In checking irreducibility you may wish to use Gauss’ Lemma, page 303 of textbook. Do all book problems and three of the remaining problems.

1. Text problems: §§13.1, problems 1, 2, 3; §§13.2, problems 2, 3, 4, 7, 8, 10.

2. Let \(\alpha \) be a root of \(\alpha^3 - \sqrt{2} \alpha + 1 \). Write down a polynomial \(P \) with rational coefficients so that \(P(\alpha) = 0 \). Express \(\alpha^{-1} \) as a \(\mathbb{Q} \)-linear combination of \(1, \alpha, \alpha^2, \ldots \).

3. Let \(\alpha \) be a root of \(x^3 + x + 1 = 0 \). Compute the minimum polynomial \(m \) of \(1 + \alpha + \alpha^2 \) and prove that \(\mathbb{Q}[\ell]/(m) \) is isomorphic to \(\mathbb{Q}[x]/(x^3 + x + 1) \).

4. Write down all the irreducible polynomials of degree 5 over \(\mathbb{Z}/2\mathbb{Z} \).

5. In lecture we discussed various results involving “irreducible” polynomials. Suppose that \(f \in \mathbb{Q}[x] \). Explain how to test in a finite time whether or not \(f \) is irreducible. Your procedure need not be particularly efficient; it should just be clear that it always terminates in finite time.