
Homework 8 solutions.

Problem 16.1. Which of the following define homomomorphisms from C \ {0} to
C \ {0}?

Answer. a) f1 : z → z∗

Yes, f1 is a homomorphism. We have that z∗ is the complex conjugate of
z. If z1, z2 are two complex numbers, then (z1z2)

∗ = z∗1z
∗

2 . This is exactly the
statement that f1(z1z2) = f1(z1)f1(z2).

b) f2 : z → z2

This is also a homomorphism. Note that if z1, z2 ∈ C \ {0} then (z1z2)
2 =

z21z
2
2 , which is exactly the statement that f2(z1z2) = f2(z1)f2(z2).

c) f3 : z → iz
This is not a homomorphism. If z1, z2 ∈ C \ {0} then f3(z1z2) = iz1z2 while

f3(z1)f3(z2) = iz1iz2 = −z1z2.
d) f4 : z → |z|

This is a homomorphism. If z1, z2 ∈ C \ {0} then |z1z2| = |z1||z2|, which is
exactly the statement that f4(z1z2) = f4(z1)f4(z2).

�

Problem 16.2. Do any of the following determine homomorphisms from GLn(C)
to GLn(C)?

Proof. a) A → At

This is not a homomorphism because if A,B ∈ GLn(C), then (AB)t = BtAt,
and matrices in GLn(C) do not commute. So if we choose any two matrices for
which AB 6= BA, we would get that AtBt 6= BtAt.

b) A → (A−1)t

This is a homomorphism because if A,B ∈ GLn(C), then ((AB)−1)t =
(B−1A−1)t = (A−1)t(B−1)t.

c) A → A2

This is not a homomorphism because matrices don’t commute. That is, if
A,B ∈ GLn(C), then (AB)2 = ABAB. This is the same as A2B2 iff AB = BA.
So for any choice of non-commuting A,B we see that the map fails to satisfy
the homomorphism condition.

d) A → A∗

This is a homomorphism. To see this, note that if a, b, c, d are four complex
numbers, then (ab+ cd)∗ = a∗b∗ + c∗d∗. Thus if A,B ∈ GLn(C), then (AB)∗ =
A∗B∗ because the entries of AB are just sums and multiples of the entries of A
and B. And this is exactly the formula that means the map is a homomorphism.

�

Problem 16.8. Show that a function φ : G → G′ is a homomorphism if and only
if {(g, φ(g)) | g ∈ G} is a subgroup of G×G′.

Proof. Let G,G′ be two groups. Suppose some function φ : G → G′ is a homomor-
phism, and consider the subset H = {(g, φ(g)) | g ∈ G} of G × G′. We show that
H is a subgroup by verifying the following properties.

Closed under multiplication: Suppose (g, φ(g)) and (h, φ(h)) are elements
of H. Then

(g, φ(g))(h, φ(h)) = (gh, φ(g)φ(h))
1
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But φ is a homomorphism, so φ(g)φ(h) = φ(gh). So in fact

(g, φ(g))(h, φ(h)) = (gh, φ(gh))

Thus (g, φ(g))(h, φ(h)) ∈ H, so H is closed under multiplication.
Identity: Since φ is a homomorphism, φ(e) = e′ where e is the identity of G

and e′ is the identity of G′. Thus (e, e′) is in H. Since (e, e′) is the identity
in G×G′, the identity is in H.

Inverses: Since φ is a homomorphism, φ(g−1) = (φ(g))−1. Thus if (g, φ(g)) ∈
H then (g−1, (φ(g))−1) ∈ H. But (g−1, (φ(g))−1) is the inverse of (g, φ(g))
in G×G′. So H has inverses.

Associativity: Since H is a subset of the group G × G′, its elements are
associative because elements of G×G′ are associative.

Therefore if φ is a homomorphism then H is a group.
Now suppose φ : G → G′ is just some map for which the set H = {(g, φ(g)) | g ∈

G} is a subgroup of G×G′. We need to show that φ is actually a homomorphism.
To check this, we need to show that for any two elements g, h ∈ G we have that
φ(gh) = φ(g)φ(h).

