Homework 2 solutions.

Problem 4.4. Let g be an element of the group G. Keep g fixed and let = vary
through G. Prove that the products gz are all distinct and fill out G. Do the same
for the products zg.

Proof. Let g € G. Let x1 # x2 € G. We need to show that gx; # gxs.

Suppose for contradiction that gz, = gr,. Since G is a group, g~ ! € G. So this
means that ¢g=!(gz1) = g~ !(gz2). By associativity, this means that (¢~'g)z; =
(971g)wo. This simplifies to ex; = exs, where e is the identity. Finally, by the
property of the identity, we get that xy = x5. But this contradicts the assumption
that z1 # z3. So we have shown that if xy # zo then gx; # gxr;. Thus all the
elements of the form gz are distinct.

Similarly, we have to show that if 2y # 22 € G then 19 # z2g. Again, suppose
not. That is, suppose that x1g = x2g. But then when we multiply both sides by
¢! on the right, and use the same group properties as above, we get that x; = ;.
Again, this is a contradiction, so we must have that all elements of the form zg are
distinct.

Next we have to show that the sets S = {gz|x € G} and S’ = {zg|z € G} fill
out G. That is, for each element h € G, we need to find elements z,z’ € G s.t.
xg = g’ = h. Solet = hg~! and let 2’ = g~'h. We know that z,2’ are in G
since g~! € G by the inverse property, and the products are in G as G is closed
under multiplication.

Now we just compute:

zg = (hg™")g
=h(g"'g)
= he
— h7

and similarly we can compute that gz’ = g(g~'h) is just h after using all three of
the group properties.

So for each element h € GG, we have found z, 2’ s.t. g = gz’ = h. Therefore the
sets S and S’ fill out G. O

Problem 4.5. An element = € G satisfies 22 = e precisely when z = 2. Use
this observation to show that a group of even order must contain an odd number
of elements of order 2.

Proof. Let G be a group of even order. Let |G| denote the order of G. So we can
write |G| = 2n for some n € Z. Let S be the set of elements of G that have order
greater than 2. Since only elements of order 2 and the identity satisfy 2 = e, we
can write S = {z € G|2? # e}. We want to show that S has an even number of
elements. We use the idea that if an element has order bigger than 2, it is distinct
from its inverse, so elements of S come in pairs. To make this precise, write S as

the following union:
S = U {z, 271},

zeS
We show later that the order of x is the same as the order of z—! so this union
is indeed S. Since x? # e for x € S, we have that z # 27!, so each set in this
union has two distinct elements. Since inverses are unique, two sets of the form
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{x1, 27"}, {29, 25 '} are either equal or disjoint. So we can write S as the disjoint
union of sets with 2 elements each. Therefore S has an even number of elements.
Let 2m be the number of elements of S, for some m € Z.

Let T be the set of elements in G of order 2. Let k& be the number of elements
of T. Since G is the disjoint union of T', S and {e}, the number of elements of G
is the number of elements of T" plus the number of elements in S plus 1. That is,
2n = 2m + k + 1. Solving for k we get k = 2(n — m) — 1. Since n,m € Z, we get
that % is odd. So we have shown that there is an odd number of elements of order
2. O

Problem 4.8. Let z and g be elements of a group G. Show that x and gzg—!

have the same order. Now prove that xy and yx have the same order for any two
elements z,y of G.

Proof. Let G be a group, and let x,y,g € G. Denote the order of an element x by
|z|. Suppose || = n, and |grg~!| = m. We need to show that n = m. Recall that
the order of an element x is the smallest number n s.t. 2™ = e. First we will show
that the order of gzg~! is at most n. You can use group properties to show that

grg~'-grg~' = gx?g~'. So we can do the following calculation:

(grg™")" = gzg~'gzg™' - gug™!
n times

— g$n971

= gg~ ! since 2" = e, as the order of z is n

=e
We have just shown that (gzg=!)" = e, so |[grg~™!| < |z|. Since this is true for
arbitrary = and g, let 2’ = grg~! and let ¢’ = g~!. By what we have just shown,
lg’x’'g'~1| < |2'|. But since ¢'~! = g, we know that ¢g'2’¢'~! = g~ 1(gzg1)g = .

Therefore, |¢'2’g'~1| < |2’| just means that |x| < |gxg~!|. Thus |grg~!| =

Now we will show that |xy| = |yz|. Suppose |zy| = n. Then,

|-

Y- XYy =€
——
n times

1

Multiplying both sides by ¥y~ on the right, we get

zy---axyy L=ey =yl ie.

