October 14, 2008

HW 2

§13.4

Problem 1. Ch 2 - ex 8
Find a basis for U, the subspace of \mathbb{R}^{5} defined by

$$
U=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right): x_{1}=3 x_{2} ; x_{3}=7 x_{4}\right\}
$$

Proof. Denote $u=(3,1,0,0,0), v=(0,0,7,1,0)$, and $w=(0,0,0,0,1)$
u, v and w are linearly independent since

$$
\begin{gathered}
\lambda_{1} u+\lambda_{2} v+\lambda_{3} w=0 \Rightarrow\left(3 \lambda_{1}, \lambda_{1}, 7 \lambda_{2}, \lambda_{2}, \lambda_{3}\right)=0 \\
\Rightarrow \lambda_{1}=\lambda_{2}=\lambda_{3}=0
\end{gathered}
$$

Note each u, v and w is in U. Thus U contains the span of $\{u, v, w\}$. At the same time, if $X \in U$, then

$$
\begin{gathered}
X=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=\left(3 x_{2}, x_{2}, 7 x_{4}, x_{4}, x_{5}\right) \\
\Rightarrow X=x_{2}(3,1,0,0,0)+x_{4}(0,0,7,1,0)+x_{5}(0,0,0,0,1)=x_{2} u+x_{4} v+x_{5} w
\end{gathered}
$$

Hence, $\{u, v, w\}$ spans U. They are linearly independent, hence form a basis for U.

Problem 2. Ch 2 - ex 11
Suppose V is finite dimensional and U is a subspace of V such that $\operatorname{dim} U=\operatorname{dim} V$. Prove that $U=V$

Proof. U has a basis of length $\operatorname{dim} U$. Note this list contains vectors that are all linearly independent in U thus in V, and is of length $\operatorname{dim} V$ since $\operatorname{dim} U=\operatorname{dim} V$. Thus by proposition 2.17 p 32 , vectors in this list form a basis for V. So $U=V$.

Problem 3. Ch 2 - ex 13
Suppose U and W are subspaces of \mathbb{R}_{8} such that

$$
\operatorname{dim} U=3, \operatorname{dim} W=5, U+W=\mathbb{R}^{8}
$$

Prove $U \cap W=\{0\}$
Proof. By theorem 2.18, we have

$$
\begin{gathered}
\operatorname{dim} U+W=\operatorname{dim} U+\operatorname{dim} V-\operatorname{dim} U \cap W \\
U+W=\mathbb{R}^{8} \Rightarrow \operatorname{dim} U+W=8 \Rightarrow \operatorname{dim} U \cap W=0
\end{gathered}
$$

Hence $U \cap W=\{0\}$

Problem 4. Ch 2 - ex 14
Suppose U and W are both five-dimensional subspaces of R^{9}. Prove that $U \cap W \neq 0$
Proof. By theorem 2.18, we have

$$
\operatorname{dim} U \cap W=\operatorname{dim} U+\operatorname{dim} V-\operatorname{dim} U+W \geq \operatorname{dim} U+\operatorname{dim} V-\operatorname{dim} \mathbb{R}^{9}=5+5-9=1
$$

Hence $U \cap W \neq 0$

Problem 5. Ch 2 - ex 15
Prove / disprove the expression
Proof. Take $U_{1}=\operatorname{span}(1,0), U_{2}=\operatorname{span}(0,1), \operatorname{and} U_{3}=\operatorname{span}(1,1) \operatorname{dim}\left(U_{1}+U_{2}+U_{3}\right)=$ $\operatorname{dim}\left(\mathbb{R}^{2}\right)=2 ; U_{1} \cap U_{2}=U_{1} \cap U_{3}=U_{2} \cap U_{3}=U_{1} \cap U_{2} \cap U_{3}=\{0\}$
$\operatorname{dim} U_{1}+\operatorname{dim} U_{2}+\operatorname{dim} U_{3}-\operatorname{dim} U_{1} \cap U_{2}-\operatorname{dim} U_{1} \cap \operatorname{dim} U_{3}-\operatorname{dim} U_{2} \cap U_{3}+\operatorname{dim} U_{1} \cap U_{2} \operatorname{cap}_{3}$

$$
=1+1+1-0-0-0+0
$$

If the two sides are equal, we would have : $2=3$. So the expression is not correct.

Problem 6. Ch 3-ex 1
Show that every linear map from a one-dimensional vector space to itself is multiplication by some scalar.

Proof. Suppose V is a vector space of dimension 1 over the field F. Suppose T is a linear map from V to itself. We can pick a nonzero vector $v \in V$ so that $\forall x \in V \exists \lambda \in F: x=\lambda v$ $\Rightarrow T(v)=a v$ for some $a \in F$ since LHS $\in V$. Then

$$
\forall x \in V, T(x)=T(\lambda v)=\lambda T(v)=\lambda a v=a \lambda v=a x
$$

Problem 7. Ch 3 - ex 3
Suppose V is finite dimensional. Prove that any linear map on a subspace of V can be extended to a linear map on V.