So choose two elements g, h in G. From the way that H is defined, we know that
(g, φ(g)) and (h, φ(h)) are in H. Since H is a group, we know that their product
is also in H. So the element (g, φ(g))(h, φ(h)) = (gh, φ(g)φ(h)) is in H. But the
only element of H with gh in the first coordinate is the element (gh, φ(gh)). That
is because each element of G appears as the first entry in exactly one element of
H. So we must have that (gh, φ(gh)) = (gh, φ(g)φ(h)). But that means exactly
that φ(gh) = φ(g)φ(h). Therefore, if H is a subgroup of G × G′ then φ is a
homomorphism. So we are done. �

Problem 17.1. Let G be the subgroup of S8 generated by (123)(45) and (78).
Then G acts as a group of permutations of the set X = {1, 2, . . . , 8}. Calculate the
orbit and stabilizer of every integer in X.

Proof. Note that the permutations α = (123)(45) and β = (78) are disjoint. In
fact, α permutes the numbers 1 though 5 amongst themselves, and β permutes the
numbers 7 and 8. Since neither α nor β move the number 6, the orbit of 6 is just
{6}. Since β takes 7 to 8 and 8 back to 7, the orbit of both 7 and 8 is the set {7, 8}.
Finally, α is the product of two disjoint cycles. So the set {1, 2, 3} is one orbit, and
the set {4, 5} is another orbit.

To compute stabilizers, note that since α and β are disjoint, every element of
G can be written as a power of α times a power of β. An element αnβm leaves a
number i fixed iff αn(i) = i and βm(i) = i. So every element of G leaves 6 fixed.
Only powers of β leave the numbers 1 through 5 fixed, and only powers of α leave
the numbers 6 and 7 fixed. So the stabilizer of the numbers 1 though 5 is the
subgroup generated by β, the stabilizer of 6 is G and the stabilizer of the numbers
6 and 7 is the subgroup generated by α. �

Problem 17.2. The infinite dihedral group D∞ acts on the real line in a natural
way (see Chapter 5). Work out the orbit and the stabilizer of each of the points 1,
1
2 ,

1
3 .

Answer. Recall that D∞ is generated by the functions t : R → R s.t. t(x) = x+ 1
and s : R → R s.t. s(x) = −x. Every element of D∞ can be written as sitn where
i = 0, 1 and n ∈ Z. Recall further that tn(x) = x + n (for any n ∈ Z, so n can be
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negative) and stn(x) = −x − n. Translations of the form tn move every number,
so they cannot be in the stabilizer of any number. The reflection stn moves every
number except for the x that satisfies x = stn(x). That is, stn moves every number
except the x s.t. x = −x− n. We compute that this x is −n/2.

Orbit of 1: The set of all integers. Since elements of D∞ send integers to
integers, the orbit of 1 is at most the set of all integers. Since tn(1) = n+1,
all integers are in fact in the orbit of 1.

Stabilizer of 1: From the general discussion at the beginning of this solution,
we see that the only elements that fix 1 are the identity e and the reflection
st−2. So the stabilizer of 1 is < st−2 >= {e, st−2}.

Orbit of 1/2: All numbers of the form n+ 1/2 for n ∈ Z. To see this, note
that tn(1/2) = 1/2 + n and stn(1/2) = −1/2 − n. Both of these can be
written as m+ 1/2 for some integer m.

Stabilizer of 1/2: Again, referring to the paragraph at the beginning of the
answer, we see that the only elements of D∞ that fix 1/2 are the identity
e and the reflection st−1. So the stabilizer of 1/2 is the group < st−1 >=
{e, st−1}.

Orbit of 1/3: All number of the form n + 1/3 and n + 2/3 for n ∈ Z. To
see this, note that tn(1/3) = 1/3 + n and stn(1/3) = −1/3 − n which can
be rewritten as stn(1/3) = −n − 1 + 2/3 where n and −n − 1 can be any
integer.

Stabilizer of 1/3: The only element of D∞ that fixes 1/3 is the identity e
since 1/3 cannot be written as n/2 for any integer n. So the stabilizer of
1/3 is {e}.

�

Problem 17.3. Identify S4 with the rotational symmetry group of a cube as in
Chapter 8, and consider the action of A4 on the set of vertices of the cube. Find
the orbit and the stabilizer of each vertex.

Proof. Let G be the rotational symmetry group of a cube. We identify G with S4

as follows. Given vertex v on a cube C, let v′ be the vertex of C farthest away from
v. Then the line segment with endpoints v and v′ is called a principal diagonal. C
has four such principal diagonals. Since the rotations of a cube preserve distance,
a rotations r will send the farthest vertex from v to the farthest vertex from r(v).
So rotations permute the principal diagonals. Numbering the diagonals 1 through
4, we get that each permutation of the diagonals corresponds to a permutation of
the numbers 1 through 4.