‘/,L‘y ... xy x — y
——
n-1 times

Now multiplying by y on the left, we get

yry-ayr=yy  =e
—_———
n-1 times
Note that in the last line, we really have yx multiplied by itself n times. Thus
lyxz| < |zy|. Since this is true for arbitrary « and y, we can switch the role of x and
y. So we see that |zy| < |yz| as well. Therefore, |xy| = |yx|.
How this relates to last week’s bonus problem: Suppose R and S are rotations
of the sphere, and RS has finite order. Since rotations of the sphere form a group,



the above statement shows that SR has the same order as RS. If RS is a rotation
of order n, then it must rotate by the angle 27 /n. Thus SR rotates by 27/n as
well. Therefore, if RS has finite order then both RS and SR are rotations through
the same angle. Note that there are plenty of rotations that are not finite order,
however. Consider, for example, a rotation of the sphere through any axis by angle

7/V2. O

Problem 5.1. Find all the subgroups of each of the groups Zy4, Z7, Z12, D4 and
Ds.

Answer. We start with a general remark that will make this problem easier.
1 is a power of

= e meaning ¢~ = ¢g" L.

Remark. Let G by a group, and let g € G have finite order. Then g~
g. This is because there is some n s.t. g" =e. So g-g"~!

In all of these groups, each element has finite order so this remark applies.

We will write G =< ¢1,...,9, > for a group generated by gi1,...,9,. In the
following examples, we will find lists of subgroups by choosing subsets of each group
to be generators. Note that the above remark means that < g >=< g% > for all
elements g of finite order.

e 7,4 : First of all 1 and 3 generate Z,4, so if they were in any generating set
we would get all of Z, back. On the other hand, the only multiples of 2 are
0 and 2 itself. So the three subgroups are {e}, < 2 >= {0,2} and Zj,.

e 77 : All the non-zero elements n of Z; generate Z;. So the only two sub-
groups are {0} and Z.

® 715 : The elements 1,5,7 and 11 generate Z;5. Since 10 is the additive
inverse of 2, < 2 >=< 10 > by the remark at the start of the solution.
Similarly, < 3 >=< 9 > and < 4 >=< 8 >. 6 is its own inverse so < 6 >
isn’t paired with anyone.

Next, we look at subgroups with more than one generator. By the above,
including 1,5,7 or 11 in a generating set yields all of Z15. If both 2 and 3
are generators of a subgroup, then 5 is in that subgroup, so including both
2 and 3 in a generating set yields all of Z15. Likewise, including 3 and 4
means 7 will be in the subgroup, so you get all of Z;2 again. Since < 4 > is
a subset of < 2 >, including both 2 and 4 in a generating set is the same as
including just 2. So < 2,4 >=< 2 >. Likewise, < 2,6 >=< 2 >. Finally,
including 4 and 6 in a generating set means 2 will be in your subgroup, so
you may as well have just included 2. That is, < 4,6 >=< 2 >.

Therefore the subgroups of Z5 are {0}, < 2 >={0,2,4,6,8,10},< 3 >=
{0,3,6,9}, <4 >={0,4,8}, <6 >={0,6} and Z15.

o Dy = {e,7, 72,73, 5,75,7%s,73s}: The one-generator subgroups of D, are
{e}, rotation subgroups < r >= {e,r,r% r3}, < r? >= {e, r?} and reflection
subgroups < rs >= {e,rs}, < r?s >= {e,r’s} and < r3s >= {e,r3s}.

To get more subgroups we can add generators. Adding a rotation to
a rotation subgroup doesn’t yield anything new. Adding any reflection to
< r > gives us a subgroup with both r and s, meaning we get D4 back.
But we can add a reflection to the subgroup < r? >. We get < r?, s >=
{e,r?,s,r%s}, and < r2,rs >= {e,r?, rs,r3s}. Adding any more generators
to these two subgroups gives us all of Dy.

Putting another reflection in a reflection subgroup means that subgroup
will have a rotation, and we have just listed all the subgroups with a rotation



and a reflection. So the only subgroups are the ones listed above and all of
Dy.

o Dy =< e,r,r2,r3, 1% 5,175,725, 135, 7*s >: The one-generator subgroups
are: Rotations :{e}, < r >= {e,r, 72,73, 11}, Reflections: < s >= {e, s}, <
rs >= {e,rs}h, < r?s >= {e,r?s}, < s >= {e,r3s} and < rts >=
{e,71s}. We cannot add any reflections to the subgroup generated by r
since then we would get r and s in the subgroup, giving us the whole group
back. Putting adding a reflection to a reflection subgroup will give a rota-
tion, and as we have just said, a subgroup with a rotation and a reflection
is the whole group. So the only subgroups are the ones listed above, and
Dy itself.

