Math 113: Linear Algebra Norms and Inner Products

Ilya Sherman

November 5, 2008

1 Norms and Inner Products

We want to have a precise way of describing the "size" of a vector in a vector space V is over \mathbb{R} or \mathbb{C} . For example, if we want to *approximate* $T \in \mathcal{L}(V, W)$ by a "simpler" one, then we need some way to describe "a is close to b".

1.1 Norms

The most general way of describing "size" is via a norm.

Definition 1 (Norm). A norm is a function $N: V \to \mathbb{R}$ so that

1. $N(v) \ge 0$ with equality if and only if v = 0.

2.
$$N(\lambda v) = |\lambda| N(v)$$

3. $N(v+w) \le N(v) + N(w)$

For example, if $v = \mathbb{R}^2$, $N_1(x, y) = \sqrt{x^2 + y^2}$ (the usual length), $N_2(x, y) = |x| + |y|$, and $N_3 = \max(|x|, |y|)$ are all norms. A norm gives a notion of "closeness": v is "close" to w when N(v - w) is small. N_1, N_2, N_3 all give (slightly) different notions of "closeness".

1.2 Inner Products

Among all norms, there's one class—the inner product—which are easiest to work with; e.g. one can quantify the error in $N(v+w) \leq N(v) + N(w)$. The motivation here is to come up with a generalization of the dot product in \mathbb{R}^n , \cdot defined by

$$(x_1,\ldots,x_n)\cdot(y_1,\ldots,y_n)=\sum_{i=1}^n x_iy_i.$$

November 5, 2008

Also, the length of v is

$$\|v\| = \sqrt{v \cdot v}$$

which is a norm on \mathbb{R}^n .

Definition 2 (Inner Product). An **inner product** on a vector space V over a field F (which is either \mathbb{R} or \mathbb{C}) is a function $V \times V \to F$, denoted $(v, w) \mapsto \langle v, w \rangle$, such that

Linear It is linear in the first variable: $\langle \lambda_1 v_1 + \lambda_2 v_2, w \rangle = \lambda_1 \langle v_1, w \rangle + \lambda_2 \langle v_2, w \rangle.$

Positive $\langle v, v \rangle \in \mathbb{R}$, and $\langle v, v \rangle \ge 0$ with equality if and only if v = 0.

Symmetric $\langle v, w \rangle = \overline{\langle w, v \rangle}$ (this notation denotes the conjugate)

In the case that $F = \mathbb{R}$, an inner product is a symmetric $(\langle v, w \rangle = \langle w, v \rangle)$ bilinear positive map $V \times V \to \mathbb{R}$.

In the case that $F = \mathbb{C}$, if $\langle v, w \rangle$ were bilinear, then for any $v \in V$ and any scalar $\lambda \in \mathbb{C}$, then we would have

$$\langle \lambda v, \lambda v \rangle = \lambda^2 \langle v, v \rangle.$$

Here there's no guarantee that $\lambda^2 \in \mathbb{R}$, or $\lambda^2 \ge 0$. On the other hand, as we actually defined the inner product,

$$\langle \lambda v, \lambda v \rangle = \lambda \overline{\lambda} \langle v, v \rangle = \underbrace{|\lambda|^2}_{\text{nonnegative real}} \langle v, v \rangle.$$

1.3 Examples

Suppose $V = \mathbb{R}^n$. We could then define an inner product as

 $\langle (x_1,\ldots,x_n), (y_1,\ldots,y_n) \rangle = \sum x_i y_i.$

Suppose $V = \mathbb{C}^n$. We could then define an inner product as

$$\langle (x_1,\ldots,x_n), (y_1,\ldots,y_n) \rangle = \sum x_i \overline{y_i},$$

 \mathbf{SO}

$$\langle (x_1,\ldots,x_n), (x_1,\ldots,x_n) \rangle = \sum |x_i|^2$$

If V is the space of continuous functions $[0,1] \to \mathbb{R}$ over \mathbb{R} , we can define an inner product

$$\langle f,g\rangle = \int_0^1 f(x)g(x)dx.$$

(check the axioms! For example, $\langle f, f \rangle = \int_0^1 f(x)^2 dx \ge 0$). If V is the space of continuous functions $[0,1] \to \mathbb{C}$ over \mathbb{C} , we can define an inner product

$$\langle f,g\rangle = \int_0^1 f(x)\overline{g(x)}dx.$$

We will generally use the notation

$$\|v\| = \sqrt{\langle v, v \rangle}$$

to denote the length of v according to a given inner product.

