1. a) \(S_3 \)
 b) \(\langle(12)\rangle \) in \(S_3 \)

2. a) \(x = 2 \) is a generator; enough to prove \(\text{order}(x) = 12 \).
 b) \(\phi : \mathbb{Z}_2 \rightarrow \mathbb{Z}_4 \)
 \(\phi(0) = 0 \), \(\phi(1) = 2 \)

 By Lagrange's theorem, if \(\text{order}(x) \neq 12 \), then \(\text{order}(x) = 1, 2, 3, 4, 6, 12 \).
 So \(\text{order}(x) = 12 \).
 Then \(\phi(2) = \phi(1) = 2 \).

3. a) Take \(g \in G \), \(g \neq e \).
 b) Let \(N \) be the order of \(g \).
 c) \(\langle g \rangle \) is a subgroup of \(G \).
 d) \(g^k \) is the order of \(g \) for \(1 \leq k \leq N \).
 e) \(g^k = e \) if and only if \(k \) is a multiple of \(N \).

4. a) \(\phi : \mathbb{Z}_6 \rightarrow \mathbb{Z}_6 \)
 b) \(\phi(2) = \phi(1) = 2 \).
 c) \(\phi(3) = \phi(1) = 2 \).

5. a) \(\phi : \mathbb{Z}_6 \rightarrow \mathbb{Z}_6 \)
 b) \(\phi(2) = \phi(1) = 2 \).
 c) \(\phi(3) = \phi(1) = 2 \).

6. a) \(\phi : \mathbb{Z}_6 \rightarrow \mathbb{Z}_6 \)
 b) \(\phi(2) = \phi(1) = 2 \).
 c) \(\phi(3) = \phi(1) = 2 \).
for $a, a' \in A$, $b, b' \in B$

$$(a \cdot b) (a' \cdot b') = \frac{a \cdot b'}{\text{in } A} \cdot \frac{b' \cdot a}{\text{in } B} \in AB$$

since A is normal in A

4 a) omitted

6) The "group generated by x, y" is the intersection of all subgroups containing x, y:

$$\langle x, y \rangle = \bigcap H$$

H is a subgroup of G, such that $x, y \in H$

if x, y are as in (a), then

order (x) divides order ($\langle x, y \rangle$) and $|$ Lagrange's theorem.

So order ($\langle x, y \rangle$) is divisible by 7 and 3,
so 21 divides order ($\langle x, y \rangle$).

5 a) Euclidean algorithm:

$96 = 2 \cdot 37 + 22$
$37 = 1 \cdot 22 + 15$
$22 = 1 \cdot 15 + 7$
$15 = 2 \cdot 7 + 1$

$1 = 15 - 2(7) = 15 - 2(22 - 15) = 3 \cdot 15 - 2 \cdot 22$
$= 3(37 - 22) - 2 \cdot 22 = 3 \cdot 37 - 5 \cdot 22$
$= 3 \cdot 37 - 5(96 - 2 \cdot 37) = 13 \cdot 37 - 5 \cdot 96$

So $13 \cdot 37 - 5 \cdot 96 = 1$

So 13 is an inverse.

6) $x = 2^{13}$ will do: then $x^{37} = 2^{13 \cdot 37} = 2^{1 + 5 \cdot 96} = 2$

since $2^6 = 1$ in G,

(In G): Now $6 = 64$, $7 = 31$, $8 = 62$, $10 = 27$, $11 = 54$; $2^{13} = 44$
6a) omitted; subgroup is not normal.

6) \[
\begin{bmatrix}
0 & 6 \\
1 & 0
\end{bmatrix}^{-1} = \begin{bmatrix}
a^{-1} & -6a \\
0 & 1
\end{bmatrix}, \text{ so}
\]

\[
(*) \quad \begin{bmatrix}
a & 6 \\
0 & 1
\end{bmatrix}^{-1} \begin{bmatrix}
x & y \\
0 & 1
\end{bmatrix} \begin{bmatrix}
a & 6 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
a^{-1} & -6a \\
0 & 1
\end{bmatrix} \begin{bmatrix}
x & 0 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
x & \frac{ya^{-1} + \frac{1}{2}a(2x)}{a} \\
0 & 1
\end{bmatrix}.
\]

This shows that, for every \(x \neq 1 \),

\[C_x = \left\{ \begin{bmatrix} x & y \\ 0 & 1 \end{bmatrix} \mid y \in \mathbb{R} \right\} \]

is a single conjugacy class. Indeed, our computation shows that if \(g \in C_x \),
then any conjugate of \(g \) lies in \(C_x \), too.

Moreover, \((*) \) shows — by taking

\[6 = \frac{-y}{(x-1)} \]

that any element of \(C_x \) is conjugate to \(\begin{bmatrix} x & 0 \\ 0 & 1 \end{bmatrix} \), so any two elements of \(C_x \) are conjugate.

For \(x = 1 \), we see similarly that

\[C_1 = \left\{ \begin{bmatrix} 1 & y \\ 0 & 1 \end{bmatrix} \mid y \in \mathbb{R}, y \text{ nonzero} \right\} \]

is a conjugacy class. Finally, \(\left\{ \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\} \)

is a conjugacy class; together with the \(C_x \),
this gives all conjugacy classes.
7a) Let \(Z \) be the center of \(G \).

Firstly, \(Z \) is a subgroup:
- \(e \in Z \), since \(eg = ge = g \) for all \(g \in G \);
- if \(x \in Z \), then \(x^{-1} \in Z \), since
 \[x^{-1}g = (g^{-1}x)^{-1} = (xg^{-1})^{-1} = gx^{-1} \]
- if \(x, y \in Z \) then \(xy \in Z \) for all \(g \in G \)
 \[(xy)g = x(yg) = x(gy) = (gx)y \]
 \[y \in Z \quad x \in Z = g(xy). \]

Then, \(Z \) is normal:
- if \(g \in G \) and \(z \in Z \),
 \[gzg^{-1} = (zg)g^{-1} = z \in Z, \]
 \[z \in Z \]

6) Center \((D_n) \) is \(\{e\} \) if \(n \) odd
 and \(\{e, \text{rotn by 180°}\} \) if \(n \) even.

8. omitted

9a) If \(A, B \) are groups, the direct product group \(A \times B \) has as elements pairs \((a, b) \) with \(a \in A, b \in B \)
 and has group law:
 \[(a, b) \circ (a', b') = (aa', bb') \]
S_5 isn't isomorphic to $A_5 \times \mathbb{Z}_2$:

In $A_5 \times \mathbb{Z}_2$, the element $(12345, 1)$ has order 10. But S_5 has no elements of order 10.

orbital = T, stabilizer = \{e, (12), (34), (2)(34)\}

10. @ They are: 6
 \{e\},
 \{rotations through a face axis by 90°\},
 \{rotations through face axis by 180°\},
 \{rotations through edge-axis by 180°\},
 \{rotations through vertex axis by 120° (diagonal)\}

Since G is generated by these all elements, we have proved that $G \cong S_4$ (via permuting diagonals) and S_4 is generated by transpositions.

Under the isomorphism of S_4 with G, transpositions correspond to edge-axis rotations by 180°. These act on the eight vertices as a product of 4 transpositions, so have even sign.