So we get the isomorphism

φ : G → S4

that maps a rotation to the corresponding permutation of the numbers 1 through
4.

Let di be the i
th diagonal, and number its endpoints i and i′, so that the vertices

of the cube are either numbered i or i′ for some i = 1, 2, 3, 4.
Now a rotation of a cube can have one of three types of axes of symmetry. There

are axes that go through the centers of opposite faces of C, axes that go through the
centers of opposite edges, and axes that go through the centers of opposite vertices.
(Here, “opposite” means “farthest away”.)
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Rotations through axes going through opposite faces correspond to powers of
4-cycles. A 4-cycle is not in A4, but the square of a 4-cycle is a permutation of
type (2,2), which is in A4. Rotations through axes going through opposite edges
correspond to 2-cycles. So these rotations do not get mapped to A4. The rotations
which axes that go through opposite vertices correspond to 3-cycles, which are in
A4.

So we just need to consider the action of two types of rotations. Type 1: rotations
of 180o about axes going through pairs of faces, and Type 2: rotations of 120o and
240o about axes going through vertices.

There are 3 axes that go through opposite faces. See Figure 1. Rotations of 180o

about these axes correspond to the elements (12)(34), (13)(24) and (14)(23). We see
that (12)(34) (which is rotation about the axes on the left) corresponds to the per-
mutation (12′)(1′2)(34′)(3′4) of the vertices. Next, (13)(24) corresponds to the per-
mutation (13)(24)(1′3′)(2′4′). Finally, (14)(23) corresponds to (1′4)(14′)(23′)(2′3).
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Figure 1. Three axes of type 1. Rotations by 180o correspond to
elements of A4.

Next, there are 4 axes of type 2, and each one corresponds to a distinct 3-cycle
in A4. In the permutation group of the vertices, they correspond to products of 2
disjoint 3-cycles. For example, the 3-cycle (123) in A4 corresponds to (12′3)(1′23).
The 3-cycle (132) is just the square of (123), so the corresponding element in the
permutation group of the vertices is just the square of (12′3)(1′23). Thus we only
need to give the elements in the permutation group of the vertices that correspond
to the 3-cycles (134), (234) and (124). The remaining 3-cycles are just the squares
of these, so the corresponding permutations of the vertices will just be squares
as well. The permutation corresponding to (134) is (134′)(1′34), the permutation
corresponding to (234) is (23′4)(2′34′) and the permutation corresponding to (124)
is (1′24)(12′4′). See Figure 2 below for an illustration of the axes of rotation of
type 2.

�

Problem 17.4. Given the action of G on a set, show that every point of some
orbit has the same stabilizer if and only if this stabilizer is a normal subgroup of
G.

Proof. Suppose G acts on a set X. Let O = {x1, . . . , xn} be an orbit of the action.
Suppose the stabilizer of each of the xi is the same group H. We need to show that
H is normal.

So let h be an element of H, and let g be any other element of G. Consider the
action of ghg−1 on an element xi. We know that g−1 · xi is some other element
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Figure 2. Four axes of type 2. Rotations by 120o, 240o corre-
spond to elements of A4.

xj in O. Then h is in the stabilizer of every element of O, so h · xj = xj . Finally,
g−1 · xj = xi by the properties of an action. So ghg−1 · xi = xi. Therefore if h
is in the stabilizer of xi, so is ghg−1. Since the stabilizer of xi is H, we have that
gHg−1 = H, so H is normal.

Now suppose O = {x1, . . . , xn} is an orbit of the action of G on X. Let S(xi)
be the stabilizer of xi. We need to show that if S(xi) is normal for all i then all of
the S(xi) are the same.

Let gi be an element of G for which gi · xi = x1. There is such an element of
g since x1, xi are in the same orbit. Suppose h ∈ S(x1). Then gihg

−1
i is in S(x1)

since S(x1) is normal. So

gihg
−1
i · x1 = x1

But g−1
i ·x1 = xi by the properties of an action. So that formula really means that

gih · xi = x1.

Multiplying both sides by g−1
i we get that h · xi = g−1

i · xi. But this just means
that

h · xi = xi

So h, which was in S(x1), is also an element of S(xi). Thus S(x1) ≤ S(xi). Since we
only used that S(x1) is normal, and since S(xi) is also normal, the same reasoning
also gives us that S(xi) ≤ S(x1). So all of the S(xi) are equal. �

Problem 17.5. If G acts on X and H acts on Y prove that G×H acts on X × Y
via

(g, h)(x, y) = (g(x), h(y))

Check that the orbit of (x, y) is G(x)×H(y) and that its stabilizer is Gx×Hy. We
shall call this action the product action of G×H on X × Y .

