## HW 5

November 2, 2008

Problem 1. Suppose that $M$ is a square upper triangular matrix. Prove that the determinant of $M$ is the product of the diagonal entries.

Proof. Let $e_{1}, \ldots, e_{n}$ be the usual basis of $F^{n}$, i.e. $e_{1}=(1,0,0, \ldots, 0), e_{2}=(0,1,0, \ldots, 0)$. Then $M\left(e_{1}\right)=a_{11} e_{1}, M\left(e_{2}\right)=a_{22} e_{2}+a_{12} e_{1}, M\left(e_{3}\right)=a_{33} e_{3}+a_{23} e_{2}+a_{13} e_{1}, \ldots$.

Now, let $\Lambda$ be an alternating $n$-form on $F^{n}$. Now $M\left(e_{1}\right), \ldots, M\left(e_{n-1}\right), M\left(e_{n}\right)-a_{n n} e_{n}$ are contained in the span of $e_{1}, \ldots, e_{n-1}$ and are so linearly dependent. Therefore,

$$
\begin{array}{rlr}
\Lambda\left(M\left(e_{1}\right), M\left(e_{2}\right), \ldots, M\left(e_{n}\right)\right) & & \\
& = & \Lambda\left(M\left(e_{1}\right), \ldots, M\left(e_{n-1}\right), a_{n n} e_{n}\right)+\Lambda\left(M\left(e_{1}\right), \ldots, M\left(e_{n}\right)-a_{n n} e_{n}\right) \\
& = & \Lambda\left(M\left(e_{1}\right), \ldots, M\left(e_{n-1}\right), a_{n n} e_{n}\right)
\end{array}
$$

where we used the fact that an alternating $n$-form vanishes on $v_{1}, \ldots, v_{n}$ if they are not a basis.

Now, in exactly the same way, $M\left(e_{1}\right), \ldots, M\left(e_{n-2}\right), M\left(e_{n-1}\right)-a_{n-1, n-1} e_{n-1}$ span a space of dimension $\leq n-2$ and so, together with $e_{n}$, cannot be a basis. By the same reasoning,

$$
\Lambda\left(M\left(e_{1}\right), \ldots, M\left(e_{n-1}\right), a_{n n} e_{n}\right)=\Lambda\left(M\left(e_{1}\right), \ldots, M\left(e_{n-2}\right), a_{n-1, n-1} e_{n-1}, a_{n n} e_{n}\right)
$$

Continuing in this way we arrive at

$$
\Lambda\left(M\left(e_{1}\right), M\left(e_{2}\right), \ldots, M\left(e_{n}\right)\right)=\Lambda\left(a_{11} e_{1}, a_{22} e_{2}, a_{33} e_{3}, \ldots, a_{n n} e_{n}\right)=\Lambda\left(e_{1}, \ldots, e_{n}\right) \prod_{i=1}^{n} a_{i i}
$$

so the determinant is $\prod a_{i i}$.

Problem 2. Let $D$ be a nonzero alternating 3 -form on $\mathbb{R}^{3}$. Describe in geometric terms when, for $v_{1}, v_{2}, v_{3}$ in $\mathbb{R}^{3}$, the sign of $D\left(v_{1}, v_{2}, v_{3}\right)$ is positive.

Proof. Suppose that $D((1,0,0),(0,1,0),(0,0,1))>0$. Then one may use the right-hand rule: if you curl your hand in the direction from $v_{1}$ to $v_{2}$, then your thumb either points in the direction of $v_{3}$ (in which case $D\left(v_{1}, v_{2}, v_{3}\right)>0$ ) or in the opposite direction (in which case $\left.D\left(v_{1}, v_{2}, v_{3}\right)<0\right)$.
(This is usually well-described in physics texts. If you have studied the cross product, then you should check that:

$$
D\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right)=\left(\mathbf{v}_{1} \times \mathbf{v}_{2}\right) \cdot \mathbf{v}_{3},
$$

where $\times$ is the cross-product and • the dot product. The main point of the question, though, was simply to get you to think about the sign. One way to figure this out was to fix $v_{1}, v_{2}$ and then move around $v_{3}$ and try to think about when the sign changes from + to - .)

Problem 3. Suppose that $D$ is a nonzero alternating $n$-form on an n-dimensional vector space $V$. Suppose that $e_{1}, \ldots, e_{n}$ is a basis for $V$.

1. Prove that, if we replace $e_{1}$ by $e_{1}+\alpha e_{j}$, for any $\alpha \in \mathbb{F}$ and any $j>1$, the value of $D\left(e_{1}, \ldots, e_{n}\right)$ remains unchanged.
2. Prove that, if $M$ is an $n \times n$ square matrix, then adding any multiple of a row of $M$ to some other row leaves $\operatorname{det}(M)$ unchanged.

