
Homework 4 solutions.

Problem 7.4. Produce a specific isomorphism between S3 and D3. How many
different isomorphisms are there from S3 to D3?

Answer. S3 = {e, (12), (13), (23), (123), (132)} and D3 = {e, r, r2, s, sr, sr2}. The
group D3 is the group of symmetries of a triangle T . Label the corners of T with
numbers 1,2,3 as in the picture. Let s be the reflection fixing 1 and exchanging 2
and 3 and let r be the clockwise rotation sending 1 to 2, 2 to 3 and 3 to 1. We see
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Figure 1. One way to number corners of a triangle.

that all elements of D3 permute these labels, so they correspond to permutations
of the set {1, 2, 3}. Let f : D3 → S3 be the map sending each element of D3 to
the corresponding permutation of the set {1, 2, 3}. The position of the triangle is
completely determined by where the labels are. So if A,B are two distinct elements
of D3, they do different things to the labels. Thus this map is one to one. There are
six elements of D3 and six of S3. Since each element of D3 does something different
to the labels of T , every element of S3 must have some element of D3 mapped to
it. So f is onto.

Finally, f is a homomorphism. To see this, suppose A,B are two elements of
D3. Then doing A followed by B to the triangle T first permutes the corners
by the permutation f(A) and then by permutation f(B). In total the corners are
permuted by permutation f(B)f(A). The element BA in D3 gives the permutation
f(BA). So we must have f(BA) = f(B)f(A). Since this is true for any A,B in
D3, we must have that f is a homomorphism.

Therefore the map f defined in this way is an isomorphism. In fact, given any
labeling of T we get a homomorphism in this way.

Note that two different labelings of T give two different isomorphisms. There
are 6 possible labelings of T . (They correspond to the six elements of S3, actually,
because each element of S3 tells you how to change the labels.) Therefore there are
6 isomorphisms between D3 and S3. �

Problem 7.5. Let G be a group. Show that the correspondence x ↔ x−1 is an
isomorphism from G to G iff G is abelian.

Proof. Let G be a group, and define f : G → G by f(x) = x−1.
Suppose G is abelian. We need to show that f is an isomorphism. That is, we

need to show that f is one to one, onto, and a homomorphism.
To show that f is one to one, we need to show that if x 6= y then x−1 6= y−1.

Suppose for contradiction that x 6= y but x−1 = y−1. Then consider the quantity
xx−1y. Since xx−1 = e, xx−1y = y. But since x−1 = y−1, we have x−1y = e so
xx−1y = x as well. That means x = y, so we arrive at a contradiction. Therefore
f is one to one.

To show that f is onto, we need to show that for every y ∈ G there is an x ∈ G

s.t. f(x) = y. So let x = y−1. Then f(x) = f(y−1) = (y−1)−1 = y. Therefore f is
onto.
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To show that f is a homomorphism, we need to show that for every x, y ∈ G

we have f(xy) = f(x)f(y). We have that f(xy) = (xy)−1 = y−1x−1. (Recall that
(xy)−1 = y−1x−1 from several problem sets ago.) And we know that f(x)f(y) =
x−1y−1. Since G is abelian, x−1y−1 = y−1x−1 so indeed f(xy) = f(x)f(y). There-
fore f is an homomorphism.

Since f is one to one, onto, and a homomorphism, f is an isomorphism.
Now suppose f is an isomorphism. We need to show that G is abelian. We

use that since f is an isomorphism, f(xy) = f(x)f(y). Plugging x−1 in for x and
y−1 in for y, the homomorphism equality tells us that f(x−1y−1) = f(x−1)f(y−1).
Working this out we get that (x−1y−1)−1 = (x−1)−1(y−1)−1. But this just means
that yx = xy. Since we can do this for any x and y, this means that G is abelian.

Therefore f is an isomorphism iff G is abelian. �

Problem 7.6. Prove that Qpos is not isomorphic to Z.

Proof. Suppose for contradiction that Qpos is isomorphic to Z where Qpos is a
group under multiplication and Z is a group under addition. That means there
exists an isomorphism f : Qpos → Z. Since f is an isomorphism, f is onto. That
means for every y ∈ Z there is an x ∈ Qpos s.t. f(x) = y. In particular, we can
choose y = 1 ∈ Z, so there must be some p

q
∈ Qpos s.t. f(p

q
) = 1. (When we write

p

q
∈ Qpos we mean that p, q are integers with no common factors.) Note that since

-1 is the additive inverse of 1 in Z, and q

p
is the multiplicative inverse of p

q
in Qpos

the fact that f is a isomorphism means that f( q
p
) = −1.

Suppose x ∈ N is a prime number. Then x ∈ Qpos. Suppose f(x) = n ∈ Z.
Then either n is positive and n = 1 + 1 + · · · + 1 (i.e. 1 added to itself n times),
or n is negative so n = −1− 1− · · · − 1 (i.e. -1 added to itself n times). Using the
facts that 1 = f(p

q
) and −1 = f( q

p
) we get either f(x) = f(p

q
) + f(p

q
) + · · ·+ f(p

q
)

(that is, f(p
q
) added to itself n times) or f(x) = f( q

p
) + f( q

p
) + · · ·+ f( q

p
) (that is,

f( q
p
) added to itself n times). By the homomorphism condition, this means that

either f(x) = f(p
q
· p

q
· · · p

q
) = f(p

n

qn
) or f(x) = f( q

n

pn
).

