
Homework 3 solutions.

Problem 6.1. Write out a multiplication table for S3.

Answer.

· e (12) (13) (23) (123) (132)
e e (12) (13) (23) (123) (132)

(12) (12) e (132) (123) (23) (13)
(13) (13) (123) e (132) (12) (23)
(23) (23) (132) (123) e (13) (12)
(123) (123) (13) (23) (12) (132) e
(132) (132) (23) (12) (123) e (123)

�

Problem 6.2. Express each of the following elements of S8 as a product of disjoint
cyclic permutations, and as a product of transpositions. Which, if any, of these
permutations belong to A8?

Answer.

•

[

1 2 3 4 5 6 7 8
7 6 4 1 8 2 3 5

]

:

As a product of disjoint cycles, this is (1734)(26)(58). As a product of
transpositions, this is (14)(13)(17)(26)(58). Since there are an odd number
of transpositions, this permutations doesn’t belong to A8.

• (4568)(1245):
As a product of disjoint cycles, this is (125)(468). As a product of trans-

positions, this is (15)(12)(48)(46). There are an even number of transposi-
tions, so this permutation does belong to A8.

• (624)(253)(876)(45):
As a product of disjoint cycles, this is (25687)(34). As a product of

transpositions, this is (27)(28)(26)(25)(34). There are an odd number of
transpositions, so this permutations does not belong to A8.

�

Problem 6.3. Show that the elements of S9 which send the numbers 2,5,7 among
themselves form a subgroup of S9. What is the order of this subgroup?

Proof. We showed in the last homework that if H is a finite subset of a group G
then H is a subgroup iff it is closed under multiplication. Let H be the subset of
S9 that sends the numbers 2,5,7 among themselves. Since S9 is a finite group, H
is a finite subset. So we just need to show it is closed under multiplication.

Let α, β ∈ H. Let n ∈ {2, 5, 7}. Then α(n) ∈ {2, 5, 7}. Since β send the
set {2, 5, 7} to itself, β(α(n)) ∈ {2, 5, 7} as well. So β · α sends the elements of
the set {2, 5, 7} among themselves. Thus, β · α ∈ H, so H is closed under group
multiplication. Therefore, H is a subgroup.

Now we find the order of H. Let α ∈ H. Note that α must consist of two
disjoint transpositions: one which permutes the elements of {2, 5, 7} and one which
permutes the remaining numbers between 1 and 9. So we will first count the number
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of ways to permute the numbers 2,5,7 and then the number of ways to permute the
rest of the numbers between 1 and 9.

There are 3! ways to permute elements of the set {2, 5, 7}. That’s because an
element α ∈ H has 3 choices of where to send 2, then 2 remaining choices of where
to send 5, and finally one choice of where to send 7. Likewise, since there are six
elements between 1 and 9 that are not 2, 5 or 7, there are 6! ways to permute them.

Any way of permuting 2, 5 and 7 can be paired with any way of permuting the
rest of the numbers between 1 and 9 to give an element of H. And any element
of H is a way of permuting 2, 5 and 7 combined with a way of permuting the rest
of the numbers between 1 and 9. So there are 3! · 6! = 6 · 720 = 4320 elements of
H. �

Problem 6.4. Find a subgroup of S4 which contains six elements. How many
subgroups of order six are there in S4?

Answer. The group S3 = {e, (12), (23), (13), (123), (132)} is a subgroup of S4 and
it has order 6.

There are 4 subgroups of order 6. �

Problem 6.5. Compute αP (x1, x2, x3, x4) when α1 = (143) and when α2 =
(23)(412).

Answer. Since α1 = (143) is even, we should get α1P = P and since α2 = (23)(412)
is odd, we should get α2P = −P . But we can check this by calculating.

We start with

P (x1, x2, x3, x4) = (x1 − x2)(x1 − x3)(x1 − x4)(x2 − x3)(x2 − x4)(x3 − x4)

Since α1(1) = 4, α1(2) = 2, α1(3) = 1 and α1(4) = 3 we substitute every 1 by a 4
and so on to get

α1P (x1, x2, x3, x4) = (x4 − x2)(x4 − x1)(x4 − x3)(x2 − x1)(x2 − x3)(x1 − x3)

= −(x2 − x4) · −(x1 − x4) · −(x3 − x4) · −(x1 − x2) · (x2 − x3) · (x1 − x3)

= P (x1, x2, x3, x4)

where the last line is true because there are an even number of - signes.
Next we do the same thing with α2. We have that α2(1) = 3, α2(2) = 4,

α2(3) = 2 and α2(4) = 1.

α2P (x1, x2, x3, x4) = (x3 − x4)(x3 − x2)(x3 − x1)(x4 − x2)(x4 − x1)(x2 − x1)

= (x3 − x4) · −(x2 − x3) · −(x1 − x3) · −(x2 − x4) · −(x1 − x4) · −(x1 − x2)

= −P (x1, x2, x3, x4)

where the last line is true because there are an odd number of minus signs. �

Problem 6.6. If H is a subgroup of Sn and if H is not contained in An, prove
that precisely one-half of the elements of H are even permutations.

Proof. Let H be a subgroup of Sn. If H is not contained in An, it must contain
some odd permutation α. Then for any β in H αβ is also in H. Since α is odd, it
can be written as the product of an odd number of transpositions. If β is even it
can be written as an even number of transpositions. That means αβ can be written
as an odd number of transpositions. So if β is even, then αβ is odd.
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We can write H as the union of sets of the form {β, αβ} where β is even. That
is,

H =
⋃

β∈H, β even
{β, αβ}

To see this, note that clearly all the even elements of H are in this union. And if γ
is an odd element of H, then α−1γ is even (because α−1 is odd since α is odd). So
the pair {α−1γ, γ} is in the union since αα−1γ = γ, so γ is in the union. Therefore
all the odd and even elements of H are in the above union, so we get all of H.

Given distinct β and β′, the sets {β, αβ} and {β′, αβ′} are disjoint. To see this,
note that if β 6= β′, then αβ 6= αβ′. So if two sets {β, αβ} and {β′, αβ′} were not
disjoint then we must have that either β = αβ′ or β′ = αβ. But β and β′ are
assumed to be even permutations, so we know that αβ and αβ′ are odd. So those
equalities cannot be true. Therefore, any two such sets are or disjoint.

Since we can write H as the disjoint union of sets where one element is even and
the other element is odd, H must have the same number of odd elements as even
elements. Therefore precisely one-half of the elements of H are even permutations.

�

Problem 6.7. Show that if n is at least 4 every element of Sn can be written as
a product of two permutations, each of which has order 2. (Experiment first with
cyclic permutations).

Proof. Note that a product of disjoint transpositions has order 2.
Let’s do an example first. Take a cyclic permutation (a1a2a3a4a5a6). This sends

a1 to a2 and so on in a circle.

a1

a2

a3

a4

a5

a6

a1's spot

a2's spot

a3's spot

a4's spot

a5's spot

a6's spot

↕
↕
↕

→
a1

a2

a3

a4

a5

a6
a1's spot

a2's spot

a3's spot

a4's spot

a5's spot

a6's spot
↔

↔

Figure 1. First do (a1 a6)(a2 a5)(a3 a4) and then do (a2 a6)(a3 a5)

In the above picture, we start with each ai in its spot. We need to move each
ai one spot clockwise. So first we do transpositions (a1 a6)(a2 a5)(a3 a4) giving us
the configuration shown in the right hand diagram. That is, a6 is in a1’s spot and
so on. Then we do transpositions (a2 a6)(a3 a5) which put a1 in a2’s spot, and
generally puts ai in ai+1’s spot, which is what we needed.

Now we generalize this to any cyclic permutation. Let α = (a1 a2 . . . an) be a
cyclic permutation. We will show that we can write α as the product of α1 and
α2 where α1 and α2 are two permutations of order 2. Furthermore, α1 and α2 will
each be products of disjoint transpositions where the only numbers that appear in
these transpositions are the a1 . . . an that appear in α.
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So let α1 = (a1 an)(a2 an−1)· · · (ai an−i+1) · · · (aN an−N+1) where N is the
biggest integer smaller than n

2 (so it’s just n/2 if n is even.) Let α2 = (a2 an)
(a3 an−1) · · · (ai+1 an−i+1) · · · (aN+1 an−N+1). Note that α1 and α2 are each
products of disjoint transpositions, so they have order 2.

Then we claim that α2α1 = α. Since α1 and α2 are products of disjoint transposi-
tions, what they do to any one ai is determined just by the transposition containing
that ai. So for i ≤ N , the transposition (ai an−i+1) in α1 sends ai to an−i+1 and
then the transposition (ai+1 an−i+1) in α2 sends an−i+1 to ai+1. So α2α1 sends
ai to ai+1 if i ≤ N . If i > N set j = n − i + 1. Note that j ≤ N since i > N
because N is at most n/2. We then have that i = n − j + 1. So the transpo-
sition (aj an−j+1) is in α1 and it sends ai = an−j+1 to aj and the transposition
(aj−1+1 an−(j−1)+1) = (aj an−j+2) in α2 sends aj to an−j+2. But since j = i−n+1,
n − j + 2 = i + 1. Thus α2α1 sends ai to ai+1 when i > N as well. So α2α1 is
indeed α.

Now let β be any permutation. Write β as the product of disjoint permutations
βi, so that β = β1 · · ·βk. Then each βi can be written as the product of two
transpositions αi,1 and αi,2 each of order 2 where αi,1 and αi,2 only permute the
numbers that appear in βi. Since the βi are disjoint, if j 6= i, then αi,1 and αi,2 are
disjoint from αj,1 and αj,2. So αi,1 commutes with αj,1and αi,2 for all j 6= i. Thus
we can write

β = β1 · · ·βk

= α1,2α1,1 · · ·αk,2αk,1

Since αi,2 is to the left of αi,1 we can move αi,1 as far to the right as we want. So
we can move all the αi,1’s to the right of all the αi,2’s. So,

β = α1, 2 · · ·αk,2 · α1, 1 · · ·αk,1

Define α1 = α1, 1 · · ·αk,1 and α2 = α1, 2 · · ·αk,2. Note that since the αi, 2′’s are
all disjoint and have order 2, and the αi,1’s are all disjoint and have order 2, both
α1 and α2 have order 2. We have showen that β = α2α1 so β is the product of two
permutations of order 2. �

Problem 6.8. If α, β ∈ Sn, check that αβα−1β−1 always lies in An and that
αβα−1 belongs to An whenever β is an even permutation. Work out these elements
when n = 4, α = (2143) and β = (423).

Proof. Since transpositions generate Sn write α as the product of n transpositions.
Then α−1 can be written as a product of the transpositions of α taken in the
opposite order. So if β can be written as the product of m transpositions, β−1

can also be written as the product of m transpositions. Then by composing the
corresponding products of transpositions, we can write αβα−1β−1 as the product of
n+m+n+m = 2(n+m) transpositions. This is an even number of transpositions
regardless of what n and m are. So αβα−1β−1 ∈ An.

Suppose αβα−1 belongs to An. If α can be written as a product of n transposi-
tions and β can be written as a product of m transpositions, then αβα−1 can be
written as a product of 2n+m transpositions. Since αβα−1 belongs to An, 2n+m
is even. And since 2n is even, m must be even as well. Thus β can be written as
an even number of transpositions, so β ∈ An.
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Now let n = 4, α = (2143) and β = (423). To do the method described above,
we would write α = (23)(24)(21) and β = (43)(42). Then α−1 = (21)(24)(23) and
β−1 = (42)(43). So αβα−1β−1 = (23)(24)(21) · (43)(42) · (21)(24)(23) · (42)(43).

Since α and β are cyclic permutations, however, αβα−1β−1 is a bit easier to com-
pute. We have α−1 = (3412) and β−1 = (324). So αβα−1β−1 = (2143)(423)(3412)(324) =
(124) which is in A4 and αβα−1 = (2143)(423)(3412) = (123) which is also even
since β is. �

Problem 6.9. When n is odd show that (123) and (1, 2, . . . , n) together generate
An. When n is even show that (123) and (2, 3, . . . , n) together generate An.

Proof. We will work with An for n ≥ 4 since A3 is generated by (123), so there is
nothing to show.

Note that Theorem 6.5 actually showed that An is generated by 3-cycles of the
form (1ab).

Remark. Three cycles of the form (1 a a+ 1) generate An.

Proof. Note that (1 a + 1 a + 2)(1 a a + 1) = (1 a a + 2). We can generalize this.
That is, if b > a then

(1ab) = (1 b− 1 b)(1 b− 2 b− 1) · · · (1 a+ 1 a+ 2)(1 a a+ 1)

If b < a then (1ab) = (1ba)2 where (1ba) can be written as a product of elements of
the form (1 k k + 1) as shown above. Since 3-cycles of the form (1 k k + 1) are in
An, and they can be multiplied to get any 3-cycle of the form (1ab), we have that
3-cycles of the form (1 k k + 1) generate An. �

Remark. An is generated by elements of the form (a, a+ 1, a+ 2).

Proof. Note that (234)(123)(234)−1 = (134) (and since n ≥ 4 these elements are in
An). Again, we can generalize this. That is, for any b > 1, we have (1 b b + 1) =
(b−1 b b+1)(b−2 b−1 b) · · · (234)(123)(234)−1 · · · (b−2 b−1 b)−1(b−1 b b+1)−1.

Again, since 3-cycles of the form (k k + 1 k + 2) are in An, and they can be
multiplied to get any 3-cycle of the form (1 b b + 1), we have that 3-cycles of the
form (k k + 1 k + 2) generate An. �

Let n be odd. Let H be the subgroup generated by (123) and (1, 2, . . . , n).
Clearly (123) ∈ An. Since n is odd, (1, 2, . . . , n) ∈ An. So H is a subgroup of An.
We need to show that any element of An is in H.

Note that (12 . . . n)(abc)(12 . . . n)−1 = (a+1 b+1 c+1) where we take a−1, b−1
and c − 1 mod n, so if for example a = 1 then a − 1 = n. This is because if we
start with some number d − 1, then (12 . . . n) · (d − 1) = d. If d is not one of
a, b, c then (abc)(d) = d. Then (12 . . . , n)−1(d) = d − 1. So the permutation
(12 . . . n)−1(abc)(12 . . . n) leaves d − 1 fixed whenever d is not a, b or c. And one
can check that it send a− 1 to b− 1 and so on.

Applying this to the generators of H, (12 . . . n)(123)(12 . . . n)−1 = (234). In fact
for any number a, (12 . . . n)a−1(123)(12 . . . n)−(a−1) = (a a+ 1 a+ 2), where again
subtraction is mod n. Thus all 3-cycles of the form (a a+ 1 a+ 2) are in H. Since
these 3-cycles generate An, we have that H = An.

Now let n be even. In this case, (123) and (23 . . . n) ∈ An. We now need
to show that every element of H =< (123), (23 . . . n) > is in An. Note that
(23 . . . n)(123)(23 . . . n)−1 = (134). In general, (23 . . . n)a−2(123)(23 . . . n)−(a−2) =
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(1 a a + 1). We have shown that elements of the form (1 a a + 1) generate An so
again H = An. �

Problem 6.11. Find the order of each permutation listed in Exercise 6.2.

Answer. The order of a permutation is the lcm of the lengths of the disjoint cycles.

So the order of

[

1 2 3 4 5 6 7 8
7 6 4 1 8 2 3 5

]

= (1734)(26)(58) is 4. The order of

(4568)(1245) = (125)(468) is 3. And the order of (624)(253)(876)(45) = (25687)(34)
is 10. �

Problem 7.1. Check that the numbers 1,2,4,5,7,8 form a subgroup under multi-
plication modulo 9 and show that this group is isomorphic to Z6.

Proof. Let G be the set {1, 2, 4, 5, 7, 8} under multiplication mod 9. The set is
closed under multiplication since this set has all the numbers between 1 and 9 that
share no common factors with 9. So products of elements in this set will also have
no common fact with 9, and this property is preserved when we take products mod
9. 1 is the identity in this set. The numbers 2 and 5 are inverses, the numbers 4
and 7 are inverses and the number 8 is its own inverse. So this set has inverses. It’s
associative because multiplication mod 9 is associative. Therefore, G is a group.

We define the following map f : G → Z6. Let f(1) = 0 because we need to send
the identity of G to the identity of Z6. Since 2 generates G, deciding where to send 2
determines where the other elements go because we need f to be a homomorphism.
Let f(2) = 1. Then since 2 ×9 2 = 4 we have f(4) = f(2) + f(2) = 2. Again,
4×9 2 = 8 means f(8) = f(4)+ f(2) = 3. Next f(7) = f(8×9 2) = f(8)+ f(2) = 4
and f(5) = f(2×9 7) = f(2) + f(8) = 5.

Since f sends distinct elements of G to distinct elements of Z6, it is one to one.
Since every element of Z6 has some element of G sent to it, f is onto. So f is a
bijection. The above definitions ensure that f satisfies f(x×9 y) = f(x) + f(y) so
it is a homomorphism. Thus f is an isomorphism. �


