
Homework 9

Ha Pham

December 6, 2008

Problem 1 (Ch7 - Problem 30). Suppose S ∈ L(V ). Prove that S is an isometry if and
only if all the singular values of S equal 1.

Proof. S∗S is self-adjoint operator with non-negative eigenvalues, ie a positive operator.
By theorem 7.27-Axler, S∗S has a unique positive square root denoted by

√
S∗S.

• If S is an isometry then S∗S = Id by Theorem 7.36 - Axler. Hence we have
√
S∗S = I,

all of whose eigenvalues are then exactly those of Id, whis comprises of only 1.

By definition, the singular values of S are the eigenvalues of
√
S∗S, thus are equal 1.

• On the other hand, suppose all the singular values of S equal to 1, ie all the eigenvalues
of
√
S∗S are 1.

√
S∗S is self-adjoint thus diagonalizable . This together with the fact it only has

eigenvalues 1 forces
√
S∗S = Id⇒ S∗S = Id. By theorem 7.36-Axler, this is equiva-

lent to S being an isometry.

Problem 2 (Ch 7 - Ex 31). Suppose T1, T2 ∈ L(V ). Prove that T1 and T2 have the same
singular values if and only if there exist isometries S1, S2 ∈ L(V ) such that T1 = S1T2S2.

Proof. T1, T2 have the same singular values decomposition s1, . . . , sn. By The Singular-
Value Decomposition theorem (thm 7.46 - Axler), there exists orthonormal bases (e1, . . . , en)
and (ẽi, . . . , ẽn) and isometries S and S̃ such that for all v ∈ V , we have

T1v = s1〈v, e1〉Se1 + . . .+ sn〈v, en〉Sen

T2v = s1〈v, ẽ1〉S̃ẽ1 + . . .+ sn〈v, ẽn〉S̃ẽn
Guesswork : from the requirement T1 = S1T2S2, we would like to find isometries S1, S2 so
that

〈S2v, ẽi〉S1S̃ẽi = 〈v, ei〉Sei(∗)
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• Hence it is reasonable to define S1 as the linear transformation

S1S̃ẽi = Sei

Note that (ẽ1, . . . , ẽn) is an orthonormal basis and S̃ is an isometry so (S̃ẽ1, . . . , S̃ẽn)
is also an orthonormal basis. Similarly for (Se1, . . . , Sen). Hence S1 maps an or-
thonormal basis to an orthonormal basis. By theorem 7.36 in Axler, this shows that
S1 is an isometry.

• For S2, we define S2 as the linear transformation such that

〈S2ẽi, ẽj〉 = 〈ẽi, ej〉

This gives the values of S2ẽi for each i since we have specified the coefficients when
S2ẽi is written as a linear combination of the basis elements (ẽ1, . . . , ẽn).

It remains to verify that S2 is also an isometry. We need to check

〈S2ẽi, S2ẽj〉 = 〈ẽj , ẽj〉 = δij

LHS is equal to ∑
k,l

〈S2ẽi, ẽk〉〈S2ẽj , ẽl〉δkl =
∑

k

〈ẽi, ek〉〈ẽj , ek〉

= 〈ẽi, ẽj〉
= δij

Hence we have found isometries S1, S2 with the required property :

S1T2S2ẽi =
∑

j

sj〈S2ẽi, ẽj〉S1S̃ẽj

=
∑

j

sj〈ẽi, ej〉Sej

= T1ẽi

Since this true for each basis elements , this equality holds for all v ∈ V hence T1 = S1T2S2

Problem 3 (Ch 7 - Ex 32). Suppose T ∈ L(V ) has singular-value decomposition given by

Tv = s1〈v, e1〉f1 + . . .+ sn〈v, en〉fn
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1. Prove that for every v ∈ V

T ∗v = s1〈v, f1〉e1 + . . .+ sn〈v, fn〉en

2. Prove that if T is invertible, then for every v ∈ V

T−1v =
〈v, f1〉
s1

e1 + . . .+
〈v, fn〉
sn

en

Proof.

1. (e1, . . . , en) and (f1, . . . , fn) are orthonormal basis. Hence from the expression

Tv = s1〈v, e1〉f1 + . . .+ sn〈v, en〉fn

the matrix representation of T : (V, (e1, . . . , en)) → (V, (f1, . . . , fn)) is the diagonal
matrix with entries s1, . . . , sn

M =


s1 0 . . . 0
0 s2 . . . 0
...

...
. . .

...
0 0 . . . sn


Hence the matrix reprensentation of T ∗ : (V, (f1, . . . , fn)) → (V, (e1, . . . , en)) is the
transpose of the above matrix M which means exactly for all v ∈ V

T ∗v = s1〈v, f1〉e1 + . . .+ sn〈v, fn〉en

2. The matrix representation of T−1 : (V, (f1, . . . , fn)) → (V, (e1, . . . , en)) is then the
inverse of matrix M which is

M−1 =


1
s1

0 . . . 0
0 1

s2
. . . 0

...
...

. . .
...

0 0 . . . 1
sn


which means that for all v ∈ V

T−1v =
〈v, f1〉
s1

e1 + . . .+
〈v, fn〉
sn

en
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Problem 4 (Chapter 7 - ex 33). Suppose T ∈  L(V ). Let ŝ denote the smallest singular
value of T , and let s denote the largest singular value of T . Prove that for every v ∈ V

ŝ‖v‖ ≤ ‖Tv‖ ≤ s‖v‖

Proof. We have the singular value decomposition for T .

Tv = s1〈v, e1〉f1 + . . .+ sn〈v, en〉fn

where s1, . . . , sn are singular values of T and (e1, . . . , en) and (f1, . . . , fn) are orthonormal
bases of V . Since (f1, . . . , fn) is an orthonormal basis , we have

‖Tv‖2 = (s1〈v, e1〉)2 + . . .+ (sn〈v, en〉)2

≤ s2
[
(〈v, e1〉)2 + . . .+ (〈v, en〉)2

]
= s2‖v‖2

Similarly for the other inequality we have

‖Tv‖2 = (s1〈v, e1〉)2 + . . .+ (sn〈v, en〉)2

≥ ŝ2
[
(〈v, e1〉)2 + . . .+ (〈v, en〉)2

]
= ŝ2‖v‖2

⇒ ŝ‖v‖ ≤ ‖Tv‖ ≤ s‖v‖

Problem 5 (Chapter 7 - ex 34). Suppose T ′, T ′′ ∈ L(V ). Let s′, s′′, s denote the largest
singular values of T ′, T ′′, T ′ + T ′′ correspondingly. Prove that s ≤ s′ + s′′.

Proof. For all v ∈ V by triangle’s inequality and previous excercise we have

‖(T ′ + T ′′)(v)‖ ≤ ‖T ′v‖+ ‖T ′′v‖
≤ s′‖v‖+ s′′‖v‖
= (s′ + s′′)‖v‖

Now we can choose v to be ei in the orthonormal basis in the singular decomposition
so that (T ′ + T ′′)ei = si〈ei, ei〉fi and si = s. Thus the inequality above becomes

s ≤ s′ + s
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Problem 6 (Extra problem). Proof.

If an operator T is invertible then the smallest singular value ŝ of T is
1

sT−1

, where

sT−1 is the largest singular value for T−1. If T is noninvertible then its smallest singular
value is 0.

1. Consider the singular values of the product of two matrices.

(a) Denote s′, s′′, s to be the largest singular values for A,B,AB correspondingly.
We want to show that s ≤ s′s′′.
By ex 33, we have

‖ABv‖ = A(Bv) ≤ s′‖Bv‖ ≤ s′s′′‖v‖

Now pick v to be the ei in the orthonormal basis in the singular decomposition
so that (AB)ei = si〈ei, ei〉fi and si = s. Thus the inequality above becomes
s ≤ s′s′′.

(b) Denote ŝ′, ŝ′′, ŝ to be the smallest singular values for A,B,AB correspondingly.
We want to show s ≥ s′s′′. From a previous hw we have that AB is invertible if
and only if A and B are both invertible.

• If AB is not invertible then either A or B is not invertible. For an invertible
operator one of its singular value has to be 0 hence the smallest singular
value is also 0. Hence both sides of the inequality are 0.
• If AB is invertible, so are both A and B. From the work shown above for

the largest singular value we have

sT−1 ≤ s′T−1s
′′
T−1 ⇒

1
ŝ
≤ 1

ŝ′
1

ŝ′′
⇒ ŝ ≥ ŝ′ŝ′′

Hence in either case, we have ŝ ≥ ŝ′ŝ
(c) The inequality established for the largest singular value does not hold for second

largest. Consider the following 2× 2 matrices.(
2 0
0 1

)
;
(

1 0
0 2

)
In this case, we have the second largest singular value of the product is 2 is
greater than the product of the second largest singular values of each matrix,
which is 1.

(d) The inequality that was established for smallest singular values does not hold
in the second smallestcase. Take for example(

2 0
0 1

)
;
(

1 0
0 2

)
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The second smallest singular value of the product is 2 while the product of the
second smallest singular values for each of the matrix is 4. Hence it is not true
that 2 > 2.2.

2. Sum of matrices

(a) The inequality established for the largest singular value does not hold in the
case of second largest singular values. Consider the counter example with the
matrices (

1 0
0 0

)
;
(

0 0
0 1

)
The second largest value for the sum is 1 while the sum of second largest value
is 0. Hence it is not true that 1 ≤ 0 + 0.

(b) For the smallest singular values, we do not ŝ ≥ ŝ′+ ŝ′′. Consider the counterex-
ample. (

1 0
0 1

)
;
(
−1 0
0 −1

)
The smallest singular value of the sum is 0 while the sum of the smallest singular
values is 2 hence it is false that 0 ≥ 1 + 1

(c) For second smallest, consider the examples1 0 0
0 2 0
0 0 3

 ;

3 0 0
0 1 + 1

2 0
0 0 1

 ;

4 0 0
0 3 + 1

2 0
0 0 4


Here the second smallest singular value of the sum which is 4 is greater than
the sum of the second smallest which is 2 + 1 + 1

2 .
While for the case−1 0 0

0 −2 0
0 0 −3

 ;

3 0 0
0 1 + 1

2 0
0 0 1

 ;

2 0 0
0 −1

2 0
0 0 −2


The second smallest singular value of the sum which is 2 is leass the sum of the
second smallest which is 1

2 .
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