Proof. 1. Since $D$ is multilinear, for $j>1$, we have:

$$
D\left(e_{1}+\alpha e_{j}, \ldots, e_{n}\right)=D\left(e_{1}, \ldots, e_{j}, \ldots, e_{n}\right)+\alpha D\left(e_{j}, \ldots, e_{j}, \ldots, e_{n}\right)
$$

$D$ is alternating so $D\left(e_{j}, \ldots, e_{j}, \ldots, e_{n}\right)=0$.

$$
\Rightarrow D\left(e_{1}+\alpha e_{j}, \ldots, e_{n}\right)=D\left(e_{1}, \ldots, e_{j}, \ldots, e_{n}\right)
$$

2. Let $S$ be the matrix with all diagonal entries 1 , and all other entries zero except the $(i, j)$ th, which is also equal to 1 . (For instance, for $n=3$ and $i=1, j=2, S$ would look like $\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$. Then, for any matrix $M$, the matrix $M S$ (respectively $S M$ ) is obtained from $M$ by adding the $i$ th column to the $j$ th column (respectively, $j$ th row to the $i$ th row). Now, since

$$
\operatorname{det}(S M)=\operatorname{det}(M S)=\operatorname{det}(S) \operatorname{det}(M)
$$

it suffices to check that $\operatorname{det}(S)=1$. However, since $S\left(e_{k}\right)=e_{k}$ for all $k \neq j$ and $S\left(e_{j}\right)=e_{j}+e_{i}$, this follows from the first part of the question.

Problem 4. Katznelson Corollary 4.4 Katznelson IV. 5.5 .
Proof. Let $A$ be an $n \times n$ matrix. Denote $T: M_{n \times n} \rightarrow M_{n \times n}$, the operation the operation $B \mapsto B A$.

We claim that $\operatorname{det}(T)=\operatorname{det}(A)^{n}$. The space $M_{n \times n}$ is the interior direct sum of the spaces $V_{i}$, for $1 \leq i \leq n$, where

$$
V_{i}=n \times n \text { matrices with nonzero entries only in the } i \text { th column. }
$$

Then $T\left(V_{i}\right) \subset V_{i}$ for each $i$. The determinant of $T$ (by repeated application of the Corollary 4.4) is the product of the determinants of $T$ restricted to the spaces $V_{i}$.

For each $1 \leq i \leq n$, consider the matrix $E_{i j} \in V_{i}$ which has a 1 in the $i j^{\text {th }}$ entry and 0 elsewhere. Then the $E_{i j}(1 \leq j \leq n)$ form a basis for $V_{i}$, and the matrix of $T$ with respect to this basis is precisely $A$. So, $\left.\operatorname{det} T\right|_{V_{i}}=\operatorname{det}(A)$ for every $i$, whence our claim.

Problem 5. Katznelson IV. 5.12 -
Proof. 1. As noted in the hint, $V\left(a_{1}, \ldots, a_{n}, x\right)$ is a polynomial of degree $n$ in $x$, which can be seen from the cofactor expansion or the definition of the determinant. Denote this polynomial by $f_{n}(x)$.
If $x=a_{i}$, then we get a matrix with two identical rows, thus the value of the determinant is 0 , ie

$$
f_{n}\left(a_{i}\right)=0 \Rightarrow f_{n}(x)=\left(x-a_{1}\right) \ldots\left(x-a_{n}\right) g(x)
$$

However degree of $f_{n}$ is $n$, thus for some constant $C$, we have :

$$
V\left(a_{1}, \ldots, a_{n}, x\right)=f_{n}(x)=C\left(x-a_{1}\right) \ldots\left(x-a_{n}\right), \text { where } C(-1)^{n} a_{1} \ldots a_{n}=f_{n}(0)
$$

Now $f_{n}(0)$ equals the determinant of the matrix obtained when we plug in $x=0$. To calculate the determinant for this matrix, use cofactors and expand along the last row, which gives $f_{n}(0)=(-1)^{n} \operatorname{det}(M)$, where $M$ is the matrix as below :

$$
\left(\begin{array}{ccc}
a_{1} & \ldots & a_{1}^{n} \\
\vdots & \vdots & \vdots \\
a_{n} & \ldots & a_{n}^{n}
\end{array}\right)
$$

For $1 \leq i \leq n$, we can factor out $a_{i}$ from each $i^{\text {th }}$ row to obtain matrix $\hat{M}$

$$
\left(\begin{array}{ccc}
1 & \ldots & a_{1}^{n-1} \\
\vdots & \vdots & \vdots \\
1 & \ldots & a_{n}^{n-1}
\end{array}\right)
$$

Hence

$$
\begin{aligned}
f_{n}(0) & =(-1)^{n} \operatorname{det}(M)=a_{1} \ldots a_{n} \operatorname{det}(\hat{M})=a_{1} \ldots a_{n} V\left(a_{1}, \ldots, a_{n}\right) \\
& \Rightarrow V\left(a_{1}, \ldots, a_{n}, x\right)=V\left(a_{1}, \ldots, a_{n}\right)\left(x-a_{1}\right) \ldots\left(x-a_{n}\right)
\end{aligned}
$$

2. The statement is true when $n=2$.

Assume this is true for $n=k$, consider the case $n=k+1$.
By part 1, we have

$$
V\left(a_{1}, \ldots, a_{k}, a_{k+1}\right)=V\left(a_{1}, \ldots, a_{k}\right)\left(a_{k+1}-a_{1}\right) \ldots\left(a_{k+1}-a_{k}\right)
$$

Thus we get the result by using the inductive hypothesis $V\left(a_{1}, \ldots, a_{k}\right)=\prod_{j<i}\left(a_{i}-a_{j}\right)$
3. The rank is equal to the cardinality of the set $\left\{a_{1}, \ldots, a_{n}\right\}$.

Problem 6. Problem 6 and extra credit, 7.
$M$ is an $n \times n$ matrix. Suppose that, for every scalar $x$ in $\mathbb{F}, \operatorname{det}(x M+I d)=1$. Prove that $M^{n}=0$.

Proof. We give a general proof by induction on the dimension. For $n=1$, the assertion is clear. For $n=2$ it was possible to compute everything explicitly.

The leading term of $\operatorname{det}(x M+I d)$ is $x^{n} \operatorname{det}(M)$, so we must have $\operatorname{det}(M)=0$. Thus $M$ is not invertible.

Choose $v$ so that $M(v)=0$ and extend it to a basis $v, v_{2}, \ldots, v_{n}$. Then $V=\operatorname{span}(v) \oplus_{i n t}$ $U$, where $U=\operatorname{span}\left(v_{2}, \ldots, v_{n}\right)$. For each $u \in U$, we may write uniquely $M(u)=\lambda_{u} v+$ $M^{\prime}(u)$ for some $\lambda_{u} \in F$ and $M^{\prime}(u) \in U$. (This is so by definition of interior direct sum.) In fact, $M^{\prime}$ is a linear map $U \rightarrow U$.

Claim. $\left(M^{\prime}\right)^{n-1}=0$.
Let $\Lambda$ be a nonzero alternating form on $F^{n}$. Since $\operatorname{det}(x M+I d)=1$ for all $x$, we have:

$$
\Lambda\left(v, v_{2}+x M\left(v_{2}\right), \ldots, v_{n}+x M\left(v_{n}\right)\right)=\Lambda\left(v, v_{2} \ldots, v_{n}\right) .
$$

Let $\Lambda^{\prime}$ be the alternating $(n-1)$-form on $U$ defined by $\Lambda^{\prime}\left(u_{1}, \ldots, u_{n-1}\right)=\Lambda\left(v, u_{1}, \ldots, u_{n-1}\right)$. $\Lambda^{\prime}$ is nonzero (why?) and the prior equation implies that

$$
\Lambda^{\prime}\left(v_{2}+x M^{\prime}\left(v_{2}\right), \ldots, v_{n}+x M^{\prime}\left(v_{n}\right)\right)=\Lambda^{\prime}\left(v_{2}, \ldots, v_{n}\right) .
$$

Thus also $\operatorname{det}\left(x M^{\prime}+I d\right)=1$ for all $x$. By the inductive hypothesis, $\left(M^{\prime}\right)^{n-1}=0$. This implies (check!) that $M^{n}=0$.

Comment. This was a tricky question! Later in the course we will cover the "CayleyHamilton" theorem which is a much more general statement of this type. The construction in the above proof would be more natural using the construction of a quotient of vector spaces, which, perhaps regrettably, we did not introduce at the start of the course.

Problem 7. Extra credit 8 - Let $A: V \rightarrow V$ be a linear transformation on a finite dimensional space $V$. Let $\hat{A}: V^{*} \rightarrow V^{*}$ be the adjoint. Prove $\operatorname{det}(A)=\operatorname{det}(\hat{A})$.

Proof. Comment. This corresponds to the fact, which you may have seen, that the determinant of a matrix and its transpose are the same. This is, in fact, the easiest way to prove it at this stage: you can see that the determinant of a matrix $A$ and its transpose $A^{t}$ are the same by induction on the size of the matrix: expand $\operatorname{det}(A)$ by cofactors around the first column, and $\operatorname{det}\left(A^{t}\right)$ by cofactors around the first row.

There exists a "less computational" proof, but it takes time to set up. The key fact is the following: the space of alternating $n$-forms on $V$ is naturally isomorphic to the dual space to the space of alternating $n$-forms on $V^{*}$. This takes a while to explain, so come and ask me about it if you are interested!

