Homework 4 solutions.

Problem 7.4. Produce a specific isomorphism between S_{3} and D_{3}. How many different isomorphisms are there from S_{3} to D_{3} ?

Answer. $S_{3}=\{e,(12),(13),(23),(123),(132)\}$ and $D_{3}=\left\{e, r, r^{2}, s, s r, s r^{2}\right\}$. The group D_{3} is the group of symmetries of a triangle T. Label the corners of T with numbers $1,2,3$ as in the picture. Let s be the reflection fixing 1 and exchanging 2 and 3 and let r be the clockwise rotation sending 1 to 2,2 to 3 and 3 to 1 . We see

Figure 1. One way to number corners of a triangle.
that all elements of D_{3} permute these labels, so they correspond to permutations of the set $\{1,2,3\}$. Let $f: D_{3} \rightarrow S_{3}$ be the map sending each element of D_{3} to the corresponding permutation of the set $\{1,2,3\}$. The position of the triangle is completely determined by where the labels are. So if A, B are two distinct elements of D_{3}, they do different things to the labels. Thus this map is one to one. There are six elements of D_{3} and six of S_{3}. Since each element of D_{3} does something different to the labels of T, every element of S_{3} must have some element of D_{3} mapped to it. So f is onto.

Finally, f is a homomorphism. To see this, suppose A, B are two elements of D_{3}. Then doing A followed by B to the triangle T first permutes the corners by the permutation $f(A)$ and then by permutation $f(B)$. In total the corners are permuted by permutation $f(B) f(A)$. The element $B A$ in D_{3} gives the permutation $f(B A)$. So we must have $f(B A)=f(B) f(A)$. Since this is true for any A, B in D_{3}, we must have that f is a homomorphism.

Therefore the map f defined in this way is an isomorphism. In fact, given any labeling of T we get a homomorphism in this way.

Note that two different labelings of T give two different isomorphisms. There are 6 possible labelings of T. (They correspond to the six elements of S_{3}, actually, because each element of S_{3} tells you how to change the labels.) Therefore there are 6 isomorphisms between D_{3} and S_{3}.

Problem 7.5. Let G be a group. Show that the correspondence $x \leftrightarrow x^{-1}$ is an isomorphism from G to G iff G is abelian.
Proof. Let G be a group, and define $f: G \rightarrow G$ by $f(x)=x^{-1}$.
Suppose G is abelian. We need to show that f is an isomorphism. That is, we need to show that f is one to one, onto, and a homomorphism.

To show that f is one to one, we need to show that if $x \neq y$ then $x^{-1} \neq y^{-1}$. Suppose for contradiction that $x \neq y$ but $x^{-1}=y^{-1}$. Then consider the quantity $x x^{-1} y$. Since $x x^{-1}=e, x x^{-1} y=y$. But since $x^{-1}=y^{-1}$, we have $x^{-1} y=e$ so $x x^{-1} y=x$ as well. That means $x=y$, so we arrive at a contradiction. Therefore f is one to one.

To show that f is onto, we need to show that for every $y \in G$ there is an $x \in G$ s.t. $f(x)=y$. So let $x=y^{-1}$. Then $f(x)=f\left(y^{-1}\right)=\left(y^{-1}\right)^{-1}=y$. Therefore f is onto.

To show that f is a homomorphism, we need to show that for every $x, y \in G$ we have $f(x y)=f(x) f(y)$. We have that $f(x y)=(x y)^{-1}=y^{-1} x^{-1}$. (Recall that $(x y)^{-1}=y^{-1} x^{-1}$ from several problem sets ago.) And we know that $f(x) f(y)=$ $x^{-1} y^{-1}$. Since G is abelian, $x^{-1} y^{-1}=y^{-1} x^{-1}$ so indeed $f(x y)=f(x) f(y)$. Therefore f is an homomorphism.

