Homework 6 solutions.

Problem 14.1. Work out the conjugacy classes of D_{5}.
Answer. We have that

$$
D_{5}=\left\{e, r, r^{2}, r^{4}, s, s r, s r^{2}, s r^{3}, s r^{4}\right\}
$$

The conjugacy class of e is just $\{e\}$. To find the conjugacy class of r^{n}, note that when we conjugate r^{n} by r^{m} we get

$$
r^{m} r^{n} r^{-m}=r^{n} \quad \forall m
$$

and when we conjugate r^{n} by $s r^{m}$ we get

$$
\begin{aligned}
s r^{m} r^{n} s r^{m} & =s r^{m} s r^{-n} r^{m} \\
& =s s r^{-m} r^{-n} r^{m} \\
& =r^{-n} \quad \forall m
\end{aligned}
$$

(Note that since each reflection $s r^{m}$ has order $2,\left(s r^{m}\right)^{-1}=s r^{m}$.) Thus the conjugacy class of each r^{n} contains r^{n} and r^{-n}. In the case of D_{5}, this gives us the classes

$$
\left\{r, r^{4}\right\},\left\{r^{2}, r^{3}\right\}
$$

To find the conjugacy class of s, we compute that when we conjugate s by r^{m} we get

$$
r^{m} s r^{-m}=s r^{-2 m} \quad \forall m
$$

and when we conjugate s by $s r^{m}$ we get

$$
s r^{m} s s r^{-m}=s \quad \forall m
$$

Since m can be $1,2,3$ or $4,2 m$ is either $2,4,1$ or 3 since we have to take $2 m \bmod 5$. Thus all the reflections form a single conjugacy class

$$
\left\{s, s r, s r^{2}, s r^{3}, s r^{4}\right\}
$$

Since all of the reflections are in this conjugacy class, we don't need to compute the conjugacy class of any of the other reflections. Therefore D_{5} has the 4 conjugacy classes listed above.

Problem 14.4. Calculate the number of different conjugacy classes in S_{6} and write down a representative permutation for each class. Find an element $g \in S_{6}$ such that

$$
g(123)(456) g^{-1}=(531)(264)
$$

Show that $(123)(456)$ and $(531)(264)$ are conjugate in A_{6}, but (12345)(678) and $(43786)(215)$ are not conjugate in A_{8}.

Proof. There is exactly one conjugacy class for each cycle structure of elements in S_{6}. Thus there are 11 conjugacy types. They can be represented by the following elements
$e,(12),(123),(1234),(12345),(123456),(12)(34),(123)(45),(1234)(56),(123)(456),(12)(34)(56)$
We will find a $g \in A_{6}$ for which $g(123)(456) g^{-1}=(531)(264)$. Note that since (541) and (264) are disjoint, we get that $(531)(264)=(264)(531)$. Since

$$
g(123)(456) g^{-1}=(g(1) g(2) g(3))(g(4) g(5) g(6))
$$

we will find a g for which $g(1)=2, g(2)=6, g(3)=4, g(4)=5, g(5)=3, g(6)=1$. Such a g is $(126)(345)$. Since this is a product of two 3 -cycles, which are even, g is an even permutation, so $g \in A_{6}$. Thus (123)(456) and (531)(264) are conjugate in A_{6}.

Next we will show that $(12345)(678)$ and $(43786)(215)$ are not conjugate in A_{8}. Note that they are indeed conjugate in S_{8}. That is, there a g for which

$$
\begin{aligned}
g(12345)(678) g^{-1} & =(g(1) g(2) g(3) g(4) g(5))(g(6) g(7) g(8)) \\
& =(43786)(215)
\end{aligned}
$$

For instance, such a g is (14856237). But this g is an 8 -cycle, which is not in A_{8}. Suppose there is some h in A_{8} for which they are conjugate. Let $\alpha=(12345)(678)$ and let $\beta=(43786)(215)$. Then $h \alpha h^{-1}=\beta$ and $g \alpha g^{-1}=\beta$. Thus, we get that $h \alpha h^{-1}=g \alpha g^{-1}$. Manipulating this equation, we get that $g^{-1} h \alpha\left(g^{-1} h\right)^{-1}=\alpha$. That is, the element $g^{-1} h$ commutes with α. Now if h were in A_{8}, then h would be an even permutation. Since g is odd, we would get $g^{-1} h$ is an odd permutation. So such an h can only exist if there is an odd permutation that commutes with α.

Suppose there is an odd element f for which

$$
\begin{aligned}
f(12345)(678) f^{-1} & =(f(1) f(2) f(3) f(4) f(5))(f(6) f(7) f(8)) \\
& =(12345)(678)
\end{aligned}
$$

Note that $f(12345)(678) f^{-1}$ contains one 3 -cycle and one 5 -cycle. The 5 -cycle must be (12345) and the 3 -cycle must then be (678). Thus $f(1)$ must be $1,2,3,4$ or 5 . If $f(1)=i$ then $f(2)$ must be $i+1, f(3)$ must be $i+2$ and so on, where indices are taken $\bmod 5$. For instance, if $f(1)=2$, then $f(2)=3$ and so on so f contains the 5 -cycle (12345). In fact, f must contain a five cycle that is some power of (12345). Likewise, f must contain a 3 -cycle that is some power of (678). So f is the product of a power of a three cycle and a power of a five cycle. Since all powers of 3 - and 5 -cycles are even, f is the product of even permutation. Thus f is even. So the only elements of S_{8} that commute with α are even permutation. That is, there are no odd permutations that commute with α. So there can be no odd permutation h for which $g^{-1} h$ commutes with α, since g is even. Therefore α and β are not conjugate in A_{8}.

Problem 14.5. Prove that the 3 -cycles in A_{5} form a single conjugacy class. Find two 5 -cycles in A_{5} which are not conjugate in A_{5}.

Proof. To show that the 3 -cycles in A_{5} form a single conjugacy class, we just need to show that they are all conjugate to (123). That is, for any 3 -cycle ($a b c$) we need find a $g \in A_{5}$ for which $g(a b c) g^{-1}=(123)$.

Let $g_{0}=(1 a)(2 b)(3 c)$. Then g_{0} satisfies the equation $g_{0}(a b c) g_{0}^{-1}=(123)$. If g_{0} is even, we are done. If g_{0} is odd, we will find an odd permutation x for which $x(a b c) x^{-1}=x$. Then we would get $g_{0} x(a b c) x^{-1} g_{0}^{-1}=g_{0}(a b c) g_{0}^{-1}=(123)$. So setting $g=g_{0} x$ we would note that g is even since g_{0}, x are both odd, and that $g(a b c) g^{-1}=(123)$.

In fact, A_{5} permutes 5 numbers, and a, b, c are just three of them. So there are two other numbers d, f in the set $\{1,2,3,4,5\}$ that are not equal to a, b or c. Thus $(a b c)$ and (d, f) are disjoint cycles, so they commute. Then let $x=(d f)$. We have that x is an odd permutation, so the above argument holds.

Therefore, for any 3 -cycle ($a b c$) we can always find an even permutation g for which $g(a b c) g^{-1}=(123)$. So all three cycles are conjugate in A_{5}.

On the other hand, the 5 -cycles (12345) and (12354) are not conjugate in A_{5}. To see this, let $\alpha=(12345)$ and let $\beta=(12354)$. Then if $g=(45)$ we get that $g \alpha g^{-1}=\beta$. Note that g is an odd permutation, so g is not in A_{5}. By the same argument we made for Problem 14.4, if h were another permutation for which $h \alpha h^{-1}=\beta$ then the element $g^{-1} h$ would commute with α. Since g is odd, if h were in A_{5} then $g^{-1} h$ would be odd.

The only elements that commute with a 5 -cycle are powers of that 5 -cycle. To see this, suppose we had an f for which

$$
\begin{aligned}
f(12345) f^{-1} & =(f(1) f(2) f(3) f(4) f(5)) \\
& =(12345)
\end{aligned}
$$

Then by the same reasoning as in Problem 14.4, we would get that if f sent 1 to i then f must send 2 to $i+1$ and so on, meaning that f is a power of (12345). In fact, $f=(12345)^{i-1}$. But all powers of (12345) are even permutations. So only even permutations commute with (12345). That means there is no even permutation h for which $h \alpha h^{-1}=\beta$. So α and β are not conjugate in A_{5}.

Problem 15.2. Find all normal subgroups of D_{4} and D_{5}.
Proof. Note that if H is a normal subgroup of a group G, and $h \in H$ then the entire conjugacy class of h must be in H. We have already computed the conjugacy classes of D_{5} to be $\{e\},\left\{r, r^{4}\right\},\left\{r^{2}, r^{3}\right\}$ and $\left\{s, s r, s r^{2}, s r^{3}, s r^{4}\right\}$. To compute the conjugacy classes in D_{4}, note that the formulae for conjugating rotations and reflections that we computed for D_{5} in problem 14.1 hold for D_{4} as well. So we get that for rotations r^{n},

$$
\begin{gathered}
r^{m} r^{n} r^{-m}=r^{n} \quad \forall m \\
s r^{m} r^{n} s r^{-m}=r^{-n} \quad \forall m
\end{gathered}
$$

and for the reflection s,

$$
\begin{gathered}
r^{m} s r^{-m}=s r^{-2 m} \quad \forall m \\
s r^{m} s s r^{-m}=s \quad \forall m
\end{gathered}
$$

