Homework 4 solutions.

Problem 11.2. Let H be a subgroup of a group G. Prove that $g_{1} H=g_{2} H$ if and only if $g_{1}^{-1} g_{2}$ belongs to H.

Proof. Suppose $g_{1} H=g_{2} H$. Since H is a subgroup, the identity e is in H. So $g_{2} \in g_{2} H$. Since $g_{1} H=g_{2} H$, there is some element $h \in H$ s.t. $g_{2}=g_{1} h$. Multiplying both sides by g_{1}^{-1} on the left, we get that $g_{1}^{-1} g_{2}=h$. Since $h \in H$ we have $g_{1}^{-1} g_{2} \in H$.

Suppose $g_{1}^{-1} g_{2}$ belongs to H. So for some $h \in H$, take an element $g_{1} h \in g_{1} H$. Note that if $g_{1}^{-1} g_{2} \in H$ then its inverse, $g_{2}^{-1} g_{1} \in H$. Thus the element $g_{2}^{-1} g_{1} h$ is also in H. Let $h^{\prime}=g_{2}^{-1} g_{1} h$. Finally note that $h=\left(g_{1}^{-1} g_{2}\right)\left(g_{2}^{-1} g_{1}\right) h=\left(g_{1}^{-1} g_{2}\right) h^{\prime}$. So $g_{1} h=g_{2} h^{\prime}$. But $g_{2} h^{\prime}$ is by definition an element of $g_{2} H$. So every element of $g_{1} H$ is also an element of $g_{2} H$. Since the labels g_{1} and g_{2} are arbitrary, the same argument also shows that every element of $g_{2} H$ is also an element of $g_{1} H$. Therefore $g_{1} H=g_{2} H$.

Problem 11.3. If H and K are finite subgroups of a group G, and if their orders are relatively prime, show that they have only the identity element in common.

Proof. Suppose H and K share an element x. Then the order of x divides the orders of both H and K. But since the orders of H and K are relatively prime, the only number that divides both their orders is 1 . So x must have order 1. The only element of order 1 is e. So the only element H and K have in common is the identity.

Problem 11.5. Given subsets X and Y of a group G, write $X Y$ for the set of all products $x y$ where $x \in X$ and $y \in Y$. If X and Y are both finite, if Y is a subgroup of G, and if $X Y$ is contained in X, prove that the size of X is a multiple of the size of Y.

Proof. We showed in problem 11.2 that $x_{1} Y=x_{2} Y$ iff $x_{1}^{-1} x_{2} \in Y$. We use this fact to show that two cosets $x_{1} Y$ and $x_{2} Y$ are either equal or disjoint. Suppose $x_{1} Y$ and $x_{2} Y$ are not disjoint. So there are elements $x_{1} y_{1} \in x_{1} Y$ and $x_{2} y_{2} \in x_{2} Y$ s.t. $x_{1} y_{1}=x_{2} y_{2}$. But then $y_{2}^{-1} y_{1}=x_{1}^{-1} x_{2}$. Since $y_{2}^{-1} y_{1} \in Y$ we have that $x_{1}^{-1} x_{2} \in Y$. Thus by problem 11.2, we have $x_{1} Y=x_{2} Y$.
X is a finite set, so let's list its elements. So $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. Thus

$$
X Y=\bigcup_{i=1}^{n} x_{i} Y
$$

Any two sets $x_{i} Y, x_{j} Y$ are either equal or disjoint. Furthermore, for $y \neq y^{\prime} \in Y$, we have $x_{i} y \neq x_{i} y^{\prime}$. So any set $x_{i} Y$ has the same number of elements as Y. Let $|Y|=m$. Then the number of elements in $X Y$ is some multiple of m.

Since Y is a subgroup, $e \in Y$. So we have that $X e \subset X Y$. That is, $X \subset X Y$ for any set X and subgroup Y. We are given that $X Y \subset X$. These two facts combined give us that $X Y=X$. Since $X Y=X$, and the number of elements in $X Y$ is some multiple of $|Y|$, we get that the size of X is a multiple of the size of Y.

Problem 11.7. Let n be a positive integer, and let m be a factor of $2 n$. Show that D_{n} contains a subgroup of order m.

Proof. The group D_{n} is generated by the rotation r which has order n and the reflection s which has order 2. Note that an element of the form r^{l} has order k where k is the smallest number for which $k l$ is a multiple of n. And an element of the form $s r^{l}$ has order 2. Recall also that if an element has order l then the smallest subgroup generated by that element also has order l.

Let m be a factor of $2 n$. This means that either m divides n itself, or $m=2 m^{\prime}$ and m^{\prime} divides n.

Suppose first that m divides n. That is, $n=m * k$ for some integer k. Thus the subgroup generated by r^{k} has order m.

Now suppose $m=2 m^{\prime}$ where m^{\prime} divides n. Again, this means $n=m^{\prime} k$ for some integer k. Consider the subgroup generated by r^{k} and s. This group has at least all m^{\prime} powers of r^{k} of the form $r^{k l}$ and all elements of the form $s r^{k l}$. Suppose we multiply two elements $s^{\delta} r^{k l}$ and $s^{\delta^{\prime}} r^{k l^{\prime}}$ where δ, δ^{\prime} are either 0 or 1 . If $\delta^{\prime}=1$, we get

$$
\left(s^{\delta} r^{k l}\right)\left(s r^{k l^{\prime}}\right)=s^{\delta} r^{k l-k l^{\prime}}
$$

so this is another element of the form $s r^{k l^{\prime \prime}}$. If $\delta^{\prime}=0$ then $\left(s^{\delta} r^{k l}\right)\left(r^{k l^{\prime}}\right)=s^{\delta} r^{k l+k l^{\prime}}$ which is also of that form. So all the element of the subgroup generated by r^{k} and s are either of the form $r^{k l}$ or of the form $s r^{k l}$. There are m^{\prime} distinct powers of r^{k}, and each power of r^{k} can also be multiplied by s. So there are exactly $2 m^{\prime}=m$ elements in this group. Therefore, for every integer m dividing $2 n$ there is a subgroup of D_{n} of order m.

Problem. Compute the order of 2 in the multiplicative group mod 59.
Answer. The order of 2 divides the order of the group. The order of the group is the number of $n \in \mathbb{N}$ s.t. $n \leq 59$ and n and 59 are relatively prime. Since 59 is prime, there are 58 such numbers. So the order of 2 divides 58 . The divisors of 58 are $1,2,29$ and 58 . The order of 2 is neither 1 nor 2 , as neither 2 nor 4 equal $1 \bmod$ 59. So that leaves 29 or 58 .

We can compute powers of $2 \bmod 59$ by noting that $2^{6}=64 \equiv 5 \bmod 59$. So $2^{12} \equiv 25 \bmod 59$ giving that $2^{24} \equiv 35 \bmod 59$. Also, $2^{4}=32$. Thus $2^{29}=2^{5} \cdot 2^{24} \equiv$ $58 \bmod 59$. So the order of 2 is not 29 . Therefore the order of 2 is 58 .

Problem. Find an integer x such that x^{71} is congruent to $3 \bmod 1001$.
Answer. We want to solve the equation $x^{71} \equiv 3 \bmod 1001$.
First we compute $\phi(1001)$. Note that $1001=7 \cdot 11 \cdot 13$. There are 1001 positive numbers n s.t. $n \leq 1001$. Of them, $11 \cdot 13$ are multiples of $7,7 \cdot 13$ are multiples of 11 , and $7 \cdot 11$ are multiples of 13 . Of those numbers, 13 are multiples of both 7 and 11, then 11 are multiples of both 7 and 13 , and finally, 7 are multiples of both 11 and 13. Only 1001 is a multiple of 7,11 and 13 . Thus $\phi(1001)=$ $1001-7 \cdot 11-7 \cdot 13-11 \cdot 13+7+11+13-1$. In all we get $\phi(1001)=720$.

Note that for any number x, we have that $x^{720} \equiv 1 \bmod 1001$. Moreover, for any integer $f, x^{720 f} \equiv 1 \bmod 1001$. In general, for any number k where $k \equiv k^{\prime}$ $\bmod 720, x^{k} \equiv x^{k^{\prime}} \bmod 1001$. So if we find a number d for which $71 d \equiv 1 \bmod 720$, we would get that $x^{71 d} \equiv x \bmod 1001$. Then we could just raise both sides of the equation $x^{71} \equiv 3$ to the d and get that x is $3^{d} \bmod 1001$.

Thus we have to solve the equation $71 * d \equiv 1 \bmod 720$. This is the same as finding integers d and f s.t. $71 d+720 f=1$. One can find such a number using
the Euclidean Algorithm. It goes

$$
\begin{aligned}
720 & =71 \cdot 10+10 \\
71 & =10 \cdot 7+1
\end{aligned}
$$

Since this means that $10=720-71 \cdot 10$, we get $71=(720-71 \cdot 10) \cdot 7+1$. So $71 \cdot 71-720 \cdot 7=1$. Thus $d=71$ (and $f=7$).

So take the equation $x^{71} \equiv 3 \bmod 1001$. Raise both sides to the $71^{\text {st }}$ power. We get $x^{71 \cdot 71} \equiv 3^{71} \bmod 1001$. Since $71 \cdot 71 \equiv 1 \bmod 1001$, we get that $x \equiv 3^{71} \bmod$ 1001. So $x=3^{71}$.

We can compute $3^{71} \bmod 1001$. A calculator tells us that $3^{8}=6561 \equiv 555 \bmod$ 1001. Taking successive squares we get that $3^{16} \equiv 718,3^{32} \equiv 9 \bmod 1001$. Then $3^{64} \equiv 81 \bmod$ 1001. Finally, $3^{7} \equiv 185 \bmod 1001$. So $3^{71}=3^{64} \cdot 3^{7} \equiv 971 \bmod 1001$. Therefore $x=971 \bmod 1001$.

