Solutions to linear algebra, homework 1

October 12, 2008

Problem 1. (Problem 8, Chapter 2, Axler). The subspace U consists of all vectors of the form (3x, x, 7y, y, z), where $(x, y, z) \in \mathbb{R}^3$ are arbitrary. Since

$$(3x, x, 7y, y, z) = x(3, 1, 0, 0, 0) + y(0, 0, 7, 1, 0) + z(0, 0, 0, 0, 1)$$

$$(1)$$

it is clear that ((3, 1, 0, 0, 0), (0, 0, 7, 1, 0), (0, 0, 0, 0, 1)) span U. (1) also shows that they are linearly independent. So they are a basis.

Problem 2. (Problem 11, Chapter 2, Axler). See Katznelson 1.2.9 below. Apologies for the repeated problem.

Problem 3. (Problem 13, 14 Chapter 2, Axler) Consider the linear map $T : U \oplus W \to U + W = \mathbb{R}^8$ which sends (u, w) to u + w. The null space consists precisely of $\{(x, -x) : x \in U \cap W\}$. Thus $\dim(U \cap W) + \dim(U + W) = \dim U + \dim W$. (Or you could have quoted this result from class, or from Axler.) In the context of problem 13, this shows that $U \cap W$ is zero-dimensional, so equal to 0; in the context of problem 14, it shows that $U \cap W$ has dimension 2, so is not $\{0\}$.

Problem 4. (Problem 17, Chapter 2, Axler) False. Let U_1, U_2, U_3 be three distinct onedimensional subspaces of \mathbb{R}^2 . Thus dim $U_i = 1$ for all *i*. By assumption of distinctness, $U_1 \cap U_2$ and all other intersections are zero. Thus, the sum on the right-hand equals 3, whereas $U_1 + U_2 + U_3 = \mathbb{R}^2$ has dimension 2.

Problem 5. (Katznelson 1.2.7)

Suppose that $\sum \lambda_i u_i + \sum \nu_i w_i = 0$. Then $\sum \lambda_i u_i = -\sum \nu_i w_i$. The left-hand side belongs to U; the right hand side to W. Thus, both sides lie in $U \cap W$, and both sides are zero. Since u_i are linearly independent, all λ_i are zero. Since w_i are linearly independent, all ν_i are zero.

Problem 6. (Katznelson 1.2.9)

Let V be a finite-dimensional vector space over the complex numbers. Let V be V BUT considered as a vector space over the real numbers. Show that the dimension of V is twice the dimension of V.

Let v_1, \ldots, v_n be a basis for V over \mathbb{C} . Let $w_j = i \cdot v_j$. Here $i \in \mathbb{C}$ is, as usual, an element with $i^2 = 1$.

I claim that $\mathcal{L} = v_1, \ldots, v_n, w_1, \ldots, w_n$ is a basis for V'.

- 1. \mathcal{L} is LI. Indeed, suppose that $\sum a_j v_j + \sum b_j w_j = 0$ in V'. This equation is also valid in V, and it may be re-written as $\sum (a_j + ib_j)v_j = 0$. Since the v_j are independent over \mathbb{C} , $a_j = b_j = 0$. Thus, \mathcal{L} is LI.
- 2. \mathcal{L} is spanning.

Given $x \in V'$, we may write it as a *complex* linear combination of the v_j . Thus $x = \sum z_j v_j$. Write $z_j = a_j + ib_j$, where a_j, b_j are real. Then $x = \sum a_j v_j + b_j w_j$. This equation makes sense in V', for it involves only real scalars, and it shows that \mathcal{L} is spanning.

Problem 7. (Katznelson 1.2.9; previously listed incorrectly as Katznelson1.2.8) Suppose that V is a finite dimensional vector space. Show that every subspace W of V satisfies $\dim(W) \leq \dim(V)$, and that equality $\dim(W) = \dim(V)$ holds only when W=V.

Any linearly independent subset of W is also linearly independent in V, so its size is $\leq \dim(V)$. Choose a maximal linearly independent list (w_1, \ldots, w_t) in W (it is finite, by what we just noted). By a theorem proved in class, a maximal linearly independent list is a basis, so $t = \dim(W)$. On the other hand, w_1, \ldots, w_t can be extended to a basis for V; in particular, $t \leq \dim(V)$. If $t = \dim(V)$, then w_1, \ldots, w_t is a basis for V. This means that:

$$V \subset \operatorname{span}(w_1, \ldots, w_t) = W$$

and so V = W.

Problem 8. (Extra credit). Suppose that we are given a system of linear equations all of whose coefficients are integers (example: 2x+3y+4z=2, x-z=8) and you know that it has a solution in real numbers. Prove that it has a solution in rational numbers.

Mathematical rephrasing: Given $w_1, \ldots, w_N \in \mathbb{Q}^k$ – in the example above, N = 3, k = 2 and $w_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, w_2 = \begin{pmatrix} 3 \\ 0 \end{pmatrix}, w_3 = \begin{pmatrix} 4 \\ -1 \end{pmatrix}$ – and real numbers $\lambda_i \in \mathbb{R}$ so that

$$x = \sum \lambda_i w_i \in \mathbb{Q}^k \tag{2}$$

show that there exist $\lambda'_i \in \mathbb{Q}$ so that $x = \sum \lambda'_i w_i$.

Proof. Let W be the subspace spanned by w_i , for $1 \le i \le N$. Since w_i span W, we can obtain a basis of W by deleting certain of them; we may suppose, w.l.o.g., that w_1, \ldots, w_t

form a basis of W. Extend this to a basis $w_1, \ldots, w_t, v_1, \ldots, v_r$ of \mathbb{Q}^k . Consider the linear map:

$$L: \mathbb{Q}^k \to \mathbb{Q}^r, L(\sum_{i=1}^t a_i w_i + \sum_{i=1}^r b_i v_i) = (b_1, \dots, b_r)$$

By definition,

$$\operatorname{null}(L) = \operatorname{span}_{\mathbb{Q}}(w_1, \dots, w_t).$$
(3)

where we have written $\operatorname{span}_{\mathbb{Q}}$ to emphasize, for later reference, that this is the span inside a \mathbb{Q} -vector space.

Now, L extends to a linear map $\tilde{L} : \mathbb{R}^k \to \mathbb{R}^r$ of \mathbb{R} -vector spaces, so that $\tilde{L}|\mathbb{Q}^k = L$.

Why is this true? With respect to the standard bases of $\mathbb{Q}^k, \mathbb{Q}^r$, the linear transformation L is defined by a certain $r \times k$ matrix. This matrix has rational entries; thinking of the entries as real numbers, it also describes a linear transformation $\tilde{L} : \mathbb{R}^k \to \mathbb{R}^r$, which clearly extends L.

If x is defined according to (2), then $\tilde{L}(x) = 0$, because \tilde{L} is a linear map of \mathbb{R} -vector spaces and $\tilde{L}(w_i) = L(w_i) = 0$. Therefore, $x \in \text{null}(\tilde{L}) \cap \mathbb{Q}^k = \text{null}(L)$. So, by (3), x belongs to the \mathbb{Q} -span of w_i .

Remark. It is also perfectly possible to solve this problem by making reference to a specific algorithm for producing a solution – e.g., some kind of row/column reduction on matrices– and observing that *if* the algorithm works over \mathbb{R} , it also works over \mathbb{Q} .

¹This notation means that " \tilde{L} , when restricted to \mathbb{Q}^k , coincides with L."