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Problem 1. Suppose that M is a square upper triangular matrix. Prove that the deter-
minant of M is the product of the diagonal entries.

Proof. Let e1, . . . , en be the usual basis of Fn, i.e. e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0).
Then M(e1) = a11e1,M(e2) = a22e2 + a12e1,M(e3) = a33e3 + a23e2 + a13e1, . . . .

Now, let Λ be an alternating n-form on Fn. Now M(e1), . . . ,M(en−1),M(en)− annen
are contained in the span of e1, . . . , en−1 and are so linearly dependent. Therefore,

Λ(M(e1),M(e2), . . . ,M(en))
= Λ(M(e1), . . . ,M(en−1), annen) + Λ(M(e1), . . . ,M(en)− annen)
= Λ(M(e1), . . . ,M(en−1), annen),

where we used the fact that an alternating n-form vanishes on v1, . . . , vn if they are not a
basis.

Now, in exactly the same way, M(e1), . . . ,M(en−2),M(en−1) − an−1,n−1en−1 span a
space of dimension ≤ n − 2 and so, together with en, cannot be a basis. By the same
reasoning,

Λ(M(e1), . . . ,M(en−1), annen) = Λ(M(e1), . . . ,M(en−2), an−1,n−1en−1, annen)

Continuing in this way we arrive at

Λ(M(e1),M(e2), . . . ,M(en)) = Λ(a11e1, a22e2, a33e3, . . . , annen) = Λ(e1, . . . , en)
n∏

i=1

aii

so the determinant is
∏
aii.

Problem 2. Let D be a nonzero alternating 3-form on R3. Describe in geometric terms
when, for v1, v2, v3 in R3, the sign of D(v1, v2, v3) is positive.
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Proof. Suppose that D((1, 0, 0), (0, 1, 0), (0, 0, 1)) > 0. Then one may use the right-hand
rule: if you curl your hand in the direction from v1 to v2, then your thumb either points in
the direction of v3 (in which case D(v1, v2, v3) > 0) or in the opposite direction (in which
case D(v1, v2, v3) < 0).

(This is usually well-described in physics texts. If you have studied the cross product,
then you should check that:

D(v1,v2,v3) = (v1 × v2) · v3,

where × is the cross-product and · the dot product. The main point of the question,
though, was simply to get you to think about the sign. One way to figure this out was to
fix v1, v2 and then move around v3 and try to think about when the sign changes from +
to −. )

Problem 3. Suppose that D is a nonzero alternating n-form on an n-dimensional vector
space V . Suppose that e1, . . . , en is a basis for V .

1. Prove that, if we replace e1 by e1 + αej , for any α ∈ F and any j > 1, the value of
D(e1, ..., en) remains unchanged.

2. Prove that, if M is an n× n square matrix, then adding any multiple of a row of M
to some other row leaves det(M) unchanged.

Proof. 1. Since D is multilinear, for j > 1, we have :

D(e1 + αej , ..., en) = D(e1, . . . , ej , . . . , en) + αD(ej , . . . , ej , . . . , en)

D is alternating so D(ej , . . . , ej , . . . , en) = 0.

⇒ D(e1 + αej , ..., en) = D(e1, . . . , ej , . . . , en)

2. Let S be the matrix with all diagonal entries 1, and all other entries zero except the
(i, j)th, which is also equal to 1. (For instance, for n = 3 and i = 1, j = 2, S would

look like

 1 1 0
0 1 0
0 0 1

. Then, for any matrix M , the matrix MS (respectively SM)

is obtained from M by adding the ith column to the jth column (respectively, jth
row to the ith row). Now, since

det(SM) = det(MS) = det(S) det(M),

it suffices to check that det(S) = 1. However, since S(ek) = ek for all k 6= j and
S(ej) = ej + ei, this follows from the first part of the question.
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Problem 4. Katznelson Corollary 4.4 Katznelson IV. 5.5 .

Proof. Let A be an n× n matrix. Denote T : Mn×n →Mn×n, the operation the operation
B 7→ BA.

We claim that det(T ) = det(A)n. The space Mn×n is the interior direct sum of the
spaces Vi, for 1 ≤ i ≤ n, where

Vi = n× n matrices with nonzero entries only in the ith column.

Then T (Vi) ⊂ Vi for each i. The determinant of T (by repeated application of the Corollary
4.4) is the product of the determinants of T restricted to the spaces Vi.

For each 1 ≤ i ≤ n, consider the matrix Eij ∈ Vi which has a 1 in the ijth entry and 0
elsewhere. Then the Eij (1 ≤ j ≤ n) form a basis for Vi, and the matrix of T with respect
to this basis is precisely A. So, detT |Vi = det(A) for every i, whence our claim.

