Solutions to linear algebra, homework 1

October 12, 2008

Problem 1. (Problem 8, Chapter 2, Axler). The subspace U consists of all vectors of the form $(3 x, x, 7 y, y, z)$, where $(x, y, z) \in \mathbb{R}^{3}$ are arbitrary. Since

$$
\begin{equation*}
(3 x, x, 7 y, y, z)=x(3,1,0,0,0)+y(0,0,7,1,0)+z(0,0,0,0,1) \tag{1}
\end{equation*}
$$

it is clear that $((3,1,0,0,0),(0,0,7,1,0),(0,0,0,0,1))$ span U. (1) also shows that they are linearly independent. So they are a basis.

Problem 2. (Problem 11, Chapter 2, Axler). See Katznelson 1.2.9 below. Apologies for the repeated problem.

Problem 3. (Problem 13, 14 Chapter 2, Axler) Consider the linear map $T: U \oplus W \rightarrow$ $U+W=\mathbb{R}^{8}$ which sends (u, w) to $u+w$. The null space consists precisely of $\{(x,-x)$: $x \in U \cap W\}$. Thus $\operatorname{dim}(U \cap W)+\operatorname{dim}(U+W)=\operatorname{dim} U+\operatorname{dim} W$. (Or you could have quoted this result from class, or from Axler.) In the context of problem 13, this shows that $U \cap W$ is zero-dimensional, so equal to 0 ; in the context of problem 14, it shows that $U \cap W$ has dimension 2 , so is not $\{0\}$.

Problem 4. (Problem 17, Chapter 2, Axler) False. Let U_{1}, U_{2}, U_{3} be three distinct onedimensional subspaces of \mathbb{R}^{2}. Thus $\operatorname{dim} U_{i}=1$ for all i. By assumption of distinctness, $U_{1} \cap U_{2}$ and all other intersections are zero. Thus, the sum on the right-hand equals 3 , whereas $U_{1}+U_{2}+U_{3}=\mathbb{R}^{2}$ has dimension 2 .

Problem 5. (Katznelson 1.2.7)
Suppose that $\sum \lambda_{i} u_{i}+\sum \nu_{i} w_{i}=0$. Then $\sum \lambda_{i} u_{i}=-\sum \nu_{i} w_{i}$. The left-hand side belongs to U; the right hand side to W. Thus, both sides lie in $U \cap W$, and both sides are zero. Since u_{i} are linearly independent, all λ_{i} are zero. Since w_{i} are linearly independent, all ν_{i} are zero.

Problem 6. (Katznelson 1.2.9)
Let V be a finite-dimensional vector space over the complex numbers. Let V^{\prime} be V BUT considered as a vector space over the real numbers. Show that the dimension of V^{\prime} is twice the dimension of V.

Let v_{1}, \ldots, v_{n} be a basis for V over \mathbb{C}. Let $w_{j}=i . v_{j}$. Here $i \in \mathbb{C}$ is, as usual, an element with $i^{2}=1$.

I claim that $\mathcal{L}=v_{1}, \ldots, v_{n}, w_{1}, \ldots, w_{n}$ is a basis for V^{\prime}.

1. \mathcal{L} is LI. Indeed, suppose that $\sum a_{j} v_{j}+\sum b_{j} w_{j}=0$ in V^{\prime}. This equation is also valid in V, and it may be re-written as $\sum\left(a_{j}+i b_{j}\right) v_{j}=0$. Since the v_{j} are independent over $\mathbb{C}, a_{j}=b_{j}=0$. Thus, \mathcal{L} is LI.
2. \mathcal{L} is spanning.

Given $x \in V^{\prime}$, we may write it as a complex linear combination of the v_{j}. Thus $x=\sum z_{j} v_{j}$. Write $z_{j}=a_{j}+i b_{j}$, where a_{j}, b_{j} are real. Then $x=\sum a_{j} v_{j}+b_{j} w_{j}$. This equation makes sense in V^{\prime}, for it involves only real scalars, and it shows that \mathcal{L} is spanning.

Problem 7. (Katznelson 1.2.9; previously listed incorrectly as Katznelson1.2.8) Suppose that V is a finite dimensional vector space. Show that every subspace W of V satisfies $\operatorname{dim}(W) \leq \operatorname{dim}(V)$, and that equality $\operatorname{dim}(W)=\operatorname{dim}(V)$ holds only when $W=V$.

