1. Math 122, homework 2

(1) Let G be a finite group and V be an irreducible G-representation over \mathbb{C}. We proved that there is an inner product on V that is invariant under G, i.e.

\[\langle x, y \rangle = \langle gx, gy \rangle. \]

We proved this over the field of real numbers, but this case is identical. Prove that any two such inner products are multiples of one another. Hint: if $[x, y]$ and $\langle x, y \rangle$ are two inner products, there exists a linear transformation $A : V \to V$ so that $[x, y] = \langle Ax, y \rangle$.

(2) Suppose G is a group possessing an abelian subgroup of index $\leq N$. Prove that every irreducible representation of G has dimension $\leq N$.

(3) Find with proof all irreducible representations V for S_n over \mathbb{C} that admit a nonzero vector fixed by S_{n-1}.

(4) Let V be an irreducible G-representation over \mathbb{C}. Let $W = V \oplus V \oplus V$. Show that all submodules of W are given by “imposing linear constraints,” e.g. \{(x, y, z) \in V \oplus V \oplus V : 2x + 3y + z = 0, x - y - z = 0\} is an example of a submodule obtained thus.

(5) Let D be the dihedral group of order 8, the group of rotations and reflections in the plane that preserve a square. Thus $|D| = 8$. Describe all the irreducible representations of D over \mathbb{C} and compute the character table of D.

(6) Book problems: §18.3 problems 7, 10, 11, 12, 23.