So we get that in D_{4} the rotations are in a conjugacy class with their inverses giving us $\left\{r, r^{3}\right\}$ and $\left\{r^{2}\right\}$. And we get that s is in a conjugacy class with reflections of the form $s r^{2 m}$. Thus we get the conjugacy class $\left\{s, s r^{2}\right\}$. Doing the above computation for $s r$ we see that in fact $s r$ is conjugate to $s r^{3}$. Thus the conjugacy classes of D_{4} are

$$
\{e\},\left\{r, r^{3}\right\},\left\{r^{2}\right\},\left\{s, s r^{2}\right\},\left\{s r, s r^{3}\right\}
$$

We have already computed all the subgroups of D_{4} and D_{5} in Homework 2. So the subgroups of D_{4} that contain entire conjugacy classes are as follows. Note that these are the normal subgroups of D_{4}.

$$
\begin{gathered}
\{e\},<r>=\left\{e, r, r^{2}, r^{3}\right\},<r^{2}>=\left\{e, r^{2}\right\},<r, s>=D_{4} \\
\quad<r^{2}, s>=\left\{e, s, r^{2}, s r^{2}\right\},<r^{2}, s r>=\left\{e, r^{2}, s r, s r^{3}\right\}
\end{gathered}
$$

And the normal subgroups of D_{5} are just:

$$
\{e\},<r>=\left\{e, r, r^{2}, r^{3}, r^{4}\right\},<r, s>=D_{5}
$$

Problem 15.4. Is O_{n} a normal subgroup of $G L_{n}(\mathbb{R})$?
Answer. No. For example, when $n=2$, let

$$
A=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad B=\left(\begin{array}{ll}
2 & 0 \\
1 & 1
\end{array}\right)
$$

Then A is in O_{2} while B is just in $G L_{2}(\mathbb{R})$. We will compute $B A B^{-1}$ and show it is not in O_{2}. So,

$$
B^{-1}=\left(\begin{array}{cc}
1 / 2 & 0 \\
-1 / 2 & 1
\end{array}\right)
$$

giving us

$$
B A B^{-1}=\left(\begin{array}{ll}
2 & 0 \\
1 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 / 2 & 0 \\
-1 / 2 & 1
\end{array}\right)
$$

which simplifies to the matrix

$$
C=B A B^{-1}=\left(\begin{array}{cc}
1 & 2 \\
1 / 2 & 1
\end{array}\right)
$$

Note that the top left entry of $C^{T} C$ is $1 \frac{1}{4}$, so $C^{T} C$ is not the identity.
For an arbitrary n, we can modify the matrices A and B slightly to get a counterexample. In fact, all we need to do is append the $(n-2) \times(n-2)$ identity matrix to A and B to get matrices

$$
A_{n}=\left(\begin{array}{cccccc}
0 & 1 & 0 & 0 & \ldots & 0 \\
1 & 0 & 0 & 0 & \ldots & 0 \\
0 & 0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & 1
\end{array}\right) \quad B_{n}=\left(\begin{array}{cccccc}
2 & 0 & 0 & 0 & \ldots & 0 \\
1 & 1 & 0 & 0 & \ldots & 0 \\
0 & 0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & 1
\end{array}\right)
$$

where the top left corners are the matrices A and B and the bottom right corners contain the $(n-2) \times(n-2)$ identity matrix. Note that A_{n} is still in O_{n}. The inverse of B_{n} is just the matrix formed in the same way with B^{-1} in the top left corner and the $(n-2) \times(n-2)$ identity matrix in the bottom right. And taking $B_{n} A_{n} B_{n}^{-1}$ just gives us, again, the $n \times n$ matrix with $B A B^{-1}$ in the top left corner and the $(n-2) \times(n-2)$ identity matrix in the bottom right. Since $B A B^{-1}$ is not in O_{2}, the matrix $B_{n} A_{n} B_{n}^{-1}$ is not in O_{n}. Thus O_{n} is not a normal subgroup of $G L_{n}(\mathbb{R})$.

Problem 15.6. If H, J are normal subgroups of a group, and if they have only the identity element in common, show that $x y=y x$ for all $x \in H, y \in J$.

Proof. Suppose H, J are normal subgroups of a group G and that $H \cap J=\{e\}$. Suppose $x \in H$ and $y \in J$. Consider the element $x y x^{-1} y^{-1}$ in G. Note that $x y x^{-1}$ is an element of $x J x^{-1}$. Since J is normal, we know that $x J x^{-1}=J$, so in fact $x y x^{-1}$ is an element of J. Since y^{-1} is also an element of J (since J is a subgroup of G), we have that actually $x y x^{-1} y^{-1}$ is an element of J.

By the same reasoning, we see that $y x^{-1} y^{-1}$ is an element of H. Thus $x y x^{-1} y^{-1}$ is also an element of H. Since it is an element of both groups, and H and J only have the identity in common, we must have that $x y x^{-1} y^{-1}=e$. But this is the same as saying that $x y=y x$ for every x in H and y in J.