Any linearly independent subset of W is also linearly independent in V, so its size is $\leq \operatorname{dim}(V)$. Choose a maximal linearly independent list $\left(w_{1}, \ldots, w_{t}\right)$ in W (it is finite, by what we just noted). By a theorem proved in class, a maximal linearly independent list is a basis, so $t=\operatorname{dim}(W)$. On the other hand, w_{1}, \ldots, w_{t} can be extended to a basis for V; in particular, $t \leq \operatorname{dim}(V)$. If $t=\operatorname{dim}(V)$, then w_{1}, \ldots, w_{t} is a basis for V. This means that:

$$
V \subset \operatorname{span}\left(w_{1}, \ldots, w_{t}\right)=W
$$

and so $V=W$.
Problem 8. (Extra credit). Suppose that we are given a system of linear equations all of whose coefficients are integers (example: $2 x+3 y+4 z=2, x-z=8$) and you know that it has a solution in real numbers. Prove that it has a solution in rational numbers.

Mathematical rephrasing: Given $w_{1}, \ldots, w_{N} \in \mathbb{Q}^{k}$ - in the example above, $N=$ $3, k=2$ and $w_{1}=\binom{2}{1}, w_{2}=\binom{3}{0}, w_{3}=\binom{4}{-1}$ - and real numbers $\lambda_{i} \in \mathbb{R}$ so that

$$
\begin{equation*}
x=\sum \lambda_{i} w_{i} \in \mathbb{Q}^{k} \tag{2}
\end{equation*}
$$

show that there exist $\lambda_{i}^{\prime} \in \mathbb{Q}$ so that $x=\sum \lambda_{i}^{\prime} w_{i}$.
Proof. Let W be the subspace spanned by w_{i}, for $1 \leq i \leq N$. Since w_{i} span W, we can obtain a basis of W by deleting certain of them; we may suppose, w.l.o.g., that w_{1}, \ldots, w_{t}
form a basis of W. Extend this to a basis $w_{1}, \ldots, w_{t}, v_{1}, \ldots, v_{r}$ of \mathbb{Q}^{k}. Consider the linear map:

$$
L: \mathbb{Q}^{k} \rightarrow \mathbb{Q}^{r}, L\left(\sum_{i=1}^{t} a_{i} w_{i}+\sum_{i=1}^{r} b_{i} v_{i}\right)=\left(b_{1}, \ldots, b_{r}\right)
$$

By definition,

$$
\begin{equation*}
\operatorname{null}(L)=\operatorname{span}_{\mathbb{Q}}\left(w_{1}, \ldots, w_{t}\right) . \tag{3}
\end{equation*}
$$

where we have written $\operatorname{span}_{\mathbb{Q}}$ to emphasize, for later reference, that this is the span inside a \mathbb{Q}-vector space.

Now, L extends to a linear map $\tilde{L}: \mathbb{R}^{k} \rightarrow \mathbb{R}^{r}$ of \mathbb{R}-vector spaces, so that ${ }^{1} \tilde{L} \mid \mathbb{Q}^{k}=L$.
Why is this true? With respect to the standard bases of $\mathbb{Q}^{k}, \mathbb{Q}^{r}$, the linear transformation L is defined by a certain $r \times k$ matrix. This matrix has rational entries; thinking of the entries as real numbers, it also describes a linear transformation $\tilde{L}: \mathbb{R}^{k} \rightarrow \mathbb{R}^{r}$, which clearly extends L.

If x is defined according to (2), then $\tilde{L}(x)=0$, because \tilde{L} is a linear map of \mathbb{R}-vector spaces and $\tilde{L}\left(w_{i}\right)=L\left(w_{i}\right)=0$. Therefore, $x \in \operatorname{null}(\tilde{L}) \cap \mathbb{Q}^{k}=\operatorname{null}(L)$. So, by (3), x belongs to the \mathbb{Q}-span of w_{i}.

Remark. It is also perfectly possible to solve this problem by making reference to a specific algorithm for producing a solution - e.g., some kind of row/column reduction on matrices- and observing that if the algorithm works over \mathbb{R}, it also works over \mathbb{Q}.

[^0]
[^0]: ${ }^{1}$ This notation means that " \tilde{L}, when restricted to \mathbb{Q}^{k}, coincides with $L . "$