Problem 5. Katznelson IV. 5.12 -

Proof. 1. As noted in the hint, V (a1, . . . , an, x) is a polynomial of degree n in x, which
can be seen from the cofactor expansion or the definition of the determinant. Denote
this polynomial by fn(x).

If x = ai, then we get a matrix with two identical rows, thus the value of the
determinant is 0, ie

fn(ai) = 0⇒ fn(x) = (x− a1) . . . (x− an)g(x)

However degree of fn is n, thus for some constant C , we have :

V (a1, . . . , an, x) = fn(x) = C(x− a1) . . . (x− an), where C(−1)na1 . . . an = fn(0)

Now fn(0) equals the determinant of the matrix obtained when we plug in x = 0.
To calculate the determinant for this matrix, use cofactors and expand along the last
row, which gives fn(0) = (−1)n det(M), where M is the matrix as below :a1 . . . an

1
...

...
...

an . . . an
n


For 1 ≤ i ≤ n, we can factor out ai from each ith row to obtain matrix M̂1 . . . an−1

1
...

...
...

1 . . . an−1
n
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Hence

fn(0) = (−1)ndet(M) = a1 . . . an det(M̂) = a1 . . . anV (a1, . . . , an)

⇒ V (a1, . . . , an, x) = V (a1, . . . , an)(x− a1) . . . (x− an)

2. The statement is true when n = 2.

Assume this is true for n = k, consider the case n = k + 1.

By part 1, we have

V (a1, . . . , ak, ak+1) = V (a1, . . . , ak)(ak+1 − a1) . . . (ak+1 − ak)

Thus we get the result by using the inductive hypothesis V (a1, . . . , ak) =
∏

j<i(ai−aj)

3. The rank is equal to the cardinality of the set {a1, . . . , an}.

Problem 6. Problem 6 and extra credit, 7.
M is an n×n matrix . Suppose that, for every scalar x in F, det (xM + Id) = 1. Prove

that Mn = 0.

Proof. We give a general proof by induction on the dimension. For n = 1, the assertion is
clear. For n = 2 it was possible to compute everything explicitly.

The leading term of det(xM + Id) is xn det(M), so we must have det(M) = 0. Thus
M is not invertible.

Choose v so that M(v) = 0 and extend it to a basis v, v2, . . . , vn. Then V = span(v)⊕int

U , where U = span(v2, . . . , vn). For each u ∈ U , we may write uniquely M(u) = λuv +
M ′(u) for some λu ∈ F and M ′(u) ∈ U . (This is so by definition of interior direct sum.)
In fact, M ′ is a linear map U → U .

Claim. (M ′)n−1 = 0.
Let Λ be a nonzero alternating form on Fn. Since det(xM + Id) = 1 for all x, we have:

Λ(v, v2 + xM(v2), . . . , vn + xM(vn)) = Λ(v, v2 . . . , vn).

Let Λ′ be the alternating (n−1)-form on U defined by Λ′(u1, . . . , un−1) = Λ(v, u1, . . . , un−1).
Λ′ is nonzero (why?) and the prior equation implies that

Λ′(v2 + xM ′(v2), . . . , vn + xM ′(vn)) = Λ′(v2, . . . , vn).

Thus also det(xM ′ + Id) = 1 for all x. By the inductive hypothesis, (M ′)n−1 = 0. This
implies (check!) that Mn = 0.

Comment. This was a tricky question! Later in the course we will cover the “Cayley-
Hamilton” theorem which is a much more general statement of this type. The construction
in the above proof would be more natural using the construction of a quotient of vector
spaces, which, perhaps regrettably, we did not introduce at the start of the course.
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Problem 7. Extra credit 8 - Let A : V → V be a linear transformation on a finite
dimensional space V . Let Â : V ∗ → V ∗ be the adjoint. Prove det(A) = det(Â).

Proof. Comment. This corresponds to the fact, which you may have seen, that the deter-
minant of a matrix and its transpose are the same. This is, in fact, the easiest way to prove
it at this stage: you can see that the determinant of a matrix A and its transpose At are
the same by induction on the size of the matrix: expand det(A) by cofactors around the
first column, and det(At) by cofactors around the first row.

There exists a “less computational” proof, but it takes time to set up. The key fact
is the following: the space of alternating n-forms on V is naturally isomorphic to the dual
space to the space of alternating n-forms on V ∗. This takes a while to explain, so come
and ask me about it if you are interested!
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