1, \ldots, v_d)$ is unchanged by any permutation of (v_1, \ldots, v_d) .