Homework 2 solutions.

Problem 4.4. Let g be an element of the group G. Keep g fixed and let x vary through G. Prove that the products gx are all distinct and fill out G. Do the same for the products xg.

Proof. Let $g \in G$. Let $x_1 \neq x_2 \in G$. We need to show that $gx_1 \neq gx_2$.

Suppose for contradiction that $gx_1 = gx_2$. Since G is a group, $g^{-1} \in G$. So this means that $g^{-1}(gx_1) = g^{-1}(gx_2)$. By associativity, this means that $(g^{-1}g)x_1 = (g^{-1}g)x_2$. This simplifies to $ex_1 = ex_2$, where e is the identity. Finally, by the property of the identity, we get that $x_1 = x_2$. But this contradicts the assumption that $x_1 \neq x_2$. So we have shown that if $x_1 \neq x_2$ then $gx_1 \neq gx_1$. Thus all the elements of the form gx are distinct.

Similarly, we have to show that if $x_1 \neq x_2 \in G$ then $x_1g \neq x_2g$. Again, suppose not. That is, suppose that $x_1g = x_2g$. But then when we multiply both sides by g^{-1} on the right, and use the same group properties as above, we get that $x_1 = x_1$. Again, this is a contradiction, so we must have that all elements of the form xg are distinct.

Next we have to show that the sets $S = \{gx | x \in G\}$ and $S' = \{xg | x \in G\}$ fill out G. That is, for each element $h \in G$, we need to find elements $x, x' \in G$ s.t. xg = gx' = h. So let $x = hg^{-1}$ and let $x' = g^{-1}h$. We know that x, x' are in Gsince $g^{-1} \in G$ by the inverse property, and the products are in G as G is closed under multiplication.

Now we just compute:

$$xg = (hg^{-1})g$$
$$= h(g^{-1}g)$$
$$= he$$
$$= h,$$

and similarly we can compute that $gx' = g(g^{-1}h)$ is just h after using all three of the group properties.

So for each element $h \in G$, we have found x, x' s.t. xg = gx' = h. Therefore the sets S and S' fill out G.

Problem 4.5. An element $x \in G$ satisfies $x^2 = e$ precisely when $x = x^{-1}$. Use this observation to show that a group of even order must contain an odd number of elements of order 2.

Proof. Let G be a group of even order. Let |G| denote the order of G. So we can write |G| = 2n for some $n \in \mathbb{Z}$. Let S be the set of elements of G that have order greater than 2. Since only elements of order 2 and the identity satisfy $x^2 = e$, we can write $S = \{x \in G | x^2 \neq e\}$. We want to show that S has an even number of elements. We use the idea that if an element has order bigger than 2, it is distinct from its inverse, so elements of S come in pairs. To make this precise, write S as the following union:

$$S = \bigcup_{x \in S} \{x, x^{-1}\}.$$

We show later that the order of x is the same as the order of x^{-1} so this union is indeed S. Since $x^2 \neq e$ for $x \in S$, we have that $x \neq x^{-1}$, so each set in this union has two distinct elements. Since inverses are unique, two sets of the form $\{x_1, x_1^{-1}\}, \{x_2, x_2^{-1}\}\$ are either equal or disjoint. So we can write S as the disjoint union of sets with 2 elements each. Therefore S has an even number of elements. Let 2m be the number of elements of S, for some $m \in \mathbb{Z}$.

Let T be the set of elements in G of order 2. Let k be the number of elements of T. Since G is the disjoint union of T, S and $\{e\}$, the number of elements of G is the number of elements of T plus the number of elements in S plus 1. That is, 2n = 2m + k + 1. Solving for k we get k = 2(n - m) - 1. Since $n, m \in \mathbb{Z}$, we get that k is odd. So we have shown that there is an odd number of elements of order 2.

Problem 4.8. Let x and g be elements of a group G. Show that x and gxg^{-1} have the same order. Now prove that xy and yx have the same order for any two elements x, y of G.

Proof. Let G be a group, and let $x, y, g \in G$. Denote the order of an element x by |x|. Suppose |x| = n, and $|gxg^{-1}| = m$. We need to show that n = m. Recall that the order of an element x is the smallest number n s.t. $x^n = e$. First we will show that the order of gxg^{-1} is at most n. You can use group properties to show that $gxg^{-1} \cdot gxg^{-1} = gx^2g^{-1}$. So we can do the following calculation:

$$(gxg^{-1})^n = \underbrace{gxg^{-1}gxg^{-1}\cdots gxg^{-1}}_{\text{n times}}$$

= gx^ng^{-1}
= gg^{-1} since $x^n = e$, as the order of x is n
= e

We have just shown that $(gxg^{-1})^n = e$, so $|gxg^{-1}| \leq |x|$. Since this is true for arbitrary x and g, let $x' = gxg^{-1}$ and let $g' = g^{-1}$. By what we have just shown, $|g'x'g'^{-1}| \leq |x'|$. But since $g'^{-1} = g$, we know that $g'x'g'^{-1} = g^{-1}(gxg^{-1})g = x$. Therefore, $|g'x'g'^{-1}| \leq |x'|$ just means that $|x| \leq |gxg^{-1}|$. Thus $|gxg^{-1}| = |x|$. Now we will show that |xy| = |yx|. Suppose |xy| = n. Then,

$$\underbrace{xy\cdots xy}_{n \text{ times}} = 0$$

Multiplying both sides by y^{-1} on the right, we get

$$xy \cdots xyy^{-1} = ey^{-1} = y^{-1}$$
 i.e.
 $\underbrace{xy \cdots xy}_{n-1 \text{ times}} x = y^{-1}$

Now multiplying by y on the left, we get

$$y \underbrace{xy \cdots xy}_{\text{n-1 times}} x = yy^{-1} = e$$

Note that in the last line, we really have yx multiplied by itself n times. Thus $|yx| \leq |xy|$. Since this is true for arbitrary x and y, we can switch the role of x and y. So we see that $|xy| \leq |yx|$ as well. Therefore, |xy| = |yx|.

How this relates to last week's bonus problem: Suppose R and S are rotations of the sphere, and RS has finite order. Since rotations of the sphere form a group,

the above statement shows that SR has the same order as RS. If RS is a rotation of order n, then it must rotate by the angle $2\pi/n$. Thus SR rotates by $2\pi/n$ as well. Therefore, if RS has finite order then both RS and SR are rotations through the same angle. Note that there are plenty of rotations that are not finite order, however. Consider, for example, a rotation of the sphere through any axis by angle $\pi/\sqrt{2}$.

Problem 5.1. Find all the subgroups of each of the groups \mathbb{Z}_4 , \mathbb{Z}_7 , \mathbb{Z}_{12} , D_4 and D_5 .

Answer. We start with a general remark that will make this problem easier.

Remark. Let G by a group, and let $g \in G$ have finite order. Then g^{-1} is a power of g. This is because there is some n s.t. $g^n = e$. So $g \cdot g^{n-1} = e$ meaning $g^{-1} = g^{n-1}$.

In all of these groups, each element has finite order so this remark applies.

We will write $G = \langle g_1, \ldots, g_n \rangle$ for a group generated by g_1, \ldots, g_n . In the following examples, we will find lists of subgroups by choosing subsets of each group to be generators. Note that the above remark means that $\langle g \rangle = \langle g^{-1} \rangle$ for all elements g of finite order.

- \mathbb{Z}_4 : First of all 1 and 3 generate \mathbb{Z}_4 , so if they were in any generating set we would get all of \mathbb{Z}_4 back. On the other hand, the only multiples of 2 are 0 and 2 itself. So the three subgroups are $\{e\}, <2 \ge \{0,2\}$ and \mathbb{Z}_4 .
- \mathbb{Z}_7 : All the non-zero elements n of \mathbb{Z}_7 generate \mathbb{Z}_7 . So the only two subgroups are $\{0\}$ and \mathbb{Z}_7 .
- \mathbb{Z}_{12} : The elements 1,5,7 and 11 generate \mathbb{Z}_{12} . Since 10 is the additive inverse of 2, < 2 >=< 10 > by the remark at the start of the solution. Similarly, < 3 >=< 9 > and < 4 >=< 8 >. 6 is its own inverse so < 6 > isn't paired with anyone.

Next, we look at subgroups with more than one generator. By the above, including 1,5,7 or 11 in a generating set yields all of \mathbb{Z}_{12} . If both 2 and 3 are generators of a subgroup, then 5 is in that subgroup, so including both 2 and 3 in a generating set yields all of \mathbb{Z}_{12} . Likewise, including 3 and 4 means 7 will be in the subgroup, so you get all of \mathbb{Z}_{12} again. Since <4> is a subset of <2>, including both 2 and 4 in a generating set is the same as including just 2. So <2, 4>=<2>. Likewise, <2, 6>=<2>. Finally, including 4 and 6 in a generating set means 2 will be in your subgroup, so you may as well have just included 2. That is, <4, 6>=<2>.

Therefore the subgroups of \mathbb{Z}_{12} are $\{0\}, <2 >= \{0, 2, 4, 6, 8, 10\}, <3 >= \{0, 3, 6, 9\}, <4 >= \{0, 4, 8\}, <6 >= \{0, 6\}$ and \mathbb{Z}_{12} .

• $D_4 = \{e, r, r^2, r^3, s, rs, r^2s, r^3s\}$: The one-generator subgroups of D_4 are $\{e\}$, rotation subgroups $< r > = \{e, r, r^2, r^3\}, < r^2 > = \{e, r^2\}$ and reflection subgroups $< rs > = \{e, rs\}, < r^2s > = \{e, r^2s\}$ and $< r^3s > = \{e, r^3s\}$.

To get more subgroups we can add generators. Adding a rotation to a rotation subgroup doesn't yield anything new. Adding any reflection to $\langle r \rangle$ gives us a subgroup with both r and s, meaning we get D_4 back. But we can add a reflection to the subgroup $\langle r^2 \rangle$. We get $\langle r^2, s \rangle =$ $\{e, r^2, s, r^2s\}$, and $\langle r^2, rs \rangle = \{e, r^2, rs, r^3s\}$. Adding any more generators to these two subgroups gives us all of D_4 .

Putting another reflection in a reflection subgroup means that subgroup will have a rotation, and we have just listed all the subgroups with a rotation and a reflection. So the only subgroups are the ones listed above and all of D_4 .

• $D_5 = \langle e, r, r^2, r^3, r^4, s, rs, r^2s, r^3s, r^4s \rangle$: The one-generator subgroups are: Rotations : $\{e\}, \langle r \rangle = \{e, r, r^2, r^3, r^4\}$, Reflections: $\langle s \rangle = \{e, s\}, \langle rs \rangle = \{e, rs\}, \langle r^2s \rangle = \{e, r^2s\}, \langle r^3s \rangle = \{e, r^3s\}$ and $\langle r^4s \rangle = \{e, r^4s\}$. We cannot add any reflections to the subgroup generated by r since then we would get r and s in the subgroup, giving us the whole group back. Putting adding a reflection to a reflection subgroup will give a rotation, and as we have just said, a subgroup with a rotation and a reflection is the whole group. So the only subgroups are the ones listed above, and D_5 itself.

Problem 5.4. Find the subgroup of D_n generated by r^2 and r^2s , distinguishing carefully between the cases n odd and n even.

Answer. Let $G = \langle r^2, r^2 s \rangle$. The elements of G are of the form $(r^2)^{a_1} \cdot (r^2 s)^{b_1} \cdots (r^2)^{a_k} \cdot (r^2 s)^{b_k}$ where $a_1, \ldots, a_k, b_1, \ldots, b_k \in \mathbb{Z}$. One can check that $r^2 s \cdot r^2 = s$ and $r^2 s \cdot r^2 s = e$. So the expression above simplifies to an expression of the form $r^{2l} s$ for some $l \in \mathbb{Z}$.

Suppose *n* is even. Then n = 2m for some $m \in \mathbb{Z}$. Thus $r^n = (r^2)^m = e$, so the powers of r^2 are all the even powers of *r* up to 2(m-1). Thus $G = \{e, r^2, \ldots, r^{2(m-1)}, r^2s, \ldots, r^{2(m-1)}s\}$.

Now suppose n is odd. Then n = 2m + 1 for some $m \in \mathbb{Z}$, and $r^{2m+1} = e$. Since r^{2m+2} is a power of r^2 and $r^{2m+2} = r$, we have that r is in G. And since $r^2 s \cdot r^2 = s, s \in G$. But r and s generate all of D_n , so $G = D_n$.

Problem 5.5. Suppose H is a *finite* non-empty subset of a group G. Prove that H is a subgroup of G iff xy belongs to H whenever x and y belong to H.

Proof. Let G be a group, and H a finite subset of G.

Suppose xy belongs to H whenever x and y belong to H. This means that H is closed under the group operation. And since H is a subset of G, it is associative. So we only need to show that the identity is in H and elements of H have inverses also in H.

