
Solutions to linear algebra, homework 1

October 12, 2008

Problem 1. (Problem 8, Chapter 2, Axler). The subspace U consists of all vectors of the
form (3x, x, 7y, y, z), where (x, y, z) ∈ R3 are arbitrary. Since

(3x, x, 7y, y, z) = x(3, 1, 0, 0, 0) + y(0, 0, 7, 1, 0) + z(0, 0, 0, 0, 1) (1)

it is clear that ((3, 1, 0, 0, 0), (0, 0, 7, 1, 0), (0, 0, 0, 0, 1)) span U . (1) also shows that they are
linearly independent. So they are a basis.

Problem 2. (Problem 11, Chapter 2, Axler). See Katznelson 1.2.9 below. Apologies for
the repeated problem.

Problem 3. (Problem 13, 14 Chapter 2, Axler) Consider the linear map T : U ⊕W →
U + W = R8 which sends (u,w) to u + w. The null space consists precisely of {(x,−x) :
x ∈ U ∩W}. Thus dim(U ∩W ) + dim(U + W ) = dimU + dimW . (Or you could have
quoted this result from class, or from Axler.) In the context of problem 13, this shows
that U ∩W is zero-dimensional, so equal to 0; in the context of problem 14, it shows that
U ∩W has dimension 2, so is not {0}.

Problem 4. (Problem 17, Chapter 2, Axler) False. Let U1, U2, U3 be three distinct one-
dimensional subspaces of R2. Thus dimUi = 1 for all i. By assumption of distinctness,
U1 ∩ U2 and all other intersections are zero. Thus, the sum on the right-hand equals 3,
whereas U1 + U2 + U3 = R2 has dimension 2.

Problem 5. (Katznelson 1.2.7)
Suppose that

∑
λiui +

∑
νiwi = 0. Then

∑
λiui = −

∑
νiwi. The left-hand side

belongs to U ; the right hand side to W . Thus, both sides lie in U ∩W , and both sides are
zero. Since ui are linearly independent, all λi are zero. Since wi are linearly independent,
all νi are zero.

Problem 6. (Katznelson 1.2.9)
Let V be a finite-dimensional vector space over the complex numbers. Let V’ be V BUT

considered as a vector space over the real numbers. Show that the dimension of V’ is twice
the dimension of V.
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Let v1, . . . , vn be a basis for V over C. Let wj = i.vj . Here i ∈ C is, as usual, an
element with i2 = 1.

I claim that L = v1, . . . , vn, w1, . . . , wn is a basis for V ′.

1. L is LI. Indeed, suppose that
∑
ajvj +

∑
bjwj = 0 in V ′. This equation is also valid

in V , and it may be re-written as
∑

(aj + ibj)vj = 0. Since the vj are independent
over C, aj = bj = 0. Thus, L is LI.

2. L is spanning.

Given x ∈ V ′, we may write it as a complex linear combination of the vj . Thus
x =

∑
zjvj . Write zj = aj + ibj , where aj , bj are real. Then x =

∑
ajvj + bjwj . This

equation makes sense in V ′, for it involves only real scalars, and it shows that L is
spanning.

Problem 7. (Katznelson 1.2.9; previously listed incorrectly as Katznelson1.2.8) Suppose
that V is a finite dimensional vector space. Show that every subspace W of V satisfies
dim(W) ≤ dim(V), and that equality dim(W) = dim(V) holds only when W=V.

Any linearly independent subset of W is also linearly independent in V , so its size is
≤ dim(V ). Choose a maximal linearly independent list (w1, . . . , wt) in W (it is finite, by
what we just noted). By a theorem proved in class, a maximal linearly independent list is
a basis, so t = dim(W ). On the other hand, w1, . . . , wt can be extended to a basis for V ; in
particular, t ≤ dim(V ). If t = dim(V ), then w1, . . . , wt is a basis for V . This means that:

V ⊂ span(w1, . . . , wt) = W

and so V = W .

Problem 8. (Extra credit). Suppose that we are given a system of linear equations all of
whose coefficients are integers (example: 2x+3y+4z=2, x-z=8) and you know that it has a
solution in real numbers. Prove that it has a solution in rational numbers.

Mathematical rephrasing: Given w1, . . . , wN ∈ Qk – in the example above, N =

3, k = 2 and w1 =
(

2
1

)
, w2 =

(
3
0

)
, w3 =

(
4
−1

)
– and real numbers λi ∈ R so that

x =
∑

λiwi ∈ Qk (2)

show that there exist λ′
i ∈ Q so that x =

∑
λ′

iwi.
Proof. Let W be the subspace spanned by wi, for 1 ≤ i ≤ N . Since wi span W , we can

obtain a basis of W by deleting certain of them; we may suppose, w.l.o.g., that w1, . . . , wt
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form a basis of W . Extend this to a basis w1, . . . , wt, v1, . . . , vr of Qk. Consider the linear
map:

L : Qk → Qr, L(
t∑

i=1

aiwi +
r∑

i=1

bivi) = (b1, . . . , br)

By definition,
null(L) = spanQ(w1, . . . , wt). (3)

where we have written spanQ to emphasize, for later reference, that this is the span inside
a Q-vector space.

Now, L extends to a linear map L̃ : Rk → Rr of R-vector spaces, so that1 L̃|Qk = L.
Why is this true? With respect to the standard bases of Qk,Qr, the linear transforma-

tion L is defined by a certain r × k matrix. This matrix has rational entries; thinking of
the entries as real numbers, it also describes a linear transformation L̃ : Rk → Rr, which
clearly extends L.

If x is defined according to (2), then L̃(x) = 0, because L̃ is a linear map of R-vector
spaces and L̃(wi) = L(wi) = 0. Therefore, x ∈ null(L̃) ∩ Qk = null(L). So, by (3), x
belongs to the Q-span of wi.

Remark. It is also perfectly possible to solve this problem by making reference to a
specific algorithm for producing a solution – e.g., some kind of row/column reduction on
matrices– and observing that if the algorithm works over R, it also works over Q.

1This notation means that “L̃, when restricted to Qk, coincides with L.”
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