Since f is one to one, onto, and a homomorphism, f is an isomorphism.
Now suppose f is an isomorphism. We need to show that G is abelian. We use that since f is an isomorphism, $f(x y)=f(x) f(y)$. Plugging x^{-1} in for x and y^{-1} in for y, the homomorphism equality tells us that $f\left(x^{-1} y^{-1}\right)=f\left(x^{-1}\right) f\left(y^{-1}\right)$. Working this out we get that $\left(x^{-1} y^{-1}\right)^{-1}=\left(x^{-1}\right)^{-1}\left(y^{-1}\right)^{-1}$. But this just means that $y x=x y$. Since we can do this for any x and y, this means that G is abelian.

Therefore f is an isomorphism iff G is abelian.
Problem 7.6. Prove that $\mathbb{Q}^{\text {pos }}$ is not isomorphic to \mathbb{Z}.
Proof. Suppose for contradiction that $\mathbb{Q}^{\text {pos }}$ is isomorphic to \mathbb{Z} where $\mathbb{Q}^{\text {pos }}$ is a group under multiplication and \mathbb{Z} is a group under addition. That means there exists an isomorphism $f: \mathbb{Q}^{\text {pos }} \rightarrow \mathbb{Z}$. Since f is an isomorphism, f is onto. That means for every $y \in \mathbb{Z}$ there is an $x \in \mathbb{Q}^{\text {pos }}$ s.t. $f(x)=y$. In particular, we can choose $y=1 \in \mathbb{Z}$, so there must be some $\frac{p}{q} \in \mathbb{Q}^{\text {pos }}$ s.t. $f\left(\frac{p}{q}\right)=1$. (When we write $\frac{p}{q} \in \mathbb{Q}^{\text {pos }}$ we mean that p, q are integers with no common factors.) Note that since -1 is the additive inverse of 1 in \mathbb{Z}, and $\frac{q}{p}$ is the multiplicative inverse of $\frac{p}{q}$ in $\mathbb{Q}^{\text {pos }}$ the fact that f is a isomorphism means that $f\left(\frac{q}{p}\right)=-1$.

Suppose $x \in \mathbb{N}$ is a prime number. Then $x \in \mathbb{Q}^{\text {pos }}$. Suppose $f(x)=n \in \mathbb{Z}$. Then either n is positive and $n=1+1+\cdots+1$ (i.e. 1 added to itself n times), or n is negative so $n=-1-1-\cdots-1$ (i.e. -1 added to itself n times). Using the facts that $1=f\left(\frac{p}{q}\right)$ and $-1=f\left(\frac{q}{p}\right)$ we get either $f(x)=f\left(\frac{p}{q}\right)+f\left(\frac{p}{q}\right)+\cdots+f\left(\frac{p}{q}\right)$ (that is, $f\left(\frac{p}{q}\right)$ added to itself n times) or $f(x)=f\left(\frac{q}{p}\right)+f\left(\frac{q}{p}\right)+\cdots+f\left(\frac{q}{p}\right)$ (that is, $f\left(\frac{q}{p}\right)$ added to itself n times). By the homomorphism condition, this means that either $f(x)=f\left(\frac{p}{q} \cdot \frac{p}{q} \cdots \frac{p}{q}\right)=f\left(\frac{p^{n}}{q^{n}}\right)$ or $f(x)=f\left(\frac{q^{n}}{p^{n}}\right)$.

But f is one to one. So if $f(x)=f\left(\frac{p^{n}}{q^{n}},\right)$ then $x=\frac{p^{n}}{q^{n}}$ and if $f(x)=f\left(\frac{q^{n}}{p^{n}}\right)$ then $x=\frac{q^{n}}{p^{n}}$. Either of these equalities would imply that x has an $n^{\text {th }}$ root that is a rational number. But all the roots of any prime number are irrational. So we must have $n=1$. Thus for any prime number x, either $x=\frac{p}{q}$ or $x=\frac{q}{p}$. But this would mean that the only primes are the numbers $\frac{p}{q}$ and $\frac{q}{p}$ which is impossible not least because there are infinitely many primes. So we have arrived at a contradiction. Therefore $\mathbb{Q}^{\text {pos }}$ is not isomorphic to \mathbb{Z}.

Problem 7.7. If G is a group, and if g is an element of G, show that the function $\phi: G \rightarrow G$ defined by $\phi(x)=g x g^{-1}$ is an isomorphism. Work out this isomorphism when G is A_{4} and g is the permutation (123).

Proof. Let $\phi: G \rightarrow G$ be defined by $\phi(x)=g x g^{-1}$. We need to show the following things:

One to one: Suppose $\phi(x)=\phi\left(x^{\prime}\right)$. Then $g x g^{-1}=g x^{\prime} g^{-1}$. Multiplying both sides by g on the right and by g^{-1} on the left we get that $x=x^{\prime}$. So $\phi(x)=\phi\left(x^{\prime}\right)$ only if $x=x^{\prime}$. Therefore the contrapositive is true: if $x \neq x^{\prime}$ we have $\phi(x) \neq \phi\left(x^{\prime}\right)$. So ϕ is one to one.

Onto: Let $y \in G$. Let $x=g^{-1} y g$. Because G is a group, $x \in G$. We have that $\phi(x)=g\left(g^{-1} y g\right) g^{-1}=y$. So ϕ is onto.
Homomorhism: Let $x, y \in G$. Then $\phi(x y)=g x y g^{-1}=g x g g^{-1} y g^{-1}=$ $\phi(x) \phi(y)$. So ϕ is a homomorphism.
Therefore, ϕ is an isomorphism.
We have that $A_{4}=\{e,(123),(132),(124),(142),(134),(143),(234),(243)$, $(12)(34),(13)(24),(14)(23)\}$. Note that if α, β are in S_{4} and β sends i to $\beta(i)$ then $\alpha \beta \alpha^{-1}$ sends $\alpha(i)$ to $\alpha(\beta(i))$. So expressing β as a cycle, we can replace all the numbers in β by α of those numbers. If $g=(123), g$ sends 1 to 2,2 to 3,3 to 1 , and 4 to 4 . Thus

$$
\begin{aligned}
\phi(e) & =e & \phi(123) & =(231) & \phi(132) & =(213) \\
\phi(124) & =(234) & \phi(142) & =(243) & \phi(134) & =(214) \\
\phi(143) & =(241) & \phi(234) & =(314) & \phi(243) & =(341) \\
\phi(12)(34) & =(23)(14) & \phi(13)(24) & =(21)(34) & \phi(14)(23) & =(24)(31)
\end{aligned}
$$

Note that the answers above may look unfamiliar because they aren't written with the smallest number first.

Problem 7.9. Suppose G is a cyclic group. If x generates G, and if $\phi: G \rightarrow G$ is an isomorphism, prove that ϕ is completely determined by $\phi(x)$ and that $\phi(x)$ also generates G. Use these facts to find all isomorphisms from \mathbb{Z} to \mathbb{Z}, and all isomorphisms from \mathbb{Z}_{12} to \mathbb{Z}_{12}.
Proof. We know that x generates G so any element y of G can be written as $y=x^{n}$ for some $n \in \mathbb{Z}$. Suppose $\phi: G \rightarrow G$ is an isomorphism with $\phi(x)=x^{\prime}$. Since ϕ is a homomorphism, we have $\phi(y)=\phi\left(x^{n}\right)=\phi(x)^{n}=\left(x^{\prime}\right)^{n}$. So if we know $\phi(x)$ we know $\phi(y)$ for any y in G. Therefore ϕ is completely determined by $\phi(x)$.

Let $y \in G$. Then there is an z in G s.t. $\phi(z)=y$. But since x generates G, we can write $z=x^{n}$ for some $x \in \mathbb{Z}$. Thus $\phi\left(x^{n}\right)=y$. But if we still have $\phi(x)=x^{\prime}$ then this means $\left(x^{\prime}\right)^{n}=y$. So any y in G can be written as a power of $\phi(x)=x^{\prime}$. This is exactly what it means for $\phi(x)$ to generate G.

Suppose $\phi: \mathbb{Z} \rightarrow \mathbb{Z}$ is an isomorphism. The only generator of \mathbb{Z} is 1 . So ϕ can only send 1 to itself. This completely determines ϕ so there can only be one isomorphism from \mathbb{Z} to \mathbb{Z}.

Suppose $\phi: \mathbb{Z}_{12} \rightarrow \mathbb{Z}_{12}$ is an isomorphism. The generators of Z_{12} are all numbers that are relatively prime to 12 . That is, they are all numbers that don't share a common factor with 12 . These numbers are $1,5,7$ and 11 . The generator 1 can be sent by ϕ to any of these four numbers. And as soon as we know what $\phi(1)$ is, we know all of ϕ. So there are 4 isomorphisms from \mathbb{Z}_{12} to itself.

Problem 7.12. Show that the subgroup of S_{4} generated by (1234) and (24) is isomorphic to D_{4}.
Proof. To begin, set $\alpha=(1234)$ and $\beta=(24)$. Let's describe the subgroup generated by α and β. First, the powers of α are $\alpha^{2}=(13)(24), \alpha^{3}=\alpha^{-1}=(1432)$ and $\alpha^{4}=e$. Since β has order 2 , it's powers are e and itself. Then there are products between α and β. Note that $\alpha \beta=\beta \alpha^{-1}$ so the rest of the elements are $\alpha \beta, \alpha^{2} \beta$, and $\alpha^{3} \beta$.

The group D_{4} is generated by the elements s and r where s has order 2 and r has order 4. If we had a isomorphism $f: S_{4} \rightarrow D_{4}$, it would send an element $\alpha \in S_{4}$ of order n to an element $x \in D_{4}$ of the same order n.

Define f s.t. $f: \alpha \mapsto r$ and $f: \beta \mapsto s$. Then the homomorphism property would ensure that $f\left(\alpha^{n} \beta^{m}\right)=f(\alpha)^{n} f(\beta)^{m}$ (where $n=0,1,2,3$ and $m=0,1$). Define f to send α^{n} to r^{n} and to send $\alpha^{n} \beta$ to $r^{n} s$ for $n=1,2,3$. To see that f thus defined is a homomorphism, note that $r s=s r^{-1}$ and $\alpha \beta=\beta \alpha^{-1}$. Thus

$$
\begin{aligned}
f\left(\left(\alpha^{n} \beta^{m}\right)\left(\alpha^{n^{\prime}} \beta^{m^{\prime}}\right)\right) & =f\left(\alpha^{n-n^{\prime}} \beta^{m+m^{\prime}}\right) \\
& =r^{n-n^{\prime}} s^{m-m^{\prime}} \\
& =\left(r^{n} s^{m}\right)\left(r^{n^{\prime}} s^{m^{\prime}}\right) \\
& =f\left(\alpha^{n} \beta^{m}\right) f\left(\alpha^{n^{\prime}} \beta^{m^{\prime}}\right)
\end{aligned}
$$

for any n between 0 and 3 and for any $m=0,1$.
Therefore f is a homomorphism. From the definition, it's clear that any two distinct elements $\alpha^{n} \beta^{m}$ and $\alpha^{n^{\prime}} \beta^{m^{\prime}}$ get mapped to distinct elements of D_{4} and that every element $r^{n} s^{m}$ of D_{4} has some element $\left(\alpha^{n} \beta^{m}\right)$ mapping to it. So f is one to one and onto. Therefore f is an isomorphism and the two groups are isomorphic.

