Homework 8

Ha Pham

November 20, 2008

Problem 1 (Chapter 6 - ex 24). Find a polynomial $q \in \mathcal{P}_{2}(\mathbb{R})$ such that

$$
p\left(\frac{1}{2}\right)=\int_{0}^{1} p(x) q(x) d x(*)
$$

for every $p \in \mathcal{P}_{2}(\mathbb{R})$.
Proof. Use G-S on the basis $\left(1, x, x^{2}\right)$ to obtain an orthonormal basis denoted by $\left(1, p_{1}, p_{2}\right)$, then

$$
q=\langle q, 1\rangle 1+\left\langle q, p_{1}\right\rangle p_{1}+\left\langle q, p_{2}\right\rangle p_{2}
$$

From the requirement, we have

$$
\langle q, 1\rangle=1 ;\left\langle q, p_{1}\right\rangle=p_{1}\left(\frac{1}{2}\right) ;\left\langle q, p_{2}\right\rangle=p_{2}\left(\frac{1}{2}\right)
$$

Thus choose q as

$$
q=1+p_{1}\left(\frac{1}{2}\right) p_{1}+p_{2}\left(\frac{1}{2}\right) p_{2}
$$

We then have $\left(^{*}\right)$ established for the basis elements. Since both sides are linear operators and they agree on the basis elements, they agree on all elements. Hence we have equality $\left(^{*}\right)$ for each $p \in \mathcal{P}_{2}(\mathbb{R})$

Problem 2 (Chapter 6 - ex 27). Suppose n is a positive integer. Define $T \in \mathcal{L}\left(\mathbb{F}^{n}\right)$ by

$$
T\left(z_{1}, \ldots, z_{n}\right)=\left(0, z_{1}, \ldots, z_{n-1}\right)
$$

Find a formular for $T^{*}\left(z_{1}, \ldots, z_{n}\right)$
Proof. Since the standard basis is an orthonormal basis for \mathbb{F}^{n}, we find T^{*} by finding the matrix rep for T with respect to the standard basis then take the conjugate tranpose.

With respect to the standard basis, the matrix rep M for T is

$$
M=\left(\begin{array}{ccccc}
0 & 0 & 0 & \ldots & 0 \\
1 & 0 & 0 & \ldots & 0 \\
0 & 1 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & \ldots & 1 & 0
\end{array}\right)
$$

Hence $T^{*}\left(z_{1}, \ldots, z_{n}\right)=\left(z_{2}, \ldots, z_{n}, 0\right)$
Problem 3 (Chapter 6 - ex 29). Suppose $T \in \mathcal{L}(V)$ and U is a subspace of V. Prove U is invariant under T if and only if U^{\perp} is invariant under $T *$

Proof.

$$
\langle T u, v\rangle=\left\langle u, T^{*} v\right\rangle(*)
$$

Suppose U is invariant under T. If $v \in U^{\perp}$ then by $\left(^{*}\right)\left\langle u, T^{*} v\right\rangle=0$ for all $u \in U$, hence $T^{*} v \in U^{\perp}$.

On the other hand, suppose U^{\perp} is invariant under T^{*}. If $u \in U$ then by $\left(^{*}\right)\langle T u, v\rangle=0$ for all $v \in U^{\perp}$, hence $T u \in\left(U^{\perp}\right)^{\perp}=U$.

Problem 4 (Chapter 6 - ex 30). Suppose $T \in \mathcal{L}(V, W)$. Prove that

1. T is injective if and only if T^{*} is surjective;
2. T is surjective if and only if T^{*} is injective.

Proof. $T: V \rightarrow W ; T^{*}: W \rightarrow V$

1. We show that $(\operatorname{Ker} T)^{\perp}=\operatorname{Range} T^{*}$.

Since $\left\langle v, T^{*} w\right\rangle=\langle T v, w\rangle,\left\langle v, T^{*} w\right\rangle=0$ for all $v \in \operatorname{Ker} T$ and $w \in W$, ie Range $T^{*} \subset$ $(\operatorname{Ker} T)^{\perp}$.
Also

$$
\begin{gathered}
\operatorname{dim} \operatorname{Range} T^{*}=\operatorname{dim} \operatorname{Range} T=\operatorname{dim} V-\operatorname{dim} \operatorname{ker} T=\operatorname{dim}(\operatorname{Ker} T)^{\perp} \\
\Rightarrow(\operatorname{Ker} T)^{\perp}=\operatorname{Range} T^{*}
\end{gathered}
$$

