Revised version: The first version had a few questions that were a bit too hard. Notation: \mathbf{Z}_m denotes the integers modulo m under addition.

- (1) Give examples of each of the following. No proof or justification is necessary:
 - (a) A group which is not cyclic;
 - (b) A subgroup which is not normal;
 - (c) A homomorphism which is not an isomorphism;
 - (d) A normal subgroup of S_4 , besides A_4 .
- (2) Let G = {1,2,...,12} with group law multiplication modulo 13.
 (a) Prove that G is cyclic, and find a generator.

(b) How many homomorphisms from G to the group \mathbb{Z}_6 ? No proof is necessary.

(3) (a) Suppose that G is a finite group with the property that the only subgroups of G are $\{e\}$ and G. Prove that G is cyclic of prime order. (Hint: To prove that G is cyclic, consider the subgroup generated by an element $g \in G$.)

(b) Suppose A is a normal subgroup and B any subgroup. Prove that $AB = \{ab : a \in A, b \in B\}$ is a subgroup of G.

(4) Consider the permutations x = (1234567) and y = (124)(365), considered as elements of S_7 .

(a) Show that $yxy^{-1} = x^2$, that x has order 7, and y has order 3.

(b) Define "the group generated by x and y." Show that this group has order ≥ 21 .

(5) (a) Compute the inverse of 37 in the multiplicative group of integers modulo 96.

(b) Let G be the group of integers $\{1, 2, 3, ..., 96\}$ under multiplication modulo 97. Find $x \in G$ such that $x^{37} = 2$ in G.

Clearly describe your method: you will get liberal partial credit even if there are computational errors.

(6) Consider the collection of all 2 × 2 matrices of the form $A = \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}$,

where a and b are real numbers and $a \neq 0$.

- (a) Prove that A forms a subgroup of GL_2 . Is this subgroup normal? (no proof is needed for the second question)
 - (b) Describe the conjugacy classes of A.
- (7) The center of a group G is the set {z ∈ G : zg = gz} for every g ∈ G.
 (a) Prove that the center of G is a normal subgroup.
 - (b) What is the center of D_n ? (No proof is needed.)
- (8) Let α = (142356) and β = (765432), both considered as elements of A₇.
 (a) Compute αβ and βα.
 - (b) Prove that α is conjugate to β inside A_7 .
- (9) (a) Define the direct product of two groups. Prove that S_5 isn't isomorphic to $A_5 \times \mathbf{Z}/2$.

(b) Let T be the set of transpositions in S_4 , and let S_4 act on T via the homomorphism $\varphi: S_4 \to \text{Sym}(T)$ given by

$$\varphi(g)(t) = gtg^{-1},$$

where $g \in S_4$ and t is a transposition. Find the orbit and stabilizer of (12).

(10) (a) Let G be the group of rotations that preserve a cube. Describe the conjugacy classes of G.

(b) Each element of g permutes the eight vertices of the cube. Prove that the sign of the resulting permutation is always 1.