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Problem 1 (Chapter 6 - ex 24). Find a polynomial g € P2(R) such that

1
p(2) = /0 pl()a(x) d(%)

for every p € P2(R).

Proof. Use G-S on the basis (1, , 22) to obtain an orthonormal basis denoted by (1,p1, p2),
then

q= (¢, 1)1+ (g, p1)p1 + (¢, p2)P2

From the requirement, we have

1 1
(0,1) = Lg,p1) = p1(3); (@ p2) = p2(3)
Thus choose ¢ as
1 1
q=1 +p1(§)p1 +p2(§)p2

We then have (*) established for the basis elements. Since both sides are linear operators
and they agree on the basis elements, they agree on all elements. Hence we have equality
(*) for each p € P2(R)

O

Problem 2 (Chapter 6 - ex 27). Suppose n is a positive integer. Define T' € L(F™) by
T(z1y.-y2n) = (0,21, ..y Zn—1)
Find a formular for T*(z1,. .., z,)

Proof. Since the standard basis is an orthonormal basis for F", we find 7™ by finding the
matrix rep for 7" with respect to the standard basis then take the conjugate tranpose. [



With respect to the standard basis, the matrix rep M for T is

00 0 0
10 0 0
M=101 0 0
00 1 0

Hence T*(z1,...,2n) = (22,-- ., 2n,0)

Problem 3 (Chapter 6 - ex 29). Suppose T € L(V) and U is a subspace of V. Prove U
is invariant under 7" if and only if U~ is invariant under T

Proof.
(Tu,v) = (u, T*v) (*)

Suppose U is invariant under 7. If v € U+ then by (*) (u,T*v) = 0 for all u € U,
hence T*v € U+,

On the other hand, suppose U~ is invariant under T*. If v € U then by (*) (Tu,v) = 0
for all v € UL, hence Tu € (UL)+ =U. O

Problem 4 (Chapter 6 - ex 30). Suppose T' € L(V,W). Prove that
1. T is injective if and only if T is surjective;
2. T is surjective if and only if T is injective.

Proof. T:V -W;T* W =V

1. We show that (Ker T)* = Range T"*.

Since (v, T*w) = (Tv,w), (v,T*w) = 0 for all v € KerT and w € W, ie Range T* C
(Ker T)*.

Also
dim Range T* = dim RangeT' = dim V — dimker 7" = dim(Ker T)*

= (KerT)* = Range T
Hence we have :

T* is surjective < Range T* =V & (KerT)t =V < Ker T = 0 < T'is injective

2. Replace T by T* we have (Ker T*)* = Range(T*)* = Range T
Thus

T'is surjective < RangeT =V < (KerT*)t =V < Ker T* = 0 < T* is injective



O]

Problem 5 (Chapter 7 - ex 1). Consider the inner product space P2(R) with the inner
product

0.0 = [ o) do
Define T' € L(P2(R)) by
T(ag + a1z + agz?) = a1z
1. Show that T is not self-adjoint.
2. Denote M to be the matrix rep of T' with respect to the basis (1, x,z?) thus M is

0 00
010
0 00

This matrix equals its conjugate transpose, even though 7T is not self-adjoint. Explain
why this is not a contradiction.

Proof.

1. With respect to an orthonormal basis, the matrix representation of T* is the conjugate
transpose of that of T. By G-S process, we obtain an orthonormal basis for Pa(R)

1

{1, pa(z) = 2V3(x — 5),293(90)}

where p3 is a quadratic polynomial. Since T'(1) = 0, T (p2(z)) = 2v/3z = pa(z)—p2(0),
the matrix representation for T is

0 —p2(0) a3
0 1 ass
0 0 0

Hence the matrix representation for 7™ with respect to the same orthonormal basis
is
0 0 O
—p2(0) 1 0
a3 a3 0

Since p2(0) # 0, T(1) # 0 while 7'(1) = 0.Hence T is not self-adjoint

2. This is not a contradiction because basis (1, z,z?) is not orthonormal with respect to
the given inner product. Thus the matrix representation of T with respect to this
basis is not necessarily the conjugate transpose of M. As we saw above, T#(1) # 0,

while ' (1) = 0.



Problem 6 (Chapter 7 - ex 2). Prove or counterexample

Proof. Pick two self-adjoint operators that do not commute. In the case of matrices, any
matrix whose columns form an orthonormal basis is self-adjoint.
Hence consider the following 2 matrices in Ma(R).

0 1 cos@ sin6
1 0)’\sinf® —cosb

When 6 = %, these two matrices do not commute since
0 1 cosf sind _ (sinf —cosf
1 0/ \sinf —cosf/) \cosh sinf
cosf sinf 0 1\ [ sinf cosd
sinf —cosf)\1 0) \—cosf sinf

Problem 7 (Chapter 7 - ex 3b). Show that if V' is a complex inner-product space, then
the set of self-adjoint operators on V' is not a subspace of L(V').

while

O

Proof. Suppose T is a self-adjoint operator on V. Pick an orthonormal basis for V.

Denote M to the matrix rep for T" with respect to this basis . Since T' = T™*, we have
M=1I"

Consider ¢T'. Then with respect to this orthonormal basis, the matrix rep for i7" is iM.

Note that iM = —iM' = —iM # +M. Hence ¢T is not self-adjoint. Thus the set
of self-adjoint operators is not closed under scalar multiplication, hence not a subspace of
L(V).

O

Problem 8 (Chapter 7 - ex 11). Suppose V is a complex inner-product space. Prove that
every normal operator on V has a square root.

Proof. Suppose T' is a normal operator on V, ie TT* = T*T. By the complex Spectral
Theorem, V' has an orthonormal basis consisting of eigenvectors of 1. Hence with respect
to this basis, the matrix rep for T is

retfr 0 ... 0
0 roeif2 . 0
0 T eifn



with r; <O0. .
Define an operator S on V' by specifing its matrix rep M with respect to this orthonor-
mal basis by A
Jre/? 0 e 0
T 0 Ve 0
0 ./rnew"/2
Hence M2 = M. Thus S2 =T, ie S is a square root of T'.
O

Problem 9 (Chapter 7 - Ex 14). Suppose T' € L(V) is self-adjoint, A € F and € > 0.
Prove that if there exists v € V such that ||v|| = 1, and ||Tv — MAv|| < €, then T has an
eigenvalue X' such that |\ — | < e

Proof. T is self-adjoint thus there exists an orthonormal basis containing eigenvectors for
T, say (vi,...,v,). Denote M to be the matrix rep for 7" with respect to this basis, thus
M is a diagonal matrix.

Denote w = (ay,...,a,) € F", where a; = (v,v;). Hence ||w|/p» = 1 since

n n
L=ol® =) Jw, o) =) Jail® = Jlwllf
=1 i=1

Also ||[Tv — M|y = || Mw — Aw||pn
Suppose all eigenvalues of T" are such that |A\; — A| > € for all 1 <i < n, then

1Mw = Aw[§n = (A = Nais s = Na)lEe = DA = AP aif
i=1

With the assumption above,
n
170 = Mollf = |Mw = Mw|[gn > € las* = e
i=1

which contradicts the given hypothesis.
Hence T has an eigenvalue X’ such that |A — N| < e