Hence we have :
T^{*} is surjective $\Leftrightarrow \operatorname{Range} T^{*}=V \Leftrightarrow(\operatorname{Ker} T)^{\perp}=V \Leftrightarrow \operatorname{Ker} T=0 \Leftrightarrow T$ is injective
2. Replace T by T^{*} we have $\left(\operatorname{Ker} T^{*}\right)^{\perp}=\operatorname{Range}\left(T^{*}\right)^{*}=\operatorname{Range} T$

Thus
T is surjective $\Leftrightarrow \operatorname{Range} T=V \Leftrightarrow\left(\operatorname{Ker} T^{*}\right)^{\perp}=V \Leftrightarrow \operatorname{Ker} T^{*}=0 \Leftrightarrow T^{*}$ is injective

Problem 5 (Chapter 7 - ex 1). Consider the inner product space $\mathcal{P}_{2}(\mathbb{R})$ with the inner product

$$
\langle p, q\rangle=\int_{0}^{1} p(x) q(x) d x
$$

Define $T \in \mathcal{L}\left(\mathcal{P}_{2}(\mathbb{R})\right)$ by

$$
T\left(a_{0}+a_{1} x+a_{2} x^{2}\right)=a_{1} x
$$

1. Show that T is not self-adjoint.
2. Denote M to be the matrix rep of T with respect to the basis $\left(1, x, x^{2}\right)$ thus M is

$$
\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

This matrix equals its conjugate transpose, even though T is not self-adjoint. Explain why this is not a contradiction.

Proof.

1. With respect to an orthonormal basis, the matrix representation of T^{*} is the conjugate transpose of that of T. By G-S process, we obtain an orthonormal basis for $\mathcal{P}_{2}(\mathbb{R})$

$$
\left\{1, p_{2}(x)=2 \sqrt{3}\left(x-\frac{1}{2}\right), p_{3}(x)\right\}
$$

where p_{3} is a quadratic polynomial. Since $T(1)=0, T\left(p_{2}(x)\right)=2 \sqrt{3} x=p_{2}(x)-p_{2}(0)$, the matrix representation for T is

$$
\left(\begin{array}{ccc}
0 & -p_{2}(0) & a_{13} \\
0 & 1 & a_{23} \\
0 & 0 & 0
\end{array}\right)
$$

Hence the matrix representation for T^{*} with respect to the same orthonormal basis is

$$
\left(\begin{array}{ccc}
0 & 0 & 0 \\
-p_{2}(0) & 1 & 0 \\
a_{13} & a_{23} & 0
\end{array}\right)
$$

Since $p_{2}(0) \neq 0, T^{*}(1) \neq 0$ while $T(1)=0$.Hence T is not self-adjoint
2. This is not a contradiction because basis $\left(1, x, x^{2}\right)$ is not orthonormal with respect to the given inner product. Thus the matrix representation of T^{*} with respect to this basis is not necessarily the conjugate transpose of M. As we saw above, $T^{*}(1) \neq 0$, while $\bar{M}^{t}(1)=0$.

Problem 6 (Chapter 7 - ex 2). Prove or counterexample
Proof. Pick two self-adjoint operators that do not commute. In the case of matrices, any matrix whose columns form an orthonormal basis is self-adjoint.

Hence consider the following 2 matrices in $M_{2}(\mathbb{R})$.

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right)
$$

When $\theta=\frac{\pi}{3}$, these two matrices do not commute since

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right)=\left(\begin{array}{cc}
\sin \theta & -\cos \theta \\
\cos \theta & \sin \theta
\end{array}\right)
$$

while

$$
\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
\sin \theta & \cos \theta \\
-\cos \theta & \sin \theta
\end{array}\right)
$$

Problem 7 (Chapter 7 - ex 3b). Show that if V is a complex inner-product space, then the set of self-adjoint operators on V is not a subspace of $\mathcal{L}(V)$.

