HW 5

November 2, 2008

Problem 1. Suppose that M is a square upper triangular matrix. Prove that the determinant of M is the product of the diagonal entries.

Proof. Let e_1, \ldots, e_n be the usual basis of F^n , i.e. $e_1 = (1, 0, 0, \ldots, 0), e_2 = (0, 1, 0, \ldots, 0).$ Then $M(e_1) = a_{11}e_1, M(e_2) = a_{22}e_2 + a_{12}e_1, M(e_3) = a_{33}e_3 + a_{23}e_2 + a_{13}e_1, \ldots$

Now, let Λ be an alternating *n*-form on F^n . Now $M(e_1), \ldots, M(e_{n-1}), M(e_n) - a_{nn}e_n$ are contained in the span of e_1, \ldots, e_{n-1} and are so linearly dependent. Therefore,

$$\Lambda(M(e_1), M(e_2), \dots, M(e_n)) = \Lambda(M(e_1), \dots, M(e_{n-1}), a_{nn}e_n) + \Lambda(M(e_1), \dots, M(e_n) - a_{nn}e_n) \\
= \Lambda(M(e_1), \dots, M(e_{n-1}), a_{nn}e_n),$$

where we used the fact that an alternating *n*-form vanishes on v_1, \ldots, v_n if they are not a basis.

Now, in exactly the same way, $M(e_1), \ldots, M(e_{n-2}), M(e_{n-1}) - a_{n-1,n-1}e_{n-1}$ span a space of dimension $\leq n-2$ and so, together with e_n , cannot be a basis. By the same reasoning,

$$\Lambda(M(e_1), \dots, M(e_{n-1}), a_{nn}e_n) = \Lambda(M(e_1), \dots, M(e_{n-2}), a_{n-1,n-1}e_{n-1}, a_{nn}e_n)$$

Continuing in this way we arrive at

$$\Lambda(M(e_1), M(e_2), \dots, M(e_n)) = \Lambda(a_{11}e_1, a_{22}e_2, a_{33}e_3, \dots, a_{nn}e_n) = \Lambda(e_1, \dots, e_n) \prod_{i=1}^n a_{ii}$$

so the determinant is $\prod a_{ii}$.

Problem 2. Let D be a nonzero alternating 3-form on \mathbb{R}^3 . Describe in geometric terms when, for v_1, v_2, v_3 in \mathbb{R}^3 , the sign of $D(v_1, v_2, v_3)$ is positive.

Proof. Suppose that D((1,0,0), (0,1,0), (0,0,1)) > 0. Then one may use the *right-hand* rule: if you curl your hand in the direction from v_1 to v_2 , then your thumb either points in the direction of v_3 (in which case $D(v_1, v_2, v_3) > 0$) or in the opposite direction (in which case $D(v_1, v_2, v_3) < 0$).

(This is usually well-described in physics texts. If you have studied the *cross product*, then you should check that:

$$D(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3) = (\mathbf{v}_1 \times \mathbf{v}_2) \cdot \mathbf{v}_3,$$

where \times is the cross-product and \cdot the dot product. The main point of the question, though, was simply to get you to think about the sign. One way to figure this out was to fix v_1, v_2 and then move around v_3 and try to think about when the sign changes from + to -.)

Problem 3. Suppose that D is a nonzero alternating n-form on an n-dimensional vector space V. Suppose that e_1, \ldots, e_n is a basis for V.

- 1. Prove that, if we replace e_1 by $e_1 + \alpha e_j$, for any $\alpha \in \mathbb{F}$ and any j > 1, the value of $D(e_1, ..., e_n)$ remains unchanged.
- 2. Prove that, if M is an $n \times n$ square matrix, then adding any multiple of a row of M to some other row leaves det(M) unchanged.

Proof. 1. Since D is multilinear, for j > 1, we have :

$$D(e_1 + \alpha e_j, \dots, e_n) = D(e_1, \dots, e_j, \dots, e_n) + \alpha D(e_j, \dots, e_j, \dots, e_n)$$

D is alternating so $D(e_1, \ldots, e_j, \ldots, e_n) = 0$.

$$\Rightarrow D(e_1 + \alpha e_j, \dots, e_n) = D(e_1, \dots, e_j, \dots, e_n)$$

2. Let S be the matrix with all diagonal entries 1, and all other entries zero except the (i, j)th, which is also equal to 1. (For instance, for n = 3 and i = 1, j = 2, S would $\begin{pmatrix} 1 & 1 & 0 \end{pmatrix}$

look like $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$. Then, for any matrix M, the matrix MS (respectively SM)

is obtained from M by adding the *i*th column to the *j*th column (respectively, *j*th row to the *i*th row). Now, since

$$\det(SM) = \det(MS) = \det(S) \det(M),$$

it suffices to check that det(S) = 1. However, since $S(e_k) = e_k$ for all $k \neq j$ and $S(e_j) = e_j + e_i$, this follows from the first part of the question.

Problem 4. Katznelson Corollary 4.4 Katznelson IV. 5.5.

Proof. Let A be an $n \times n$ matrix. Denote $T: M_{n \times n} \to M_{n \times n}$, the operation the operation $B \mapsto BA$.

We claim that $\det(T) = \det(A)^n$. The space $M_{n \times n}$ is the interior direct sum of the spaces V_i , for $1 \le i \le n$, where

 $V_i = n \times n$ matrices with nonzero entries only in the *i*th column.

Then $T(V_i) \subset V_i$ for each *i*. The determinant of *T* (by repeated application of the Corollary 4.4) is the product of the determinants of *T* restricted to the spaces V_i .