But f is one to one. So if f(x) = f(p
n

qn
, ) then x = p

n

qn
and if f(x) = f( q

n

pn
) then

x = q
n

pn
. Either of these equalities would imply that x has an nth root that is a

rational number. But all the roots of any prime number are irrational. So we must
have n = 1. Thus for any prime number x, either x = p

q
or x = q

p
. But this would

mean that the only primes are the numbers p

q
and q

p
which is impossible not least

because there are infinitely many primes. So we have arrived at a contradiction.
Therefore Qpos is not isomorphic to Z. �

Problem 7.7. If G is a group, and if g is an element of G, show that the function
φ : G → G defined by φ(x) = gxg−1 is an isomorphism. Work out this isomorphism
when G is A4 and g is the permutation (123).

Proof. Let φ : G → G be defined by φ(x) = gxg−1. We need to show the following
things:

One to one: Suppose φ(x) = φ(x′). Then gxg−1 = gx′g−1. Multiplying
both sides by g on the right and by g−1 on the left we get that x = x′. So
φ(x) = φ(x′) only if x = x′. Therefore the contrapositive is true: if x 6= x′

we have φ(x) 6= φ(x′). So φ is one to one.
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Onto: Let y ∈ G. Let x = g−1yg. Because G is a group, x ∈ G. We have
that φ(x) = g(g−1yg)g−1 = y. So φ is onto.

Homomorhism: Let x, y ∈ G. Then φ(xy) = gxyg−1 = gxgg−1yg−1 =
φ(x)φ(y). So φ is a homomorphism.

Therefore, φ is an isomorphism.
We have that A4 = {e, (123), (132), (124), (142), (134), (143), (234), (243),

(12)(34), (13)(24), (14)(23)}. Note that if α, β are in S4 and β sends i to β(i) then
αβα−1 sends α(i) to α(β(i)). So expressing β as a cycle, we can replace all the
numbers in β by α of those numbers. If g = (123), g sends 1 to 2, 2 to 3, 3 to 1,
and 4 to 4. Thus

φ(e) = e φ(123) = (231) φ(132) = (213)
φ(124) = (234) φ(142) = (243) φ(134) = (214)
φ(143) = (241) φ(234) = (314) φ(243) = (341)

φ(12)(34) = (23)(14) φ(13)(24) = (21)(34) φ(14)(23) = (24)(31)

Note that the answers above may look unfamiliar because they aren’t written with
the smallest number first. �

Problem 7.9. Suppose G is a cyclic group. If x generates G, and if φ : G → G

is an isomorphism, prove that φ is completely determined by φ(x) and that φ(x)
also generates G. Use these facts to find all isomorphisms from Z to Z, and all
isomorphisms from Z12 to Z12.

Proof. We know that x generates G so any element y of G can be written as y = xn

for some n ∈ Z. Suppose φ : G → G is an isomorphism with φ(x) = x′. Since φ is
a homomorphism, we have φ(y) = φ(xn) = φ(x)n = (x′)n. So if we know φ(x) we
know φ(y) for any y in G. Therefore φ is completely determined by φ(x).

Let y ∈ G. Then there is an z in G s.t. φ(z) = y. But since x generates G, we
can write z = xn for some x ∈ Z. Thus φ(xn) = y. But if we still have φ(x) = x′

then this means (x′)n = y. So any y in G can be written as a power of φ(x) = x′.
This is exactly what it means for φ(x) to generate G.

Suppose φ : Z → Z is an isomorphism. The only generator of Z is 1. So φ

can only send 1 to itself. This completely determines φ so there can only be one
isomorphism from Z to Z.

Suppose φ : Z12 → Z12 is an isomorphism. The generators of Z12 are all numbers
that are relatively prime to 12. That is, they are all numbers that don’t share a
common factor with 12. These numbers are 1, 5, 7 and 11. The generator 1 can be
sent by φ to any of these four numbers. And as soon as we know what φ(1) is, we
know all of φ. So there are 4 isomorphisms from Z12 to itself. �

Problem 7.12. Show that the subgroup of S4 generated by (1234) and (24) is
isomorphic to D4.

Proof. To begin, set α = (1234) and β = (24). Let’s describe the subgroup gener-
ated by α and β. First, the powers of α are α2 = (13)(24), α3 = α−1 = (1432) and
α4 = e. Since β has order 2, it’s powers are e and itself. Then there are products
between α and β. Note that αβ = βα−1 so the rest of the elements are αβ, α2β,
and α3β.

The group D4 is generated by the elements s and r where s has order 2 and r has
order 4. If we had a isomorphism f : S4 → D4, it would send an element α ∈ S4 of
order n to an element x ∈ D4 of the same order n.
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Define f s.t. f : α 7→ r and f : β 7→ s. Then the homomorphism property would
ensure that f(αnβm) = f(α)nf(β)m (where n = 0, 1, 2, 3 and m = 0,1). Define f

to send αn to rn and to send αnβ to rns for n = 1, 2, 3. To see that f thus defined
is a homomorphism, note that rs = sr−1 and αβ = βα−1. Thus

f((αnβm)(αn
′

βm
′

)) = f(αn−n
′

βm+m
′

)

= rn−n
′

sm−m
′

= (rnsm)(rn
′

sm
′

)

= f(αnβm)f(αn
′

βm
′

)

for any n between 0 and 3 and for any m = 0, 1.
Therefore f is a homomorphism. From the definition, it’s clear that any two

distinct elements αnβm and αn
′

βm
′

get mapped to distinct elements of D4 and
that every element rnsm of D4 has some element (αnβm) mapping to it. So f

is one to one and onto. Therefore f is an isomorphism and the two groups are
isomorphic. �


