Homework 6

Ha Pham

November 12, 2008

Problem 1. Chapter 5 - ex 4: Suppose $S, T \in L(V)$ are such that $S T=T S$. Prove that $\operatorname{Ker}(T-\lambda I)$ is invariant under S for every $\lambda \in \mathbb{F}$.

Proof. Suppose $u \in \operatorname{Ker}(T-\lambda I)$ ie $T u=\lambda u$.
We want to show that $S u \in \operatorname{Ker}(T-\lambda I)$ also ie $(T-\lambda I) S u=0$.

$$
T S u=S T u=S(\lambda u)=\lambda S u \Rightarrow(T-\lambda I) S u=0
$$

Problem 2. Chapter 5 - ex 5.
Define $T \in L\left(F^{2}\right)$ by $T(w, z)=(z, w)$. Find all eigenvalues and eigenvectors of T.
Proof.

$$
T(z, z)=(z, z) ; T(z,-z)=(-z, z)=-(z,-z)
$$

$(1,1),(1,-1)$ are two linearly independent eigenvectors with corresponding eigenvalues 1 and -1 . The vector space is of $\operatorname{dim} 2$. Hence there are 2 eigenvalues 1 and -1 .

The eigenvectors associated with 1 are multiples of $(1,1)$. The eigenvectors associated with -1 are multiples are $(1,-1)$.

Problem 3. Chapter 5-ex 6: Define $T \in L\left(\mathbb{F}^{3}\right)$ by :

$$
T\left(z_{1}, z_{2}, z_{3}\right)=\left(2 z_{2}, 0,5 z_{3}\right)
$$

Find all eigenvalues and eigenvectors of T.
Proof. Denote by M the matrix representation of T with respect to the standard basis.

$$
\left(\begin{array}{lll}
0 & 2 & 0 \\
0 & 0 & 0 \\
0 & 0 & 5
\end{array}\right)
$$

The matrix is in upper triangular form,so we can read the eigenvalues off the diagonal, thus the eigenvalues are: 0 and 5 .

The eigenvectors for eigenvalue 0 are in the null space of T, which is of dimension 1 . Hence they are all mulptiples of $(1,0,0)$.

The eigenvectors for eigenvalue 5 are in the null space of $T-5 I$, whose matrix representation is, with respect to the standard basis:

$$
\left(\begin{array}{ccc}
-5 & 2 & 0 \\
0 & -5 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Thus the null space in this case is of dimension 1. And all eigenvectors associated with eigenvalue 5 are multiples of $(0,0,1)$.

Problem 4. Chapter 5-ex 7. Suppose n is a positive integer and $T \in L\left(\mathbb{F}^{n}\right)$ is defined by

$$
T\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}+\ldots+x_{n}, \ldots, x_{1}+\ldots+x_{n}\right)
$$

Find all eigenvectors and eigenvalues for T.
Proof. Denote by M the matrix representation of $T-\lambda I$ with respect to the standard basis:

$$
\left(\begin{array}{ccccc}
1-\lambda & 1 & 1 & \ldots & 1 \\
1 & 1-\lambda & 1 & \cdots & 1 \\
1 & 1 & 1-\lambda & \cdots & 1 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & 1 & 1 & \cdots & 1-\lambda
\end{array}\right)
$$

in other words, M is the matrix with $1-\lambda$ along the diagonal and 1 elsewhere.
To compute the characteristic equation of T, we compute the determinant of M. First we carry out some row and column operations to put M into upper triangular form.

1. For each $i \neq 1$, replace $i^{\text {th }}$ row with itself and -1 the first row. By this way, we obtain a matrix of the form : the first row remains the same; for each $i \neq 1, i^{\text {th }}$ row consists of λ in the first entry, $-\lambda$ in the $i^{\text {th }}$ spot, and 0 otherwise.

$$
\left(\begin{array}{ccccc}
1-\lambda & 1 & 1 & \ldots & 1 \\
\lambda & -\lambda & 0 & \ldots & 0 \\
\lambda & 0 & -\lambda & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\lambda & 0 & 0 & \ldots & -\lambda
\end{array}\right)
$$

2. Operating column operation on this new matrix by : replace with first column by itself with $-1 \times\left(C_{2}+\ldots+C_{n}\right)$, which gives us the matrix :

$$
\left(\begin{array}{ccccc}
n-\lambda & 1 & 1 & \ldots & 1 \\
0 & -\lambda & 0 & \ldots & 0 \\
0 & 0 & -\lambda & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & -\lambda
\end{array}\right)
$$

Hence the characteristic polynomial for T is :

$$
f(x)=(-1)^{n}(x-n) x^{n-1}
$$

Thus the eigenvalues are n and 0 .
The dimension of the null space for $T-n I$ is 1 , hence all eigenvectors associated with eigenvalue n are multiples of $(1, \ldots, 1)$.

The dimension of the null space for T is $n-1$ and the eigenvectors associated with 0 are of the form : $\left(-\left(x_{2}+\ldots+x_{n}\right), x_{2}, \ldots, x_{n}\right), x_{i} \in \mathbb{F}$, ie the null space is spanned by :

$$
(-1,1, \ldots, 0),(-1,0,1, \ldots, 0), \ldots,(-1,0, \ldots, 1)
$$

Problem 5. Chapter 5-ex 11. V is a finite dim VS. Suppose $S, T \in L(V)$. Prove that $S T, T S$ have the same eigenvalues.

Proof.