1.4 Like dot

The below is a sequence of facts that tell us essentially that inner products behave like the dot product.

Proposition 1 (Cauchy-Schwarz Inequality).

$$|\langle v, w \rangle|^2 \le \langle v, v \rangle \langle w, w \rangle.$$

Proof. (when $F = \mathbb{R}$)

We'll use the fact that $||v + \lambda||^2 \ge 0$. If we expand this out, we find that

$$\begin{split} 0 &\leq \|v + \lambda w\|^2 \\ &= \langle v + \lambda w, v + \lambda w \rangle \\ &= \langle v, v \rangle + \lambda (\langle w, v \rangle + \langle v, w \rangle) + \lambda^2 \langle w, w \rangle \qquad by \ bilinearity \\ &= \lambda^2 \langle w, w \rangle + 2\lambda \langle v, w \rangle + \langle v, v \rangle \qquad by \ symmetry. \end{split}$$

Note that in general, if $ax^2 + bx + c \ge 0$ for all real x, it cannot have two real roots. Therefore, $b^2 - 4ac \le 0$. Thus,

$$4\langle v, w \rangle^2 \le 4\langle v, v \rangle \langle w, w \rangle$$
$$|\langle v, w \rangle|^2 \le \langle v, v \rangle \langle w, w \rangle \qquad \Box$$

Exercise: repeat this proof for $F = \mathbb{C}$. You should get that the real part of the inner product is bounded by the lengths: $|\operatorname{Re}\langle v, w\rangle| \leq ||v|| \cdot ||w||$. The exercise is to show that $|\langle v, w\rangle| \leq ||v|| ||w||$.

Corollary 1.1. For all v, w,

 $|\langle v, w \rangle| \le \|v\| \, \|w\| \, .$

Proposition 2 (Pythagoras's law). We say v, w are are **orthogonal** (perpendicular) if $\langle v, w \rangle = 0$. If so, $||v + w||^2 = ||v||^2 + ||w||^2$.

Proof. Left as an exercise; use linearity properties of the inner product.

Proposition 3 (Parallelogram law). For any v, w,

$$||v + w||^2 + ||v - w||^2 = 2(||v||^2 + ||w||^2)$$

Proof. Left as an exercise; use linearity properties of the inner product.

Proposition 4 (Triangle inequality). For any v, w,

$$\|v + w\| \le \|v\| + \|w\|.$$

Proof.

$$\begin{aligned} \|v+w\|^2 &= \langle v+w, v+w \rangle \\ &= \underbrace{\langle v,v \rangle}_{\|v\|^2} + \underbrace{\langle w,w \rangle}_{\|v\|^2} + \underbrace{\langle v,w \rangle}_{\leq \|v\|\|w\|} \underbrace{\langle v,w \rangle}_{\text{by Cauchy-Schwarz}} + \underbrace{\langle w,v \rangle}_{\leq \|v\|\|w\|} \underbrace{\langle w,v \rangle}_{\text{by Cauchy-Schwarz}} \\ &\leq \|v\|^2 + \|w\|^2 + 2 \|v\| \|w\| \\ &= (\|v\| + \|w\|)^2 \\ \|v+w\| \leq \|v\| + \|w\| \end{aligned}$$

Exercise: Let V be a finite-dimensional vector space over \mathbb{R} with inner product. Find the maximum length of a list $v_1, \ldots, v_k, \ldots, v_n$ so that $\langle v_i, v_j \rangle \leq 0$ if $i \neq j$.