O

2

Problem 5.4. Find the subgroup of D,, generated by r? and r2s, distinguishing

carefully between the cases n odd and n even.

Answer. Let G =< r2,72s >. The elements of G are of the form (r%)%1-(r2s)b1 . .. (r2)ax.
(r?s)’ where ai,...,ax,b1,...,bp € Z. One can check that r’s-r? = s and
r2s - 125 = e. So the expression above simplifies to an expression of the form r%s

for some [ € Z.

Suppose n is even. Then n = 2m for some m € Z. Thus r" = (r?)™ = e,
so the powers of 72 are all the even powers of r up to 2(m — 1). Thus G =
{e,r2,.. . r2m=1 p2g  p2m=l)g],

Now suppose n is odd. Then n = 2m + 1 for some m € Z, and 7> = e.

2m—+42 2m—+2

Since r is a power of 72 and 7 = r, we have that r is in G. And since
24,2

r°s-r®=s,s € G. But r and s generate all of D,,, so G = D,,. [l

Problem 5.5. Suppose H is a finite non-empty subset of a group G. Prove that
H is a subgroup of G iff xy belongs to H whenever x and y belong to H.

Proof. Let G be a group, and H a finite subset of G.

Suppose zy belongs to H whenever = and y belong to H. This means that H is
closed under the group operation. And since H is a subset of G, it is associative.
So we only need to show that the identity is in H and elements of H have inverses
also in H.

Since H is non-empty, we can choose an arbitrary element = € H. Consider the
set S = {z,2%,23,...,2",...}. By the assumption, this whole set is in H since
every element of S is just x multiplied by the previous element. But H is a finite
set. So S must also be a finite set. Which means that elements of S must repeat.
That is, there are numbers i # j s.t. z° = 27. Multiplying both sides by 7%, we get
the equation e = 27~%, But 2°~/ is in S. Thus, the identity is in H, and moreover
the identity is a power of . Write n = j — 4. Since 2™ = e, then z - 2" ! = e.
So " ! = 27! Since 2"~ ! € H, the inverse of x is in H. Since x was chosen
arbitrarily, every element of H has an inverse. So H is a subgroup of G.

Now suppose H is a subgroup of G. Then H is closed under group multiplication,
so for any x and y in H, xy is also in H. Therefore, when H is a finite subset of
G, H is closed under multiplication if and only if it is a subgroup. O

Problem 5.7. Let G be an abelian group and let H consist of those elements of
G which have finite order. Prove that H is a subgroup of G.



Proof. Since H is a subset of G it already has the associativity property. Also
the identity has order 1, so e € H. So we just need to show it is closed under
multiplication and has inverses.

Let z,y € H. Let |z| = n,|y| = m for n,m € Z. Since G is abelian, (zy)"™ =
xnmy'rwn. But xnm — (xn)m — em a‘11(1 ynm — (‘,I:TYL)VL — en SO (my)nm = e.
Thus the order of xy is at most nm, so zy € H. Therefore H is closed under
multiplication.

Let x € H with |z| = n. Then 2™ = e, so multiplying both sides by =" we get
e=z""=(z7!)". So the order of 7! is at most n. (In fact, it is n, since we can
reverse the roles of z and x~'. Therefore, z7! € H.

So we have shown that H is a subgroup of G. O

Problem 5.11. Show Q is not cyclic. Even better, prove that Q cannot be gener-
ated by a finite number of elements.

Proof. First we show that Q is not cyclic. We will do this by contradiction, so
suppose it is cyclic. Then it would be generated by a rational number of the form ¢
where a,b € Z. The set < § > consists of all integer multiples of 7. Soif Q =< ¢ >
then  must be an integer multiple of 3. But if

a a

b 2
then ¢ = 1/2 which is not an integer. Therefore Q cannot be generated by a single
rational number, so Q is not cyclic.

Now we show that QQ cannot be generated by a finite set of rational numbers.
Suppose for contradiction that Q =< ‘Z—I, el ‘g—: >. Since the number le.l._bn € Q,
there must be integers cq, ..., ¢, s.t.

a1 n n an 1
C1— e Cnizi
5, b,  2b,---b,

By adding together the fractions on the left hand side, we get

ay an, A1+...A,
C1— P Cp— = ——m8m8 ———
1bl—’_ + nbn blbn
where A; = ¢;a;b1 - -b;_1b;11 -+ b,. Write A = Ay + ... A, to simplify notation.
Note that since the A; are integers, A must be an integer. So we claim that

A 1

by---b, 2by---b,
This can only happen if A = 1/2. But A was supposed to be an integer, so we have
arrived at a contradiction. Thus Q cannot be generated by a finite set of rational
numbers. (]