Since *H* is non-empty, we can choose an arbitrary element $x \in H$. Consider the set $S = \{x, x^2, x^3, \ldots, x^n, \ldots\}$. By the assumption, this whole set is in *H* since every element of *S* is just *x* multiplied by the previous element. But *H* is a finite set. So *S* must also be a finite set. Which means that elements of *S* must repeat. That is, there are numbers $i \neq j$ s.t. $x^i = x^j$. Multiplying both sides by x^{-i} , we get the equation $e = x^{j-i}$. But x^{i-j} is in *S*. Thus, the identity is in *H*, and moreover the identity is a power of *x*. Write n = j - i. Since $x^n = e$, then $x \cdot x^{n-1} = e$. So $x^{n-1} = x^{-1}$. Since $x^{n-1} \in H$, the inverse of *x* is in *H*. Since *x* was chosen arbitrarily, every element of *H* has an inverse. So *H* is a subgroup of *G*.

Now suppose H is a subgroup of G. Then H is closed under group multiplication, so for any x and y in H, xy is also in H. Therefore, when H is a finite subset of G, H is closed under multiplication if and only if it is a subgroup.

Problem 5.7. Let G be an *abelian* group and let H consist of those elements of G which have finite order. Prove that H is a subgroup of G.

Proof. Since H is a subset of G it already has the associativity property. Also the identity has order 1, so $e \in H$. So we just need to show it is closed under multiplication and has inverses.

Let $x, y \in H$. Let |x| = n, |y| = m for $n, m \in \mathbb{Z}$. Since G is abelian, $(xy)^{nm} = x^{nm}y^{nm}$. But $x^{nm} = (x^n)^m = e^m$ and $y^{nm} = (x^m)^n = e^n$. So $(xy)^{nm} = e$. Thus the order of xy is at most nm, so $xy \in H$. Therefore H is closed under multiplication.

Let $x \in H$ with |x| = n. Then $x^n = e$, so multiplying both sides by x^{-n} we get $e = x^{-n} = (x^{-1})^n$. So the order of x^{-1} is at most n. (In fact, it is n, since we can reverse the roles of x and x^{-1} . Therefore, $x^{-1} \in H$.

So we have shown that H is a subgroup of G.

Problem 5.11. Show \mathbb{Q} is not cyclic. Even better, prove that \mathbb{Q} cannot be generated by a finite number of elements.

Proof. First we show that \mathbb{Q} is not cyclic. We will do this by contradiction, so suppose it is cyclic. Then it would be generated by a rational number of the form $\frac{a}{b}$ where $a, b \in \mathbb{Z}$. The set $\langle \frac{a}{b} \rangle$ consists of all integer multiples of $\frac{a}{b}$. So if $\mathbb{Q} = \langle \frac{a}{b} \rangle$ then $\frac{a}{2b}$ must be an integer multiple of $\frac{a}{b}$. But if

$$c\frac{a}{b} = \frac{a}{2b}$$

then c = 1/2 which is not an integer. Therefore \mathbb{Q} cannot be generated by a single rational number, so \mathbb{Q} is not cyclic.

Now we show that \mathbb{Q} cannot be generated by a finite set of rational numbers. Suppose for contradiction that $\mathbb{Q} = \langle \frac{a_1}{b_1}, \ldots, \frac{a_n}{b_n} \rangle$. Since the number $\frac{1}{2b_1 \cdots b_n} \in \mathbb{Q}$, there must be integers c_1, \ldots, c_n s.t.

$$c_1\frac{a_1}{b_1} + \dots + c_n\frac{a_n}{b_n} = \frac{1}{2b_1\cdots b_n}$$

By adding together the fractions on the left hand side, we get

$$c_1\frac{a_1}{b_1} + \dots + c_n\frac{a_n}{b_n} = \frac{A_1 + \dots + A_n}{b_1 \cdots b_n}$$

where $A_i = c_i a_i b_1 \cdots b_{i-1} b_{i+1} \cdots b_n$. Write $A = A_1 + \ldots A_n$ to simplify notation. Note that since the A_i are integers, A must be an integer. So we claim that

$$\frac{A}{b_1 \cdots b_n} = \frac{1}{2b_1 \cdots b_n}$$

This can only happen if A = 1/2. But A was supposed to be an integer, so we have arrived at a contradiction. Thus \mathbb{Q} cannot be generated by a finite set of rational numbers.