Proof. Suppose U is a subspace of V and $T \in L(U, W)$. Denote $m=\operatorname{dim} U, n=\operatorname{dim} V$. Pick a basis say v_{1}, \ldots, v_{m} for U and extend it to a basis for V, say $v_{1}, . ., v_{m}, v_{m+1}, \ldots, v_{n}$. A linear transformation is uniquely defined by its value on a basis for V. Since we know $T\left(v_{1}\right), \ldots, T\left(v_{m}\right)$, we can randomly pick values for $T\left(v_{m+1}\right), \ldots, T\left(v_{n}\right)$, to turn T into an element of $L(V, W)$, for example $T\left(v_{m+1}\right)=\ldots .=T\left(v_{n}\right)=0$.

Problem 8. - Extra problem 1
Suppose that U, W are subspaces of a vector space V so that U intersects W only in the trivial vector. Suppose that $u_{1}, u_{2}, \ldots u_{n}$ is a linearly independent list in U, and w_{1}, \ldots, w_{m} is a linearly independent list in W. Show that $u_{1}, u_{2}, \ldots, u_{n}, w_{1}, \ldots, w_{m}$ is linearly independent in V.

Proof. Denote F to be the scalar field. Suppose

$$
a_{1} u_{1}+a_{2} u_{2}+\ldots+a_{n} u_{n}+b_{1} w_{1}+\ldots+b_{m} w_{m}=0
$$

with $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m} \in F$

$$
\Rightarrow a_{1} u_{1}+a_{2} u_{2}+\ldots+a_{n} u_{n}=-\left(b_{1} w_{1}+\ldots+b_{m} w_{m}\right)
$$

RHS is in U and LHS is in V. But $U \cap V=0$, thus denote $x=a_{1} u_{1}+a_{2} u_{2}+\ldots+a_{n} u_{n}=$ $-\left(b_{1} w_{1}+\ldots+b_{m} w_{m}\right)$, then $x=0$
$\Rightarrow a_{1} u_{1}+a_{2} u_{2}+\ldots+a_{n} u_{n}=b_{1} w_{1}+\ldots+b_{m} w_{m}=0 \Rightarrow a_{1}=\ldots=a_{n}=b_{1}=\ldots=b_{m}=0$
since $u_{1}, u_{2}, \ldots u_{n}$ is a linearly independent list in U, and w_{1}, \ldots, w_{m} is a linearly independent list in W. Thus $u_{1}, u_{2}, \ldots, u_{n}, w_{1}, \ldots, w_{m}$ is linearly independent in V.

Problem 9. - Extra problem 2
Suppose that V is a finite dimensional vector space. Show that every subspace W of V satisfies $\operatorname{dim} \mathrm{W} \leq \operatorname{dim}(\mathrm{V})$, and that equality $\operatorname{dim}(\mathrm{W})=\operatorname{dim}(\mathrm{V})$ holds only when $W=V$.

Proof. Since a basis of every subspace of V can be extended to a basis for V, and the length of a basis is the dimension of a vector space, $\operatorname{dim} W \leq \operatorname{dim}(V) \cdot \operatorname{dim}(W)=\operatorname{dim}(V)$ if and only if a basis for W does not need extending to get to a basis for V, ie that basis for W already span V ie $W=V$

Problem 10. - Extra problem 3
Let V be a finite-dimensional vector space over the complex numbers. Let V^{\prime} be V but considered as a vector space over the real numbers. Show that the dimension of V^{\prime} is twice the dimension of V.

Proof. Say v_{1}, \ldots, v_{n} form a basis for V over $\mathbb{C}\left({ }^{*}\right)$
V is a finite-dimensional vector space over the complex numbers so $i v_{1}, \ldots, i v_{n}$ are elements in V. We will show $v_{1}, \ldots, v_{n}, i v_{1}, \ldots, i v_{n}$ form a basis for V^{\prime} over \mathbb{R}, ie show they are linearly independent and span V^{\prime} over \mathbb{R}. If $x i n V^{\prime}$, then $x i n V$, because of $(*)$, there exsist complex numbers $a_{j}+i b_{j}, a_{j}, b_{j} \in \mathbb{R}$ such that

$$
\begin{gathered}
x=\left(a_{1}+i b_{1}\right) v_{1}+\ldots+\left(a_{n}+i b_{n}\right) v_{n} \\
\Rightarrow x=a_{1} v_{1}+b_{1} i v_{1}+\ldots+a_{n} v_{n}+b_{n} i v_{n}
\end{gathered}
$$

Suppose $a_{1} v_{1}+\ldots+a_{n} v_{n}+b_{1} i v_{1}+\ldots+b_{n} i v_{n}=0$ with $a_{j}, b_{j} \in \mathbb{R}$.
Regrouping we get :

$$
\left(a_{1}+i b_{1}\right) v_{1}+\ldots+\left(a_{n}+i b_{n}\right) v_{n}=0
$$

Because of $(*),\left(a_{1}+i b_{1}\right)=\ldots=\left(a_{n}+i b_{n}\right)=0 \Rightarrow a_{j}=b_{j}=0$ for $1 \leq j \leq n$.

