Revised version: The first version had a few questions that were a bit too hard.
Notation: \mathbf{Z}_{m} denotes the integers modulo m under addition.
(1) Give examples of each of the following. No proof or justification is necessary:
(a) A group which is not cyclic;
(b) A subgroup which is not normal;
(c) A homomorphism which is not an isomorphism;
(d) A normal subgroup of S_{4}, besides A_{4}.
(2) Let $G=\{1,2, \ldots, 12\}$ with group law multiplication modulo 13.
(a) Prove that G is cyclic, and find a generator.
(b) How many homomorphisms from G to the group \mathbf{Z}_{6} ? No proof is necessary.
(3) (a) Suppose that G is a finite group with the property that the only subgroups of G are $\{e\}$ and G. Prove that G is cyclic of prime order. (Hint: To prove that G is cyclic, consider the subgroup generated by an element $g \in G$.)
(b) Suppose A is a normal subgroup and B any subgroup. Prove that $A B=\{a b: a \in A, b \in B\}$ is a subgroup of G.
(4) Consider the permutations $x=(1234567)$ and $y=(124)(365)$, considered as elements of S_{7}.
(a) Show that $y x y^{-1}=x^{2}$, that x has order 7 , and y has order 3 .
(b) Define "the group generated by x and y." Show that this group has order ≥ 21.
(5) (a) Compute the inverse of 37 in the multiplicative group of integers modulo 96.
(b) Let G be the group of integers $\{1,2,3, \ldots, 96\}$ under multiplication modulo 97 . Find $x \in G$ such that $x^{37}=2$ in G.

Clearly describe your method: you will get liberal partial credit even if there are computational errors.
(6) Consider the collection of all 2×2 matrices of the form $A=\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right)$, where a and b are real numbers and $a \neq 0$.
(a) Prove that A forms a subgroup of GL_{2}. Is this subgroup normal? (no proof is needed for the second question)
(b) Describe the conjugacy classes of A.
(7) The center of a group G is the set $\{z \in G: z g=g z\}$ for every $g \in G$.
(a) Prove that the center of G is a normal subgroup.
(b) What is the center of D_{n} ? (No proof is needed.)
(8) Let $\alpha=(142356)$ and $\beta=(765432)$, both considered as elements of A_{7}.
(a) Compute $\alpha \beta$ and $\beta \alpha$.
(b) Prove that α is conjugate to β inside A_{7}.
(9) (a) Define the direct product of two groups. Prove that S_{5} isn't isomorphic to $A_{5} \times \mathbf{Z} / 2$.
(b) Let T be the set of transpositions in S_{4}, and let S_{4} act on T via the homomorphism $\varphi: S_{4} \rightarrow \operatorname{Sym}(T)$ given by

$$
\varphi(g)(t)=g t g^{-1}
$$

where $g \in S_{4}$ and t is a transposition. Find the orbit and stabilizer of (12).
(10) (a) Let G be the group of rotations that preserve a cube. Describe the conjugacy classes of G.
(b) Each element of g permutes the eight vertices of the cube. Prove that the sign of the resulting permutation is always 1 .