For each $1 \leq i \leq n$, consider the matrix $E_{ij} \in V_i$ which has a 1 in the ij^{th} entry and 0 elsewhere. Then the E_{ij} $(1 \leq j \leq n)$ form a basis for V_i , and the matrix of T with respect to this basis is precisely A. So, det $T|_{V_i} = \det(A)$ for every *i*, whence our claim.

Problem 5. Katznelson IV. 5.12 -

Proof. 1. As noted in the hint, $V(a_1, \ldots, a_n, x)$ is a polynomial of degree n in x, which can be seen from the cofactor expansion or the definition of the determinant. Denote this polynomial by $f_n(x)$.

If $x = a_i$, then we get a matrix with two identical rows, thus the value of the determinant is 0, ie

$$f_n(a_i) = 0 \Rightarrow f_n(x) = (x - a_1) \dots (x - a_n)g(x)$$

However degree of f_n is n, thus for some constant C, we have :

$$V(a_1, \ldots, a_n, x) = f_n(x) = C(x - a_1) \ldots (x - a_n), \text{ where } C(-1)^n a_1 \ldots a_n = f_n(0)$$

Now $f_n(0)$ equals the determinant of the matrix obtained when we plug in x = 0. To calculate the determinant for this matrix, use cofactors and expand along the last row, which gives $f_n(0) = (-1)^n det(M)$, where M is the matrix as below :

$$\begin{pmatrix} a_1 & \dots & a_1^n \\ \vdots & \vdots & \vdots \\ a_n & \dots & a_n^n \end{pmatrix}$$

For $1 \leq i \leq n$, we can factor out a_i from each i^{th} row to obtain matrix \hat{M}

$$\begin{pmatrix} 1 & \dots & a_1^{n-1} \\ \vdots & \vdots & \vdots \\ 1 & \dots & a_n^{n-1} \end{pmatrix}$$

Hence

$$f_n(0) = (-1)^n det(M) = a_1 \dots a_n \ det(\hat{M}) = a_1 \dots a_n V(a_1, \dots, a_n)$$

$$\Rightarrow V(a_1, \dots, a_n, x) = V(a_1, \dots, a_n)(x - a_1) \dots (x - a_n)$$

2. The statement is true when n = 2.

Assume this is true for n = k, consider the case n = k + 1.

By part 1, we have

$$V(a_1, \dots, a_k, a_{k+1}) = V(a_1, \dots, a_k)(a_{k+1} - a_1) \dots (a_{k+1} - a_k)$$

Thus we get the result by using the inductive hypothesis $V(a_1, \ldots, a_k) = \prod_{i < i} (a_i - a_j)$

3. The rank is equal to the cardinality of the set $\{a_1, \ldots, a_n\}$.

Problem 6. Problem 6 and extra credit, 7.

M is an $n \times n$ matrix. Suppose that, for every scalar x in \mathbb{F} , det(xM+Id) = 1. Prove that $M^n = 0$.

Proof. We give a general proof by induction on the dimension. For n = 1, the assertion is clear. For n = 2 it was possible to compute everything explicitly.

The leading term of det(xM + Id) is $x^n det(M)$, so we must have det(M) = 0. Thus M is not invertible.

Choose v so that M(v) = 0 and extend it to a basis v, v_2, \ldots, v_n . Then $V = \operatorname{span}(v) \oplus_{int} U$, where $U = \operatorname{span}(v_2, \ldots, v_n)$. For each $u \in U$, we may write uniquely $M(u) = \lambda_u v + M'(u)$ for some $\lambda_u \in F$ and $M'(u) \in U$. (This is so by definition of interior direct sum.) In fact, M' is a linear map $U \to U$.

Claim. $(M')^{n-1} = 0.$

Let Λ be a nonzero alternating form on F^n . Since det(xM + Id) = 1 for all x, we have:

$$\Lambda(v, v_2 + xM(v_2), \dots, v_n + xM(v_n)) = \Lambda(v, v_2 \dots, v_n).$$

Let Λ' be the alternating (n-1)-form on U defined by $\Lambda'(u_1, \ldots, u_{n-1}) = \Lambda(v, u_1, \ldots, u_{n-1})$. Λ' is nonzero (why?) and the prior equation implies that

$$\Lambda'(v_2 + xM'(v_2), \dots, v_n + xM'(v_n)) = \Lambda'(v_2, \dots, v_n).$$

Thus also det(xM' + Id) = 1 for all x. By the inductive hypothesis, $(M')^{n-1} = 0$. This implies (check!) that $M^n = 0$.

Comment. This was a tricky question! Later in the course we will cover the "Cayley-Hamilton" theorem which is a much more general statement of this type. The construction in the above proof would be more natural using the construction of a quotient of vector spaces, which, perhaps regrettably, we did not introduce at the start of the course.

Problem 7. Extra credit 8 - Let $A : V \to V$ be a linear transformation on a finite dimensional space V. Let $\hat{A} : V^* \to V^*$ be the adjoint. Prove $det(A) = det(\hat{A})$.

Proof. Comment. This corresponds to the fact, which you may have seen, that the determinant of a matrix and its transpose are the same. This is, in fact, the easiest way to prove it at this stage: you can see that the determinant of a matrix A and its transpose A^t are the same by induction on the size of the matrix: expand det(A) by cofactors around the first column, and det (A^t) by cofactors around the first row.

There exists a "less computational" proof, but it takes time to set up. The key fact is the following: the space of alternating n-forms on V is naturally isomorphic to the dual space to the space of alternating n-forms on V^* . This takes a while to explain, so come and ask me about it if you are interested!