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Problem 1. Describe how the adjoint of a composition of two linear maps relates to the
adjoints of each linear map separately.

Proof. Suppose V,U,W are three vector spaces. Suppose that T ∈ L (V,U) , S ∈ L (U,W ).
Then ŜT = T̂ Ŝ.

For clarity in the proof, let us write A ◦ B for “A composed with B,” i.e. A ◦ B(x) =
A(B(x)). Now, given ` ∈W ∗,

ŜT (`) = ` ◦ (ST ) = ` ◦ (S ◦ T ) = (` ◦ S) ◦ T = (Ŝ`) ◦ T = T̂ (Ŝ`) = (T̂ Ŝ)(`)

This being so for all `, we conclude that ŜT = T̂ Ŝ.

Problem 2. Suppose X,Y are two vector spaces. Let Z be the direct sum of X and Y .
Prove that Z∗ is isomorphic to the direct sum of X∗ and Y ∗.

Proof. We shall define inverse maps G : Z∗ → X∗ ⊕ Y ∗ and F : X∗ ⊕ Y ∗ → Z∗. (In other
terms, both FG and GF are the identity maps.)

In what follows, we denote by x, y, z elements of X,Y, Z respectively; and by x∗, y∗, z∗

elements of X∗, Y ∗, Z∗ respectively. We define F,G by

F (x∗, y∗)(x, y) = x∗(x) + y∗(y), G(z∗) = (z∗|X , z∗|Y )

Very important. Make sure that you can decipher the line of cryptic notation above!
Note that z∗|X means “z∗ restricted to X”; in explicit terms, z∗|X(x) = z∗(x, 0).

Then F,G are linear maps which are inverse to each other. (At this stage in the course,
you do not need to write more than this so long as you understand why it is true. Make
sure that you understand the definitions of F,G as well as why they are inverses.)

Problem 3. In the following questions, V , W are finite dimensional vector spaces over the
field F, T : V →W is a linear map and T̂ : W ∗ → V ∗ be the adjoint. Prove the following:
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1. There exists a basis e1, ..., en for V and a basis f1, ...fm for W so that Tei is either
equal to fi, or equal to 0. Describe the adjoint T̂ with respect to the dual bases ei∗, fj∗.

2. If T is surjective, then T̂ is injective.
3. If T is injective, then T̂ is surjective.
4. The dimension of the image of T and the dimension of the image of T̂ are the same

Proof. 1. Pick a basis for null(T ), say ek+1, ..., en, where n−k = dim of Ker T . Extend this
to a basis for V , say e1, ..., ek. Denote fi = Tei. Note f1, ..., fk are linearly independent in
W . If they are not a basis, extend this list to a basis for W , say f1, . . . , fm. Thus we have
found the wanted basis for V , and W , with Tei = fi, 1 ≤ i ≤ k, and 0 otherwise.

We claim that:

T̂ f∗i =

{
e∗i , 1 ≤ i ≤ k
0, k + 1 ≤ j ≤ m

(1)

One way to prove this is to use the theorem from class: the matrix of T and the matrix
of T̂ , “with respect to dual bases”, are transposes of each other. We’ll prove it explicitly:

For 1 ≤ i ≤ k, we have :

1 ≤ j ≤ k, T̂ f∗i (ej) = f∗i (Tej) = f∗i (fj) = δi
j = e∗i (ej)

k + 1 ≤ j ≤ n, T̂ f∗i (ej) = f∗i (0) = 0 = e∗i (ej)

⇒ T̂ f∗i = e∗i

For k + 1 ≤ i ≤ n, we have :

1 ≤ j ≤ k, T̂ f∗i (ej) = f∗i (Tej) = f∗i (fj) = 0

k + 1 ≤ j ≤ n, T̂ f∗i (ej) = f∗i (0) = 0

T̂ f∗j = 0

We shall now address the other parts of the question, making use of the result just
proven: there are bases (e1, . . . , en) for V and (f1, . . . , fm) for W so that Tei = fi for
1 ≤ i ≤ k, and Tei = 0 for i > 0;

1. If T is surjective, then T̂ is injective.

Indeed, if T is surjective, then necessarily m = k. By the explicit description of
the adjoint in (1), it carries the basis {f∗1 , . . . , f∗m} to the linearly independent set
{e∗1, . . . , e∗m}. So it is injective.

Alternately: If T is surjective and l ∈ W ∗ satisfies T̂ (l) = 0. Since T is sujective,
∀w ∈W, l(w) = l(Tx) = 0 for some x ∈ V . Thus l = 0 so T̂ is injective.
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2. If T is injective, then T̂ is surjective.

In this case, we must have k = n. By the explicit description of the adjoint in (1),
its image contains the spanning set e∗1, . . . , e

∗
n for V ∗. So it is surjective.

3. The dimension of the image of T and the dimension of the image of T̂ are the same.

Indeed, the image of T is spanned by {f1, . . . , fk}, whereas the image of T̂ is spanned
by {e∗1, . . . , e∗k}. So both are equal to k.

Problem 4. Suppose that V is a finite-dimensional vector space with basis e1, ...en. Let
e∗1, ..., e

∗
n be the dual basis for V ∗. Suppose that T : V → V ∗ has a matrix aij (with respect

to these bases) that is symmetric, i.e., aij = aji. Prove that this is ”independent of basis”,
i.e., given any other basis f1, ..., fn, with dual basis f∗1 , ..., f

∗
n, the matrix of T with respect

to f1, ..., fn and f∗1 , ..., f
∗
n is also symmetric.

Proof. Given any T : V → V ∗, we may form T̂ : (V ∗)∗ → V ∗. We should like to say that
T is symmetric if and only if T̂ = T . This does not make sense; T and T̂ have different
domains. However, we have defined an isomorphism Φ : V → (V ∗)∗ by Φ(v)(w∗) = w∗(v).
Therefore we can sensibly ask whether T = T̂ ◦ Φ (here, again, ◦ denotes composition).

Claim. T = T̂ ◦ Φ if and only if the matrix of T with respct to ei, e∗i is symmetric.
Indeed, T = T̂ ◦ Φ if and only if T (ei) = T̂ ◦ Φ(ei) for all i. (Warning: it is almost

certainly more useful to try to prove this yourself than read what follows.) In turn, this is
so if and only if

(T (ei))(ek) = (T̂ ◦ Φ(ei))(ek) for all i, k

Write T (ei) =
∑

j ajie
∗
j . Then T (ei)(ek) = aki. On the other hand,(

T̂ ◦ Φ(ei)
)

(ek) = Φ(ei)(T (ek)) = Φ(ei)(
∑

j

ajke
∗
j ) =

∑
j

ajke
∗
j (ei) = aik.

Therefore, T = T̂ ◦ Φ if and only if aik = aki for all i, k. We have proved the claim.
The claim immediately implies the desired result, since it is true for any basis (ei).
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