Homework 8

Ha Pham

November 20, 2008

Problem 1 (Chapter 6 - ex 24). Find a polynomial $q \in \mathcal{P}_2(\mathbb{R})$ such that

$$p(\frac{1}{2}) = \int_0^1 p(x)q(x) \, dx(*)$$

for every $p \in \mathcal{P}_2(\mathbb{R})$.

Proof. Use G-S on the basis $(1, x, x^2)$ to obtain an orthonormal basis denoted by $(1, p_1, p_2)$, then

$$q = \langle q, 1 \rangle 1 + \langle q, p_1 \rangle p_1 + \langle q, p_2 \rangle p_2$$

From the requirement, we have

$$\langle q, 1 \rangle = 1; \langle q, p_1 \rangle = p_1(\frac{1}{2}); \langle q, p_2 \rangle = p_2(\frac{1}{2})$$

Thus choose q as

$$q = 1 + p_1(\frac{1}{2})p_1 + p_2(\frac{1}{2})p_2$$

We then have (*) established for the basis elements. Since both sides are linear operators and they agree on the basis elements, they agree on all elements. Hence we have equality (*) for each $p \in \mathcal{P}_2(\mathbb{R})$

Problem 2 (Chapter 6 - ex 27). Suppose n is a positive integer. Define $T \in \mathcal{L}(\mathbb{F}^n)$ by

$$T(z_1,\ldots,z_n)=(0,z_1,\ldots,z_{n-1})$$

Find a formular for $T^*(z_1,\ldots,z_n)$

Proof. Since the standard basis is an orthonormal basis for \mathbb{F}^n , we find T^* by finding the matrix rep for T with respect to the standard basis then take the conjugate transpose. \Box

With respect to the standard basis, the matrix rep M for T is

$$M = \begin{pmatrix} 0 & 0 & 0 & \dots & 0 \\ 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 \end{pmatrix}$$

Hence $T^*(z_1, ..., z_n) = (z_2, ..., z_n, 0)$

Problem 3 (Chapter 6 - ex 29). Suppose $T \in \mathcal{L}(V)$ and U is a subspace of V. Prove U is invariant under T if and only if U^{\perp} is invariant under T^*

Proof.

$$\langle Tu, v \rangle = \langle u, T^*v \rangle \, (*)$$

Suppose U is invariant under T. If $v \in U^{\perp}$ then by (*) $\langle u, T^*v \rangle = 0$ for all $u \in U$, hence $T^*v \in U^{\perp}$.

On the other hand, suppose U^{\perp} is invariant under T^* . If $u \in U$ then by $(*) \langle Tu, v \rangle = 0$ for all $v \in U^{\perp}$, hence $Tu \in (U^{\perp})^{\perp} = U$.

Problem 4 (Chapter 6 - ex 30). Suppose $T \in \mathcal{L}(V, W)$. Prove that

- 1. T is injective if and only if T^* is surjective;
- 2. T is surjective if and only if T^* is injective.

Proof. $T: V \to W; T^*: W \to V$

1. We show that $(\text{Ker } T)^{\perp} = \text{Range } T^*$. Since $\langle v, T^*w \rangle = \langle Tv, w \rangle$, $\langle v, T^*w \rangle = 0$ for all $v \in \text{Ker } T$ and $w \in W$, is Range $T^* \subset$

Also

 $(\operatorname{Ker} T)^{\perp}$.

dim Range T^* = dim Range T = dim V - dim ker T = dim (Ker T)^{\perp} \Rightarrow (Ker T)^{\perp} = Range T^*

Hence we have :

 T^* is surjective \Leftrightarrow Range $T^* = V \Leftrightarrow (\operatorname{Ker} T)^{\perp} = V \Leftrightarrow \operatorname{Ker} T = 0 \Leftrightarrow T$ is injective

2. Replace T by T^* we have $(\operatorname{Ker} T^*)^{\perp} = \operatorname{Range}(T^*)^* = \operatorname{Range} T$

Thus

T is surjective $\Leftrightarrow \operatorname{Range} T = V \Leftrightarrow (\operatorname{Ker} T^*)^{\perp} = V \Leftrightarrow \operatorname{Ker} T^* = 0 \Leftrightarrow T^*$ is injective

Problem 5 (Chapter 7 - ex 1). Consider the inner product space $\mathcal{P}_2(\mathbb{R})$ with the inner product

$$\langle p,q\rangle = \int_0^1 p(x)q(x)\,dx$$

Define $T \in \mathcal{L}(\mathcal{P}_2(\mathbb{R}))$ by

$$T(a_0 + a_1x + a_2x^2) = a_1x$$

- 1. Show that T is not self-adjoint.
- 2. Denote M to be the matrix rep of T with respect to the basis $(1, x, x^2)$ thus M is

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

This matrix equals its conjugate transpose, even though T is not self-adjoint. Explain why this is not a contradiction.

Proof.

1. With respect to an orthonormal basis, the matrix representation of T^* is the conjugate transpose of that of T. By G-S process, we obtain an orthonormal basis for $\mathcal{P}_2(\mathbb{R})$

$$\{1, p_2(x) = 2\sqrt{3}(x - \frac{1}{2}), p_3(x)\}$$

where p_3 is a quadratic polynomial. Since T(1) = 0, $T(p_2(x)) = 2\sqrt{3}x = p_2(x) - p_2(0)$, the matrix representation for T is

$$\begin{pmatrix} 0 & -p_2(0) & a_{13} \\ 0 & 1 & a_{23} \\ 0 & 0 & 0 \end{pmatrix}$$

Hence the matrix representation for T^* with respect to the same orthonormal basis is

$$\begin{pmatrix} 0 & 0 & 0 \\ -p_2(0) & 1 & 0 \\ a_{13} & a_{23} & 0 \end{pmatrix}$$

Since $p_2(0) \neq 0$, $T^*(1) \neq 0$ while T(1) = 0. Hence T is not self-adjoint

2. This is not a contradiction because basis $(1, x, x^2)$ is not orthonormal with respect to the given inner product. Thus the matrix representation of T^* with respect to this basis is not necessarily the conjugate transpose of M. As we saw above, $T^*(1) \neq 0$, while $\overline{M}^t(1) = 0$.

Problem 6 (Chapter 7 - ex 2). Prove or counterexample

Proof. Pick two self-adjoint operators that do not commute. In the case of matrices, any matrix whose columns form an orthonormal basis is self-adjoint.

Hence consider the following 2 matrices in $M_2(\mathbb{R})$.

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{pmatrix}$$

When $\theta = \frac{\pi}{3}$, these two matrices do not commute since

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{pmatrix} = \begin{pmatrix} \sin\theta & -\cos\theta \\ \cos\theta & \sin\theta \end{pmatrix}$$

while

$$\begin{pmatrix} \cos\theta & \sin\theta\\ \sin\theta & -\cos\theta \end{pmatrix} \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix} = \begin{pmatrix} \sin\theta & \cos\theta\\ -\cos\theta & \sin\theta \end{pmatrix}$$

Problem 7 (Chapter 7 - ex 3b). Show that if V is a complex inner-product space, then the set of self-adjoint operators on V is not a subspace of $\mathcal{L}(V)$.

Proof. Suppose T is a self-adjoint operator on V. Pick an orthonormal basis for V.

Denote M to the matrix rep for T with respect to this basis . Since $T = T^*$, we have $M = \overline{M}^t$.

Consider iT. Then with respect to this orthonormal basis, the matrix rep for iT is iM. Note that $\overline{iM}^t = -i\overline{M}^t = -iM \neq iM$. Hence iT is not self-adjoint. Thus the set of self-adjoint operators is not closed under scalar multiplication, hence not a subspace of $\mathcal{L}(V)$.

Problem 8 (Chapter 7 - ex 11). Suppose V is a complex inner-product space. Prove that every normal operator on V has a square root.

Proof. Suppose T is a normal operator on V, ie $TT^* = T^*T$. By the complex Spectral Theorem, V has an orthonormal basis consisting of eigenvectors of T. Hence with respect to this basis, the matrix rep for T is

$$\begin{pmatrix} r_1 e^{i\theta_1} & 0 & \dots & 0 \\ 0 & r_2 e^{i\theta_2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & \dots & r_n e^{i\theta_n} \end{pmatrix}$$

with $r_i \leq 0$.

Define an operator S on V by specifing its matrix rep \tilde{M} with respect to this orthonormal basis by

$$\tilde{M} = \begin{pmatrix} \sqrt{r_1} e^{i\theta_1/2} & 0 & \dots & 0 \\ 0 & \sqrt{r_2} e^{i\theta_2/2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & \dots & \sqrt{r_n} e^{i\theta_n/2} \end{pmatrix}$$

Hence $\tilde{M}^2 = M$. Thus $S^2 = T$, ie S is a square root of T.

Problem 9 (Chapter 7 - Ex 14). Suppose $T \in \mathcal{L}(V)$ is self-adjoint, $\lambda \in \mathbb{F}$ and $\epsilon > 0$. Prove that if there exists $v \in V$ such that ||v|| = 1, and $||Tv - \lambda v|| < \epsilon$, then T has an eigenvalue λ' such that $|\lambda - \lambda'| < \epsilon$

Proof. T is self-adjoint thus there exists an orthonormal basis containing eigenvectors for T, say (v_1, \ldots, v_n) . Denote M to be the matrix rep for T with respect to this basis, thus M is a diagonal matrix.

Denote $w = (a_1, \ldots, a_n) \in \mathbb{F}^n$, where $a_i = \langle v, v_i \rangle$. Hence $||w||_{\mathbb{F}^n} = 1$ since

$$1 = \|v\|^2 = \sum_{i=1}^n |\langle v, v_i \rangle|^2 = \sum_{i=1}^n |a_i|^2 = \|w\|_{\mathbb{F}^n}^2$$

Also $||Tv - \lambda v||_V = ||Mw - \lambda w||_{\mathbb{F}^n}$

Suppose all eigenvalues of T are such that $|\lambda_i - \lambda| > \epsilon$ for all $1 \le i \le n$, then

$$||Mw - \lambda w||_{\mathbb{F}^n}^2 = ||((\lambda_1 - \lambda)a_i, \dots, (\lambda_n - \lambda)a_n)||_{\mathbb{F}^n}^2 = \sum_{i=1}^n |\lambda_i - \lambda|^2 |a_i|^2$$

With the assumption above,

$$||Tv - \lambda v||_V^2 = ||Mw - \lambda w||_{\mathbb{F}^n}^2 \ge \epsilon^2 \sum_{i=1}^n |a_i|^2 = \epsilon$$

which contradicts the given hypothesis.

Hence T has an eigenvalue λ' such that $|\lambda - \lambda'| < \epsilon$