Homework 3 solutions.

Problem 6.1. Write out a multiplication table for S_{3}.
Answer.

\cdot	e	(12)	(13)	(23)	(123)	(132)
e	e	(12)	(13)	(23)	(123)	(132)
(12)	(12)	e	(132)	(123)	(23)	(13)
(13)	(13)	(123)	e	(132)	(12)	(23)
(23)	(23)	(132)	(123)	e	(13)	(12)
(123)	(123)	(13)	(23)	(12)	(132)	e
(132)	(132)	(23)	(12)	(123)	e	(123)

Problem 6.2. Express each of the following elements of S_{8} as a product of disjoint cyclic permutations, and as a product of transpositions. Which, if any, of these permutations belong to A_{8} ?

Answer.

- $\left[\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 7 & 6 & 4 & 1 & 8 & 2 & 3 & 5\end{array}\right]:$

As a product of disjoint cycles, this is $(1734)(26)(58)$. As a product of transpositions, this is $(14)(13)(17)(26)(58)$. Since there are an odd number of transpositions, this permutations doesn't belong to A_{8}.

- (4568)(1245):

As a product of disjoint cycles, this is (125)(468). As a product of transpositions, this is $(15)(12)(48)(46)$. There are an even number of transpositions, so this permutation does belong to A_{8}.

- $(624)(253)(876)(45):$

As a product of disjoint cycles, this is $(25687)(34)$. As a product of transpositions, this is $(27)(28)(26)(25)(34)$. There are an odd number of transpositions, so this permutations does not belong to A_{8}.

Problem 6.3. Show that the elements of S_{9} which send the numbers $2,5,7$ among themselves form a subgroup of S_{9}. What is the order of this subgroup?

Proof. We showed in the last homework that if H is a finite subset of a group G then H is a subgroup iff it is closed under multiplication. Let H be the subset of S_{9} that sends the numbers $2,5,7$ among themselves. Since S_{9} is a finite group, H is a finite subset. So we just need to show it is closed under multiplication.

Let $\alpha, \beta \in H$. Let $n \in\{2,5,7\}$. Then $\alpha(n) \in\{2,5,7\}$. Since β send the set $\{2,5,7\}$ to itself, $\beta(\alpha(n)) \in\{2,5,7\}$ as well. So $\beta \cdot \alpha$ sends the elements of the set $\{2,5,7\}$ among themselves. Thus, $\beta \cdot \alpha \in H$, so H is closed under group multiplication. Therefore, H is a subgroup.

Now we find the order of H. Let $\alpha \in H$. Note that α must consist of two disjoint transpositions: one which permutes the elements of $\{2,5,7\}$ and one which permutes the remaining numbers between 1 and 9 . So we will first count the number
of ways to permute the numbers $2,5,7$ and then the number of ways to permute the rest of the numbers between 1 and 9 .

There are 3 ! ways to permute elements of the set $\{2,5,7\}$. That's because an element $\alpha \in H$ has 3 choices of where to send 2 , then 2 remaining choices of where to send 5 , and finally one choice of where to send 7 . Likewise, since there are six elements between 1 and 9 that are not 2,5 or 7 , there are 6 ! ways to permute them.

Any way of permuting 2,5 and 7 can be paired with any way of permuting the rest of the numbers between 1 and 9 to give an element of H. And any element of H is a way of permuting 2,5 and 7 combined with a way of permuting the rest of the numbers between 1 and 9 . So there are $3!\cdot 6!=6 \cdot 720=4320$ elements of H.

Problem 6.4. Find a subgroup of S_{4} which contains six elements. How many subgroups of order six are there in S_{4} ?

Answer. The group $S_{3}=\{e,(12),(23),(13),(123),(132)\}$ is a subgroup of S_{4} and it has order 6 .

There are 4 subgroups of order 6 .
Problem 6.5. Compute $\alpha P\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ when $\alpha_{1}=(143)$ and when $\alpha_{2}=$ (23)(412).

Answer. Since $\alpha_{1}=(143)$ is even, we should get $\alpha_{1} P=P$ and since $\alpha_{2}=(23)(412)$ is odd, we should get $\alpha_{2} P=-P$. But we can check this by calculating.