Proof. G×H acts on X ×Y if for any two elements (g, h), (g′, h) ∈ G×H and any
element (x, y) ∈ X × Y we have that

(

(g, h)(g′, h)
)

· (x, y) = (g, h) ·
(

(g′, h) · (x, y)
)

and if the identity (e, f) acts on any (x, y) ∈ X×Y trivially, so (e, f)·(x, y) = (x, y).
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The first condition holds because
(

(g, h)(g′, h)
)

· (x, y) = (gg′, hh′) · (x, y)

= ((gg′) · x, (hh′) · y)

= (g · (g′ · x), h · (h′ · y)) because G,H act on X,Y

= (g, h) · (g′ · x, h′ · y)

= (g, h) ·
(

(g′, h) · (x, y)
)

The second condition holds because the identity in G×H is (e, f) where e is the
identity in G and f is the identity in H. So (e, f) · (x, y) = (e · x, f · y) and this is
just (x, y) since G,H act on X,Y . Thus we have shown that G×H acts on X×Y .

Let G(x), H(y) be the orbits of x, y in G,H, respectively. Then the orbit of
(x, y) in G × H is the set G × H(x, y) = {(g, h) · (x, y)}. This is exactly the set
{(g · x, h · y) | g ∈ G, h ∈ H}. Thus G×H(x, y) = G(x)×H(y).

Let Gx, Hy be the stabilizers of x, y in G,H, respectively. Then the stabilizer in
G ×H of (x, y) is just the set G ×H(x,y) = {(g, h) | (g, h) · (x, y) = (x, y)}. This
is exactly the set {(g, h) | (g · x, h · y) = (x, y)}. Note that (g · x, h · y) = (x, y) iff
gcdotx = x and h · y = y. Thus the stabilizer of (x, y) is just Gx ×Hy. �

Problem 17.10. Let x be an element of a group G. Show that the elements of G
which commute with x form a subgroup of G. This subgroup is called the centralizer
of x and written C(x). Prove that the size of the conjugacy class of x is equal to
the index of C(x) in G. If some conjugacy class contains precisely two elements,
show that G cannot be a simple group.

Proof. Let C(x) denote the set of elements of G that commute with x. We first
need to show that this is a group. The set is closed under multiplication because
if g, h commute with x then (gh)x = g(xh) = x(gh), so gh commutes with x. The
identity is in C(x) because the identity commutes with everything. If hx = xh,
then multiplying both sides by h−1 on the right and on the left gives us that
xh−1 = h−1x, so h−1 ∈ C(x). Lastly, C(x) is associative because any subset of the
group G is associative. Therefore C(x) is a subgroup of G.

The index of C(x) is the number of cosets of C(x). Suppose {C(x), g1C(x), . . . ,
gnC(x)} is the set of distinct cosets. Say C(x) = g0C(x) where g0 is the identity.
That way, all the cosets are of the form giC(x) for some i. Now suppose gi, g

′

i are
two elements of giC(x). Then gi = g′ih where h ∈ C(x). So

gixg
−1
i = (g′ih)x(h

−1g−1
i )

= g′ixg
′−1
i

since h commutes with x. So all elements of giC(x) conjugate x to the same number.
Thus x has at most as many elements in its conjugacy class as C(x) has cosets.

We will show that each gi conjugates x to a different number. Suppose not.
That is, suppose giC(x) 6= gjC(x) but gixg

−1
i = gjxg

−1
j . Then manipulating this

equation gives us that g−1
j gix = xg−1

j gi. But this means exactly that g−1
j gi ∈ C(x).

Recall from a previous problem set that in this case, giC(x) = gjC(x). This
contradicts our assumption to the contrary, so we have that all elements of the
form gixg

−1
i are distint. Therefore, C(x) has exactly as many cosets as x has

elements in its conjugacy class. That means that the size of the conjugacy class of
x is the index of its centralizer.
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Suppose that there is an x whose conjugacy class has exactly two elements. That
means the C(x) has index 2. But all index 2 subgroups of a group are normal. So
G has a proper normal subgroup (that is neither {e} nor G.) That means G cannot
be simple. �


