Revised version: The first version had a few questions that were a bit too hard.

Notation: \mathbb{Z}_m denotes the integers modulo m under addition.

1. Give examples of each of the following. No proof or justification is necessary:
 (a) A group which is not cyclic;
 (b) A subgroup which is not normal;
 (c) A homomorphism which is not an isomorphism;
 (d) A normal subgroup of S_4, besides A_4.

2. Let $G = \{1, 2, \ldots, 12\}$ with group law multiplication modulo 13.
 (a) Prove that G is cyclic, and find a generator.
 (b) How many homomorphisms from G to the group \mathbb{Z}_6? No proof is necessary.

3. (a) Suppose that G is a finite group with the property that the only subgroups of G are \{e\} and G. Prove that G is cyclic of prime order. (Hint: To prove that G is cyclic, consider the subgroup generated by an element $g \in G$.)
 (b) Suppose A is a normal subgroup and B any subgroup. Prove that $AB = \{ab : a \in A, b \in B\}$ is a subgroup of G.

4. Consider the permutations $x = (1234567)$ and $y = (124)(365)$, considered as elements of S_7.
 (a) Show that $yxy^{-1} = x^2$, that x has order 7, and y has order 3.
 (b) Define “the group generated by x and y.” Show that this group has order ≥ 21.

5. (a) Compute the inverse of 37 in the multiplicative group of integers modulo 96.
 (b) Let G be the group of integers $\{1, 2, 3, \ldots, 96\}$ under multiplication modulo 97. Find $x \in G$ such that $x^{37} = 2$ in G.
 Clearly describe your method: you will get liberal partial credit even if there are computational errors.

6. Consider the collection of all 2×2 matrices of the form $A = \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}$, where a and b are real numbers and $a \neq 0$.
 (a) Prove that A forms a subgroup of GL_2. Is this subgroup normal? (no proof is needed for the second question)
 (b) Describe the conjugacy classes of A.

7. The center of a group G is the set $\{z \in G : zg = gz\}$ for every $g \in G$.
 (a) Prove that the center of G is a normal subgroup.
 (b) What is the center of D_n? (No proof is needed.)

8. Let $\alpha = (142356)$ and $\beta = (765432)$, both considered as elements of A_7.
 (a) Compute $\alpha \beta$ and $\beta \alpha$.
 (b) Prove that α is conjugate to β inside A_7.

9. (a) Define the direct product of two groups. Prove that S_5 isn’t isomorphic to $A_5 \times \mathbb{Z}/2$.

1
(b) Let T be the set of transpositions in S_4, and let S_4 act on T via the homomorphism $\varphi : S_4 \to \text{Sym}(T)$ given by
\[\varphi(g)(t) = gtg^{-1}, \]
where $g \in S_4$ and t is a transposition. Find the orbit and stabilizer of (12).

(10) (a) Let G be the group of rotations that preserve a cube. Describe the conjugacy classes of G.

 (b) Each element of g permutes the eight vertices of the cube. Prove that the sign of the resulting permutation is always 1.