1. Suppose λ is a nonzero eigenvalue for $S T$, ie, $\exists 0 \neq u \in V, S T u=\lambda u$. From this equation, note that $T u \neq 0$. Hence apply T to both sides, we obtain :

$$
T S T u=\lambda T u \Rightarrow T S(T u)=\lambda(T u)
$$

Since $T u \neq 0, \lambda$ is thus an eigenvalue for $T S$.
2. Suppose $S T$ has 0 as an eigenvalue. WTS $T S$ also has 0 as an eigenvalue, ie $\operatorname{Ker} T S$ is nontrivial.

Suppose Ker $T S$ is trivial. Since V is finite-dim, $T S$ is a linear isomorphism, ie $T S$ is invertible, which by a previous hw problem, we have both T and S are invertible. This in turn gives that $S T$ is invertible : this contradicts $S T$ has a 0 as one of its eigenvalue, ie nontrivial kernel.

Hence we have shown that if λ is an eigvenvalue for $S T$, it is also one for $T S$. For the other direction, simply exchange the role of T and S.

Problem 6. Chapter 5 - ex 12. Suppose $T \in L(V)$ is such that every vector in V is an eigen vector of T. Prove that T is a scalar multiple of the identity operator.

Proof. From the hypothesis, we have $\forall u, v \in V, \exists \lambda_{1}, \lambda_{2}, \lambda_{3} \in \mathbb{F}$ such that:

$$
\begin{gathered}
T u=\lambda_{1} u ; T v=\lambda_{2} v \\
T(u+v)=\lambda_{3}(u+v)
\end{gathered}
$$

Suppose that, contrary to hypothesis, T is not a multiple of the identity. This means that we may choose u, v so that $\lambda_{1} \neq \lambda_{2}$. Then:

$$
\begin{gathered}
\lambda_{3}(u+v)=\lambda_{1} u+\lambda_{2} v \\
\Rightarrow\left(\lambda_{3}-\lambda_{1}\right) u+\left(\lambda_{3}-\lambda_{2}\right) v=0
\end{gathered}
$$

This means that any two vector in V are linearly dependent. Thus V is one dimensional. In this case, every linear transformation from V to V (without any further conditions) is a multiple of the identity operator, contradiction.

Problem 7. Chapter 5 - ex 21. Suppose $P \in L(V)$ and $P^{2}=P$. Prove that $V=$ Ker $P \oplus$ Range P.

Proof.

1. We have

$$
\begin{gathered}
v \in \operatorname{Ker} P \cap \text { Range } P \Rightarrow \exists u \in V: v=P u \\
\Rightarrow 0=P v=P^{2} u=P u=v \Rightarrow v=0 \Rightarrow \operatorname{Ker} P \cap \text { Range } P=\{0\}
\end{gathered}
$$

2. For $v \in V$, we have $v=P v+(v-P v)$. Note that $P(v-P v)=P v-P^{2} v=P v-P v=$ 0 . Hence $v-P v \in \operatorname{Ker} P$
Thus $V=\operatorname{Ker} P+$ Range P
Combining two steps, we have the desired result.

Problem 8. Chapter - ex 23. Give an example of an operator $T \in L\left(\mathbb{R}^{4}\right)$ such that T has no real eigenvalues.

Proof. Consider T as operation defined by the multiplication on the left of column vectors by the following matrix.

$$
\left(\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Then the characteristic polynomial for T is the $\operatorname{det} T-x I$, is the product of det of two block matrices, each has det $x^{2}+1$:

$$
\left(\begin{array}{cccc}
-x & -1 & 0 & 0 \\
1 & -x & 0 & 0 \\
0 & 0 & -x & -1 \\
0 & 0 & 1 & -x
\end{array}\right)
$$

Hence characteristic polynomial $\left(x^{2}+1\right)^{2}$, which has no real roots. Since if T has any eigenvalue, it has to be one of the roots of the characteristic polynomial. In this case, T must have no (real) eigenvalues.

Problem 9. Extra problem - Suppose that the characteristic polynomial $p(x)$ of a 3×3 matrix M is $\operatorname{det}(x I d-M)=(x-1)(x-2)(x-3)$. What is the determinant of M ? What is the characteristic polynomial of M^{100} ?

Proof.

We know that $\operatorname{Det} M=(-1)^{3} p(0)=6$.
From the characteristic polynomial for M, we know M has 3 distinct eigenvalues $1,2,3$, which comes with 3 corresponding linearly independent eigenvectors, called v_{1}, v_{2}, v_{3}.

The matrix representation of M with respect to this basis is, denoted by D :

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right)
$$

Note D^{100} is of the following form, thus has characteristic polynomial $(x-1)\left(x-2^{100}\right)(x-$ 3^{100})

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2^{100} & 0 \\
0 & 0 & 3^{100}
\end{array}\right)
$$

Denote A to be the change of basis matrix from $\left\{v_{1}, v_{2}, v_{3}\right\}$ to the standard basis, we then have : $M=A D A^{-1}$.

On the other hand,

$$
\begin{aligned}
\operatorname{det}\left(x M^{100}-I d\right) & =\operatorname{det} A \operatorname{det}\left(x M^{100}-I d\right) \operatorname{det} A^{-1} \\
& =\operatorname{det}\left(x A M^{100} A^{-1}-A A^{-1}\right) \\
& =\operatorname{det}\left(x\left(A M A^{-1}\right)^{100}-I d\right) \\
& =\operatorname{det}\left(x D^{100}-I d\right)
\end{aligned}
$$

Hence M^{100} and D^{100} have the same characteristic polynomial, which is $(x-1)\left(x-2^{100}\right)(x-$ 3^{100})