Proof. Suppose T is a self-adjoint operator on V. Pick an orthonormal basis for V.
Denote M to the matrix rep for T with respect to this basis. Since $T=T^{*}$, we have $M=\bar{M}^{t}$.

Consider $i T$. Then with respect to this orthonormal basis, the matrix rep for $i T$ is $i M$.
Note that $\overline{i M}^{t}=-i \bar{M}^{t}=-i M \neq i M$. Hence $i T$ is not self-adjoint. Thus the set of self-adjoint operators is not closed under scalar multiplication, hence not a subspace of $\mathcal{L}(V)$.

Problem 8 (Chapter 7 - ex 11). Suppose V is a complex inner-product space. Prove that every normal operator on V has a square root.

Proof. Suppose T is a normal operator on V, ie $T T^{*}=T^{*} T$. By the complex Spectral Theorem, V has an orthonormal basis consisting of eigenvectors of T. Hence with respect to this basis, the matrix rep for T is

$$
\left(\begin{array}{cccc}
r_{1} e^{i \theta_{1}} & 0 & \ldots & 0 \\
0 & r_{2} e^{i \theta_{2}} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & \ldots & \ldots & r_{n} e^{i \theta_{n}}
\end{array}\right)
$$

with $r_{i} \leq 0$.
Define an operator S on V by specifing its matrix rep \tilde{M} with respect to this orthonormal basis by

$$
\tilde{M}=\left(\begin{array}{cccc}
\sqrt{r_{1}} e^{i \theta_{1} / 2} & 0 & \cdots & 0 \\
0 & \sqrt{r_{2}} e^{i \theta_{2} / 2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & \cdots & \cdots & \sqrt{r_{n}} e^{i \theta_{n} / 2}
\end{array}\right)
$$

Hence $\tilde{M}^{2}=M$. Thus $S^{2}=T$, ie S is a square root of T.

Problem 9 (Chapter 7 - Ex 14). Suppose $T \in \mathcal{L}(V)$ is self-adjoint, $\lambda \in \mathbb{F}$ and $\epsilon>0$. Prove that if there exists $v \in V$ such that $\|v\|=1$, and $\|T v-\lambda v\|<\epsilon$, then T has an eigenvalue λ^{\prime} such that $\left|\lambda-\lambda^{\prime}\right|<\epsilon$

Proof. T is self-adjoint thus there exists an orthonormal basis containing eigenvectors for T, say $\left(v_{1}, \ldots, v_{n}\right)$. Denote M to be the matrix rep for T with respect to this basis, thus M is a diagonal matrix.

Denote $w=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{F}^{n}$, where $a_{i}=\left\langle v, v_{i}\right\rangle$. Hence $\|w\|_{\mathbb{F}^{n}}=1$ since

$$
1=\|v\|^{2}=\sum_{i=1}^{n}\left|\left\langle v, v_{i}\right\rangle\right|^{2}=\sum_{i=1}^{n}\left|a_{i}\right|^{2}=\|w\|_{\mathbb{F}^{n}}^{2}
$$

Also $\|T v-\lambda v\|_{V}=\|M w-\lambda w\|_{\mathbb{F}^{n}}$
Suppose all eigenvalues of T are such that $\left|\lambda_{i}-\lambda\right|>\epsilon$ for all $1 \leq i \leq n$, then

$$
\|M w-\lambda w\|_{\mathbb{F}^{n}}^{2}=\left\|\left(\left(\lambda_{1}-\lambda\right) a_{i}, \ldots,\left(\lambda_{n}-\lambda\right) a_{n}\right)\right\|_{\mathbb{F}^{n}}^{2}=\sum_{i=1}^{n}\left|\lambda_{i}-\lambda\right|^{2}\left|a_{i}\right|^{2}
$$

With the assumption above,

$$
\|T v-\lambda v\|_{V}^{2}=\|M w-\lambda w\|_{\mathbb{F}^{n}}^{2} \geq \epsilon^{2} \sum_{i=1}^{n}\left|a_{i}\right|^{2}=\epsilon
$$

which contradicts the given hypothesis.
Hence T has an eigenvalue λ^{\prime} such that $\left|\lambda-\lambda^{\prime}\right|<\epsilon$