We start with

$$
P\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)\left(x_{1}-x_{4}\right)\left(x_{2}-x_{3}\right)\left(x_{2}-x_{4}\right)\left(x_{3}-x_{4}\right)
$$

Since $\alpha_{1}(1)=4, \alpha_{1}(2)=2, \alpha_{1}(3)=1$ and $\alpha_{1}(4)=3$ we substitute every 1 by a 4 and so on to get

$$
\begin{aligned}
\alpha_{1} P\left(x_{1}, x_{2}, x_{3}, x_{4}\right) & =\left(x_{4}-x_{2}\right)\left(x_{4}-x_{1}\right)\left(x_{4}-x_{3}\right)\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)\left(x_{1}-x_{3}\right) \\
& =-\left(x_{2}-x_{4}\right) \cdot-\left(x_{1}-x_{4}\right) \cdot-\left(x_{3}-x_{4}\right) \cdot-\left(x_{1}-x_{2}\right) \cdot\left(x_{2}-x_{3}\right) \cdot\left(x_{1}-x_{3}\right) \\
& =P\left(x_{1}, x_{2}, x_{3}, x_{4}\right)
\end{aligned}
$$

where the last line is true because there are an even number of - signes.
Next we do the same thing with α_{2}. We have that $\alpha_{2}(1)=3, \alpha_{2}(2)=4$, $\alpha_{2}(3)=2$ and $\alpha_{2}(4)=1$.

$$
\begin{aligned}
\alpha_{2} P\left(x_{1}, x_{2}, x_{3}, x_{4}\right) & =\left(x_{3}-x_{4}\right)\left(x_{3}-x_{2}\right)\left(x_{3}-x_{1}\right)\left(x_{4}-x_{2}\right)\left(x_{4}-x_{1}\right)\left(x_{2}-x_{1}\right) \\
& =\left(x_{3}-x_{4}\right) \cdot-\left(x_{2}-x_{3}\right) \cdot-\left(x_{1}-x_{3}\right) \cdot-\left(x_{2}-x_{4}\right) \cdot-\left(x_{1}-x_{4}\right) \cdot-\left(x_{1}-x_{2}\right) \\
& =-P\left(x_{1}, x_{2}, x_{3}, x_{4}\right)
\end{aligned}
$$

where the last line is true because there are an odd number of minus signs.
Problem 6.6. If H is a subgroup of S_{n} and if H is not contained in A_{n}, prove that precisely one-half of the elements of H are even permutations.

Proof. Let H be a subgroup of S_{n}. If H is not contained in A_{n}, it must contain some odd permutation α. Then for any β in $H \alpha \beta$ is also in H. Since α is odd, it can be written as the product of an odd number of transpositions. If β is even it can be written as an even number of transpositions. That means $\alpha \beta$ can be written as an odd number of transpositions. So if β is even, then $\alpha \beta$ is odd.

We can write H as the union of sets of the form $\{\beta, \alpha \beta\}$ where β is even. That is,

$$
H=\bigcup_{\beta \in H, \beta \text { even }}\{\beta, \alpha \beta\}
$$

To see this, note that clearly all the even elements of H are in this union. And if γ is an odd element of H, then $\alpha^{-1} \gamma$ is even (because α^{-1} is odd since α is odd). So the pair $\left\{\alpha^{-1} \gamma, \gamma\right\}$ is in the union since $\alpha \alpha^{-1} \gamma=\gamma$, so γ is in the union. Therefore all the odd and even elements of H are in the above union, so we get all of H.

Given distinct β and β^{\prime}, the sets $\{\beta, \alpha \beta\}$ and $\left\{\beta^{\prime}, \alpha \beta^{\prime}\right\}$ are disjoint. To see this, note that if $\beta \neq \beta^{\prime}$, then $\alpha \beta \neq \alpha \beta^{\prime}$. So if two sets $\{\beta, \alpha \beta\}$ and $\left\{\beta^{\prime}, \alpha \beta^{\prime}\right\}$ were not disjoint then we must have that either $\beta=\alpha \beta^{\prime}$ or $\beta^{\prime}=\alpha \beta$. But β and β^{\prime} are assumed to be even permutations, so we know that $\alpha \beta$ and $\alpha \beta^{\prime}$ are odd. So those equalities cannot be true. Therefore, any two such sets are or disjoint.

Since we can write H as the disjoint union of sets where one element is even and the other element is odd, H must have the same number of odd elements as even elements. Therefore precisely one-half of the elements of H are even permutations.

Problem 6.7. Show that if n is at least 4 every element of S_{n} can be written as a product of two permutations, each of which has order 2. (Experiment first with cyclic permutations).

Proof. Note that a product of disjoint transpositions has order 2.
Let's do an example first. Take a cyclic permutation $\left(a_{1} a_{2} a_{3} a_{4} a_{5} a_{6}\right)$. This sends a_{1} to a_{2} and so on in a circle.

Figure 1. First do $\left(a_{1} a_{6}\right)\left(a_{2} a_{5}\right)\left(a_{3} a_{4}\right)$ and then do $\left(a_{2} a_{6}\right)\left(a_{3} a_{5}\right)$
In the above picture, we start with each a_{i} in its spot. We need to move each a_{i} one spot clockwise. So first we do transpositions $\left(a_{1} a_{6}\right)\left(a_{2} a_{5}\right)\left(a_{3} a_{4}\right)$ giving us the configuration shown in the right hand diagram. That is, a_{6} is in a_{1} 's spot and so on. Then we do transpositions $\left(a_{2} a_{6}\right)\left(a_{3} a_{5}\right)$ which put a_{1} in a_{2} 's spot, and generally puts a_{i} in a_{i+1} 's spot, which is what we needed.

Now we generalize this to any cyclic permutation. Let $\alpha=\left(a_{1} a_{2} \ldots a_{n}\right)$ be a cyclic permutation. We will show that we can write α as the product of α_{1} and α_{2} where α_{1} and α_{2} are two permutations of order 2. Furthermore, α_{1} and α_{2} will each be products of disjoint transpositions where the only numbers that appear in these transpositions are the $a_{1} \ldots a_{n}$ that appear in α.

So let $\alpha_{1}=\left(\begin{array}{ll}a_{1} & a_{n}\end{array}\right)\left(a_{2} a_{n-1}\right) \cdots\left(a_{i} a_{n-i+1}\right) \cdots\left(a_{N} a_{n-N+1}\right)$ where N is the biggest integer smaller than $\frac{n}{2}$ (so it's just $n / 2$ if n is even.) Let $\alpha_{2}=\left(a_{2} a_{n}\right)$ $\left(a_{3} a_{n-1}\right) \cdots\left(a_{i+1} a_{n-i+1}\right) \cdots\left(a_{N+1} a_{n-N+1}\right)$. Note that α_{1} and α_{2} are each products of disjoint transpositions, so they have order 2.

Then we claim that $\alpha_{2} \alpha_{1}=\alpha$. Since α_{1} and α_{2} are products of disjoint transpositions, what they do to any one a_{i} is determined just by the transposition containing that a_{i}. So for $i \leq N$, the transposition $\left(a_{i} a_{n-i+1}\right)$ in α_{1} sends a_{i} to a_{n-i+1} and then the transposition ($a_{i+1} a_{n-i+1}$) in α_{2} sends a_{n-i+1} to a_{i+1}. So $\alpha_{2} \alpha_{1}$ sends a_{i} to a_{i+1} if $i \leq N$. If $i>N$ set $j=n-i+1$. Note that $j \leq N$ since $i>N$ because N is at most $n / 2$. We then have that $i=n-j+1$. So the transposition $\left(a_{j} a_{n-j+1}\right)$ is in α_{1} and it sends $a_{i}=a_{n-j+1}$ to a_{j} and the transposition $\left(a_{j-1+1} a_{n-(j-1)+1}\right)=\left(a_{j} a_{n-j+2}\right)$ in α_{2} sends a_{j} to a_{n-j+2}. But since $j=i-n+1$, $n-j+2=i+1$. Thus $\alpha_{2} \alpha_{1}$ sends a_{i} to a_{i+1} when $i>N$ as well. So $\alpha_{2} \alpha_{1}$ is indeed α.

Now let β be any permutation. Write β as the product of disjoint permutations β_{i}, so that $\beta=\beta_{1} \cdots \beta_{k}$. Then each β_{i} can be written as the product of two transpositions $\alpha_{i, 1}$ and $\alpha_{i, 2}$ each of order 2 where $\alpha_{i, 1}$ and $\alpha_{i, 2}$ only permute the numbers that appear in β_{i}. Since the β_{i} are disjoint, if $j \neq i$, then $\alpha_{i, 1}$ and $\alpha_{i, 2}$ are disjoint from $\alpha_{j, 1}$ and $\alpha_{j, 2}$. So $\alpha_{i, 1}$ commutes with $\alpha_{j, 1}$ and $\alpha_{i, 2}$ for all $j \neq i$. Thus we can write

$$
\begin{aligned}
\beta & =\beta_{1} \cdots \beta_{k} \\
& =\alpha_{1,2} \alpha_{1,1} \cdots \alpha_{k, 2} \alpha_{k, 1}
\end{aligned}
$$

Since $\alpha_{i, 2}$ is to the left of $\alpha_{i, 1}$ we can move $\alpha_{i, 1}$ as far to the right as we want. So we can move all the $\alpha_{i, 1}$'s to the right of all the $\alpha_{i, 2}$'s. So,

$$
\beta=\alpha 1,2 \cdots \alpha_{k, 2} \cdot \alpha 1,1 \cdots \alpha_{k, 1}
$$

Define $\alpha_{1}=\alpha 1,1 \cdots \alpha_{k, 1}$ and $\alpha_{2}=\alpha 1,2 \cdots \alpha_{k, 2}$. Note that since the $\alpha i, 2^{\prime}$'s are all disjoint and have order 2 , and the $\alpha_{i, 1}$'s are all disjoint and have order 2, both α_{1} and α_{2} have order 2 . We have showen that $\beta=\alpha_{2} \alpha_{1}$ so β is the product of two permutations of order 2 .

Problem 6.8. If $\alpha, \beta \in S_{n}$, check that $\alpha \beta \alpha^{-1} \beta^{-1}$ always lies in A_{n} and that $\alpha \beta \alpha^{-1}$ belongs to A_{n} whenever β is an even permutation. Work out these elements when $n=4, \alpha=(2143)$ and $\beta=(423)$.

Proof. Since transpositions generate S_{n} write α as the product of n transpositions. Then α^{-1} can be written as a product of the transpositions of α taken in the opposite order. So if β can be written as the product of m transpositions, β^{-1} can also be written as the product of m transpositions. Then by composing the corresponding products of transpositions, we can write $\alpha \beta \alpha^{-1} \beta^{-1}$ as the product of $n+m+n+m=2(n+m)$ transpositions. This is an even number of transpositions regardless of what n and m are. So $\alpha \beta \alpha^{-1} \beta^{-1} \in A_{n}$.

Suppose $\alpha \beta \alpha^{-1}$ belongs to A_{n}. If α can be written as a product of n transpositions and β can be written as a product of m transpositions, then $\alpha \beta \alpha^{-1}$ can be written as a product of $2 n+m$ transpositions. Since $\alpha \beta \alpha^{-1}$ belongs to $A_{n}, 2 n+m$ is even. And since $2 n$ is even, m must be even as well. Thus β can be written as an even number of transpositions, so $\beta \in A_{n}$.

Now let $n=4, \alpha=(2143)$ and $\beta=(423)$. To do the method described above, we would write $\alpha=(23)(24)(21)$ and $\beta=(43)(42)$. Then $\alpha^{-1}=(21)(24)(23)$ and $\beta^{-1}=(42)(43)$. So $\alpha \beta \alpha^{-1} \beta^{-1}=(23)(24)(21) \cdot(43)(42) \cdot(21)(24)(23) \cdot(42)(43)$.

Since α and β are cyclic permutations, however, $\alpha \beta \alpha^{-1} \beta^{-1}$ is a bit easier to compute. We have $\alpha^{-1}=(3412)$ and $\beta^{-1}=(324)$. So $\alpha \beta \alpha^{-1} \beta^{-1}=(2143)(423)(3412)(324)=$ (124) which is in A_{4} and $\alpha \beta \alpha^{-1}=(2143)(423)(3412)=(123)$ which is also even since β is.

Problem 6.9. When n is odd show that (123) and $(1,2, \ldots, n)$ together generate A_{n}. When n is even show that (123) and $(2,3, \ldots, n)$ together generate A_{n}.

Proof. We will work with A_{n} for $n \geq 4$ since A_{3} is generated by (123), so there is nothing to show.

Note that Theorem 6.5 actually showed that A_{n} is generated by 3-cycles of the form (1ab).

Remark. Three cycles of the form (1 $a a+1$) generate A_{n}.
Proof. Note that $(1 a+1 a+2)(1 a a+1)=(1 a a+2)$. We can generalize this. That is, if $b>a$ then

$$
(1 a b)=(1 b-1 b)(1 b-2 b-1) \cdots(1 a+1 a+2)(1 a a+1)
$$

If $b<a$ then $(1 a b)=(1 b a)^{2}$ where ($1 b a$) can be written as a product of elements of the form $(1 k k+1)$ as shown above. Since 3 -cycles of the form $(1 k k+1)$ are in A_{n}, and they can be multiplied to get any 3-cycle of the form ($1 a b$), we have that 3 -cycles of the form ($1 k k+1$) generate A_{n}.

Remark. A_{n} is generated by elements of the form $(a, a+1, a+2)$.
Proof. Note that $(234)(123)(234)^{-1}=(134)$ (and since $n \geq 4$ these elements are in $\left.A_{n}\right)$. Again, we can generalize this. That is, for any $b>1$, we have $(1 b b+1)=$ $(b-1 b b+1)(b-2 b-1 b) \cdots(234)(123)(234)^{-1} \cdots(b-2 b-1 b)^{-1}(b-1 b b+1)^{-1}$.

Again, since 3 -cycles of the form $(k k+1 k+2)$ are in A_{n}, and they can be multiplied to get any 3 -cycle of the form ($1 b b+1$), we have that 3 -cycles of the form $(k k+1 k+2)$ generate A_{n}.

Let n be odd. Let H be the subgroup generated by (123) and $(1,2, \ldots, n)$. Clearly $(123) \in A_{n}$. Since n is odd, $(1,2, \ldots, n) \in A_{n}$. So H is a subgroup of A_{n}. We need to show that any element of A_{n} is in H.

Note that $(12 \ldots n)(a b c)(12 \ldots n)^{-1}=(a+1 b+1 c+1)$ where we take $a-1, b-1$ and $c-1 \bmod n$, so if for example $a=1$ then $a-1=n$. This is because if we start with some number $d-1$, then $(12 \ldots n) \cdot(d-1)=d$. If d is not one of a, b, c then $(a b c)(d)=d$. Then $(12 \ldots, n)^{-1}(d)=d-1$. So the permutation $(12 \ldots n)^{-1}(a b c)(12 \ldots n)$ leaves $d-1$ fixed whenever d is not a, b or c. And one can check that it send $a-1$ to $b-1$ and so on.

Applying this to the generators of $H,(12 \ldots n)(123)(12 \ldots n)^{-1}=(234)$. In fact for any number $a,(12 \ldots n)^{a-1}(123)(12 \ldots n)^{-(a-1)}=(a a+1 a+2)$, where again subtraction is $\bmod n$. Thus all 3 -cycles of the form $(a a+1 a+2)$ are in H. Since these 3 -cycles generate A_{n}, we have that $H=A_{n}$.

Now let n be even. In this case, (123) and $(23 \ldots n) \in A_{n}$. We now need to show that every element of $H=<(123),(23 \ldots n)>$ is in A_{n}. Note that $(23 \ldots n)(123)(23 \ldots n)^{-1}=(134)$. In general, $(23 \ldots n)^{a-2}(123)(23 \ldots n)^{-(a-2)}=$
$(1 a a+1)$. We have shown that elements of the form $(1 a a+1)$ generate A_{n} so again $H=A_{n}$.
Problem 6.11. Find the order of each permutation listed in Exercise 6.2.
Answer. The order of a permutation is the lcm of the lengths of the disjoint cycles. So the order of $\left[\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 7 & 6 & 4 & 1 & 8 & 2 & 3 & 5\end{array}\right]=(1734)(26)(58)$ is 4 . The order of $(4568)(1245)=(125)(468)$ is 3 . And the order of $(624)(253)(876)(45)=(25687)(34)$ is 10 .

Problem 7.1. Check that the numbers $1,2,4,5,7,8$ form a subgroup under multiplication modulo 9 and show that this group is isomorphic to \mathbb{Z}_{6}.
Proof. Let G be the set $\{1,2,4,5,7,8\}$ under multiplication $\bmod 9$. The set is closed under multiplication since this set has all the numbers between 1 and 9 that share no common factors with 9 . So products of elements in this set will also have no common fact with 9 , and this property is preserved when we take products mod 9. 1 is the identity in this set. The numbers 2 and 5 are inverses, the numbers 4 and 7 are inverses and the number 8 is its own inverse. So this set has inverses. It's associative because multiplication $\bmod 9$ is associative. Therefore, G is a group.

We define the following map $f: G \rightarrow \mathbb{Z}_{6}$. Let $f(1)=0$ because we need to send the identity of G to the identity of \mathbb{Z}_{6}. Since 2 generates G, deciding where to send 2 determines where the other elements go because we need f to be a homomorphism. Let $f(2)=1$. Then since $2 \times_{9} 2=4$ we have $f(4)=f(2)+f(2)=2$. Again, $4 \times{ }_{9} 2=8$ means $f(8)=f(4)+f(2)=3$. Next $f(7)=f(8 \times 92)=f(8)+f(2)=4$ and $f(5)=f\left(2 \times_{9} 7\right)=f(2)+f(8)=5$.

Since f sends distinct elements of G to distinct elements of \mathbb{Z}_{6}, it is one to one. Since every element of \mathbb{Z}_{6} has some element of G sent to it, f is onto. So f is a bijection. The above definitions ensure that f satisfies $f\left(x \times_{9} y\right)=f(x)+f(y)$ so it is a homomorphism. Thus f is an isomorphism.

