1. Solutions to some tricky homework questions

(1) (HW 2.3)

Let \(G = S_n \) and let \(H \) be the stabilizer of 1 in \(G \) (i.e., the permutations \(\sigma \) so that \(\sigma(1) = 1 \)); thus \(H \) is isomorphic to \(S_{n-1} \). We show that any \(G \)-representations with an \(H \)-fixed vector is either isomorphic to the trivial representation or to the representation on \(\{(x_1, \ldots, x_n) : \sum x_i = 0\} \).

Let \(C^n \) be the permutation module for \(G \) and \(e_i \) \((1 \leq i \leq n) \) the usual basis for \(C^n \). Therefore, the action of \(G \) is via \(\sigma e_i = e_{\sigma(i)} \).

Suppose \(V \) is a representation and \(v \in V \) an \(H \)-fixed vector. If \(g \in G \), then \(gv \in V \) only depends on \(g(1) \): if \(g(1) = g'(1) \), then \(g \in g'H \) and so \(gv = g'v \).

For \(1 \leq i \leq n \), let \(v_i = gv \), where \(g \in G \) is any element with \(g(1) = i \). Note that \(v_{g(i)} = xv_i \) for any \(x \in G \).

Define

\[
\phi : C^n \rightarrow V, \quad \phi(\sum a_i e_i) = \sum a_i v_i.
\]

It is a \(G \)-homomorphism. This follows from the fact that \(v_{g(i)} = xv_i \) for \(x \in G \). Since \(V \) is irreducible, \(\phi \) is surjective. But we have proven that \(C^n = \text{span}(1, 1, \ldots, 1) \oplus P \) (with \(P = \{x_i : \sum x_i = 0\} \)), with each factor irreducible; so \(\phi \) restricted to each factor is either zero or an isomorphism (by Schur’s lemma).

Thus \(V \) is isomorphic to either the trivial representation or \(P \).

(2) (HW 2.4) [This solution looks quite intimidating, but the core of it is the irreducible case; study that first.]

Consider first of all a nonzero irreducible subrepresentation \(W \subset V^\oplus n \).

Each projection map \(\pi_j : W \rightarrow V \) is either zero or an isomorphism, by Schur’s lemma. Choose \(j_0 \) so that \(\pi_{j_0} \) is an isomorphism. For every \(1 \leq k \leq n \), the map

\[
\pi_k \circ \pi_{j_0}^{-1} : V \rightarrow V
\]

is, by Schur’s lemma, a scalar; call this scalar \(\lambda_k \in \mathbb{C} \). Then, for every \(w \in W \),

\[
w = (\pi_1(w), \pi_2(w), \ldots, \pi_n(w)) = (\lambda_1 \pi_{j_0}(w), \lambda_2 \pi_{j_0}(w), \ldots, \lambda_n \pi_{j_0}(w)).
\]

Since \(\pi_{j_0} \) is surjective, we conclude that

\[
(1) \quad W = \{(\lambda_1 v, \lambda_2 v, \ldots, \lambda_n v) : v \in V\}.
\]

This classifies the irreducible subrepresentations of \(V^\oplus n \). We now consider the general case; for this, we need some notation to handle “systems of equations.”

For any subspace \(Y \subset C^n \), let

\[
W(Y) = \{(v_1, \ldots, v_n) \in V^\oplus n : \sum y_i v_i = 0 \text{ for all } (y_1, \ldots, y_n) \in Y\}.
\]

Then \(W(Y) \subset V^\oplus n \) is a subrepresentation; we shall show all subrepresentations arise thus. One has the dimension formula (check it!)

\[
(2) \quad \dim W(S) = (n - \dim S) \dim V.
\]

Let \(W \subset V^\oplus n \) be an arbitrary subrepresentation. We may write \(W \) as an internal direct sum \(W_1 \oplus \cdots \oplus W_k \) where each \(W_i \) is irreducible. Each
\(W_i\) is of the form (1) for some vector \(\Delta_i = (\lambda_{i1}, \ldots, \lambda_{in})\). Let \(S = \{ y \in \mathbb{C}^n : \Delta_i \cdot y = 0 \text{ for all } 1 \leq i \leq k \}\) (here we write \(x \cdot y = \sum x_j y_j\)).

Then \(S\) is a subspace of dimension \(\geq n - k\), because it is defined by \(k\) linear equations. On the other hand, \(W_i \subset W(S)\) for each \(i\), so also \(W \subset W(S)\). But \(\dim(W) = k \dim(V)\) whereas (2) shows \(\dim W(S) \leq k \dim(V)\). So \(W = W(S)\).

We have shown that every subrepresentation is of the form \(W(S)\) for some \(S \subset \mathbb{C}^n\), as required.

(3) (HW 3.5) Write \(G = S_n\).

Recall that \(\mathbb{C}^n = P \oplus \text{span}(1, 1, \ldots, 1)\). Let \(\phi : \mathbb{C}^n \to P\) be the projection and \(e_1, \ldots, e_n\) the standard basis for \(\mathbb{C}^n\). (Therefore, \(\phi\) is given explicitly as \(\phi((x_1, \ldots, x_n)) = (x_1 - \bar{x}, \ldots, x_n - \bar{x})\) where \(\bar{x} = (\sum x_i)/n\).) Let \(f_i = \phi(e_i)\).

The map \(\Psi : \mathbb{C}^n \to P \otimes P\) defined by

\[
\Psi : \sum a_i e_i \mapsto \sum a_i (f_i \otimes f_i)
\]

is a \(G\)-homomorphism. Its image lies in \(\text{Sym}^2 P\) and it is \textit{injective}.

Here is how to prove injectivity (you might want to skip this): Being a \(G\)-homomorphism, if \(\Psi\) were not injective, its kernel would be a subrepresentation of \(\mathbb{C}^n\); the only possibilities are \(\text{span}(1, 1, \ldots, 1)\) and \(P\). In the first case, \(\Psi(\sum e_i) = 0 \implies \sum f_i \otimes f_i = 0\) and, in the second case, \(\Psi(e_1 - e_2) = 0 \implies f_1 \otimes f_1 = f_2 \otimes f_2\). However, \(f_1,\ldots,f_{n-1}\) is a basis for \(P\), and thus \(f_i \otimes f_j\) (\(1 \leq i, j \leq n - 1\)) is a basis for \(P \otimes P\); this together with the fact that \(f_n = -f_1 - f_2 - \cdots - f_{n-1}\) shows that neither possibility occurs.

Note also that \(\dim \text{Sym}^2 P = \frac{n(n-1)}{2} > n\), and we have just shown that \(\mathbb{C}^n\) is isomorphic to a subrepresentation of \(\text{Sym}^2 P\). Therefore, \(\text{Sym}^2 P\) decomposes as a direct sum of \(1, P\) and another representation \(X\) (not necessarily irreducible). Consequently,

\[P \otimes P \cong 1 \oplus P \oplus X \oplus \wedge^2 P.\]

Note now that \(\langle \chi_{P \otimes P}, \chi_{P \otimes P} \rangle \geq 4\) with equality if and only if \(X, \wedge^2 P\) are irreducible. We shall show that equality holds; this implies that \(X\) and \(\wedge^2 P\) are both irreducible, as desired.

Let \(\chi_P\) be the character of \(P\), so that \(\chi_P(g) = \text{fix}(g) - 1\), where \(\text{fix}(g)\) denotes the number of fixed points of \(g\) on \(\{1, 2, \ldots, n\}\). Then

\[
\langle \chi_{P \otimes P}, \chi_{P \otimes P} \rangle = \frac{1}{|G|} \sum_{g \in G} (\text{fix}(g) - 1)^4
\]

\[= \frac{1}{|G|} \sum (\text{fix}(g)^4 - 4\text{fix}(g)^3 + 6\text{fix}(g)^2 - 4\text{fix}(g) + 1).\]
Now\footnote{Indeed if G is any finite group acting on the set X then (Burnside’s lemma) \(\frac{1}{|G|} \sum_{g \in G} \text{fix}(g) \) is the number of orbits of G on X; apply this with $X = \{1, \ldots, n\}^j$. To prove Burnside’s lemma, note that \(\frac{1}{|G|} \sum_{g \in G} \text{fix}(g) = (\chi_{\mathbf{C}X}, 1) \), where $\mathbf{C}X$ is the permutation representation of G associated to X. As we proved in class, this inner product equals the dimension of the space of G-invariant vectors on $\mathbf{C}X$. But a function $f : X \to \mathbf{C}$ is G-invariant if and only if it is constant on each G-orbit; thus, the dimension of G-invariants equals the number of G-orbits.}

\[\frac{1}{|G|} \sum_{g \in G} \text{fix}(g)^j = \#G\text{-orbits on } \{1, \ldots, n\}^j. \]

It remains to count the number of S_n-orbits on $\{1, \ldots, n\}^j$ for each $1 \leq j \leq 4$. For example, with $j = 3$, there are five orbits: \(\{(x, y, z) : x, y, z \text{ all distinct}\}, \{(x, x, y) : x \neq y\}, \{(x, y, x) : x \neq y\}, \{(y, x, x) : x \neq y\}, \text{and finally } (x, x, x) \). In all cases the variables x, y, z are understood to take values in $1, \ldots, n$.

We shall abbreviate this reasoning by saying

*There is one orbit of type (x, y, z), three orbits of type (x, x, y), and one orbit of type (x, x, x).\]

Reasoning similarly:

- $j = 1$. One orbit.
- $j = 2$. Two orbits: one of type (x, y), one of type (x, x).
- $j = 3$. Five orbits (as above).
- $j = 4$. Fifteen orbits: one of type (x, y, z, w), six of type (x, x, y, z), four of type (x, x, x, y), three of type (x, x, y, y), one of type (x, x, x, x).

Thus \(\langle \chi_{P \otimes P}, \chi_{P \otimes P} \rangle = (15 - 20 + 12 - 4 + 1) = 4 \), concluding the proof.

(4) (Midterm, problem 1(b)).

The **single most common error** was on problem 1(b): to assert that any subrepresentation of $V \oplus V$ is of the form $\{0\} \oplus V$ or $V \oplus \{0\}$. This is false; a counterexample is given by $\{(v, v) : v \in V\}$. Make sure you understand this point; see also solution to HW 2.4.

Here is a solution to part (b) of the question.

Write $V = \bigoplus_i U_i$ with U_i irreducible. We claim there exists $Y \subset V$ with $V = X \oplus Y$ (internal direct sum).

Proceed by contradiction, and choose $X \subset V$ of *maximal dimension* so that the claimed result is false. Clearly $X \neq V$ (otherwise we could take $Y = 0$). There exists i so that U_i is not contained in X; by irreducibility of U_i, the intersection $U_i \cap X = \{0\}$. Write $X' = X + U_i$; it is the internal direct sum of X and U_i:

\[X' = X \oplus U_i \text{ (internal direct sum)}. \]

By assumption (X is a counterexample of maximal dimension) there is Y' so that $V = X' \oplus Y'$ (internal direct sum).

Then V is the internal direct sum of X, U_i and Y', in particular,

\[V = X \oplus (U_i \oplus Y'), \text{ (internal direct sum)}. \]
contradiction.

Thus there exists $Y \subset V$ with $V = X \oplus Y$ (internal direct sum). The map $\pi : V \to V$ defined by $x + y \mapsto x$ ($x \in X, y \in Y$) is a G-homomorphism with image equal to X, as desired.