Homework 2 solutions.

Problem 4.4. Let g be an element of the group G. Keep g fixed and let x vary through G. Prove that the products $g x$ are all distinct and fill out G. Do the same for the products $x g$.
Proof. Let $g \in G$. Let $x_{1} \neq x_{2} \in G$. We need to show that $g x_{1} \neq g x_{2}$.
Suppose for contradiction that $g x_{1}=g x_{2}$. Since G is a group, $g^{-1} \in G$. So this means that $g^{-1}\left(g x_{1}\right)=g^{-1}\left(g x_{2}\right)$. By associativity, this means that $\left(g^{-1} g\right) x_{1}=$ $\left(g^{-1} g\right) x_{2}$. This simplifies to $e x_{1}=e x_{2}$, where e is the identity. Finally, by the property of the identity, we get that $x_{1}=x_{2}$. But this contradicts the assumption that $x_{1} \neq x_{2}$. So we have shown that if $x_{1} \neq x_{2}$ then $g x_{1} \neq g x_{1}$. Thus all the elements of the form $g x$ are distinct.

Similarly, we have to show that if $x_{1} \neq x_{2} \in G$ then $x_{1} g \neq x_{2} g$. Again, suppose not. That is, suppose that $x_{1} g=x_{2} g$. But then when we multiply both sides by g^{-1} on the right, and use the same group properties as above, we get that $x_{1}=x_{1}$. Again, this is a contradiction, so we must have that all elements of the form $x g$ are distinct.

Next we have to show that the sets $S=\{g x \mid x \in G\}$ and $S^{\prime}=\{x g \mid x \in G\}$ fill out G. That is, for each element $h \in G$, we need to find elements $x, x^{\prime} \in G$ s.t. $x g=g x^{\prime}=h$. So let $x=h g^{-1}$ and let $x^{\prime}=g^{-1} h$. We know that x, x^{\prime} are in G since $g^{-1} \in G$ by the inverse property, and the products are in G as G is closed under multiplication.

Now we just compute:

$$
\begin{aligned}
x g & =\left(h g^{-1}\right) g \\
& =h\left(g^{-1} g\right) \\
& =h e \\
& =h,
\end{aligned}
$$

and similarly we can compute that $g x^{\prime}=g\left(g^{-1} h\right)$ is just h after using all three of the group properties.

So for each element $h \in G$, we have found x, x^{\prime} s.t. $x g=g x^{\prime}=h$. Therefore the sets S and S^{\prime} fill out G.

Problem 4.5. An element $x \in G$ satisfies $x^{2}=e$ precisely when $x=x^{-1}$. Use this observation to show that a group of even order must contain an odd number of elements of order 2.

Proof. Let G be a group of even order. Let $|G|$ denote the order of G. So we can write $|G|=2 n$ for some $n \in \mathbb{Z}$. Let S be the set of elements of G that have order greater than 2 . Since only elements of order 2 and the identity satisfy $x^{2}=e$, we can write $S=\left\{x \in G \mid x^{2} \neq e\right\}$. We want to show that S has an even number of elements. We use the idea that if an element has order bigger than 2 , it is distinct from its inverse, so elements of S come in pairs. To make this precise, write S as the following union:

$$
S=\bigcup_{x \in S}\left\{x, x^{-1}\right\}
$$

We show later that the order of x is the same as the order of x^{-1} so this union is indeed S. Since $x^{2} \neq e$ for $x \in S$, we have that $x \neq x^{-1}$, so each set in this union has two distinct elements. Since inverses are unique, two sets of the form
$\left\{x_{1}, x_{1}^{-1}\right\},\left\{x_{2}, x_{2}^{-1}\right\}$ are either equal or disjoint. So we can write S as the disjoint union of sets with 2 elements each. Therefore S has an even number of elements. Let $2 m$ be the number of elements of S, for some $m \in \mathbb{Z}$.

Let T be the set of elements in G of order 2 . Let k be the number of elements of T. Since G is the disjoint union of T, S and $\{e\}$, the number of elements of G is the number of elements of T plus the number of elements in S plus 1. That is, $2 n=2 m+k+1$. Solving for k we get $k=2(n-m)-1$. Since $n, m \in \mathbb{Z}$, we get that k is odd. So we have shown that there is an odd number of elements of order 2.

Problem 4.8. Let x and g be elements of a group G. Show that x and $g x g^{-1}$ have the same order. Now prove that $x y$ and $y x$ have the same order for any two elements x, y of G.

Proof. Let G be a group, and let $x, y, g \in G$. Denote the order of an element x by $|x|$. Suppose $|x|=n$, and $\left|g x g^{-1}\right|=m$. We need to show that $n=m$. Recall that the order of an element x is the smallest number n s.t. $x^{n}=e$. First we will show that the order of $g x g^{-1}$ is at most n. You can use group properties to show that $g x g^{-1} \cdot g x g^{-1}=g x^{2} g^{-1}$. So we can do the following calculation:

$$
\begin{aligned}
\left(g x g^{-1}\right)^{n} & =\underbrace{g x g^{-1} g x g^{-1} \cdots g x g^{-1}}_{\mathrm{n} \text { times }} \\
& =g x^{n} g^{-1} \\
& =g g^{-1} \text { since } x^{n}=e, \text { as the order of } x \text { is } \mathrm{n} \\
& =e
\end{aligned}
$$

We have just shown that $\left(g x g^{-1}\right)^{n}=e$, so $\left|g x g^{-1}\right| \leq|x|$. Since this is true for arbitrary x and g, let $x^{\prime}=g x g^{-1}$ and let $g^{\prime}=g^{-1}$. By what we have just shown, $\left|g^{\prime} x^{\prime} g^{\prime-1}\right| \leq\left|x^{\prime}\right|$. But since $g^{\prime-1}=g$, we know that $g^{\prime} x^{\prime} g^{\prime-1}=g^{-1}\left(g x g^{-1}\right) g=x$. Therefore, $\left|g^{\prime} x^{\prime} g^{\prime-1}\right| \leq\left|x^{\prime}\right|$ just means that $|x| \leq\left|g x g^{-1}\right|$. Thus $\left|g x g^{-1}\right|=|x|$.

Now we will show that $|x y|=|y x|$. Suppose $|x y|=n$. Then,

$$
\underbrace{x y \cdots x y}_{\mathrm{n} \text { times }}=e
$$

Multiplying both sides by y^{-1} on the right, we get

$$
\begin{aligned}
& x y \cdots x y y^{-1}=e y^{-1}=y^{-1} \text { i.e. } \\
& \underbrace{x y \cdots x y}_{\mathrm{n}-1 \text { times }} x=y^{-1}
\end{aligned}
$$

Now multiplying by y on the left, we get

$$
y \underbrace{x y \cdots x y}_{\mathrm{n}-1 \text { times }} x=y y^{-1}=e
$$

Note that in the last line, we really have $y x$ multiplied by itself n times. Thus $|y x| \leq|x y|$. Since this is true for arbitrary x and y, we can switch the role of x and y. So we see that $|x y| \leq|y x|$ as well. Therefore, $|x y|=|y x|$.

How this relates to last week's bonus problem: Suppose R and S are rotations of the sphere, and $R S$ has finite order. Since rotations of the sphere form a group,
the above statement shows that $S R$ has the same order as $R S$. If $R S$ is a rotation of order n, then it must rotate by the angle $2 \pi / n$. Thus $S R$ rotates by $2 \pi / n$ as well. Therefore, if $R S$ has finite order then both $R S$ and $S R$ are rotations through the same angle. Note that there are plenty of rotations that are not finite order, however. Consider, for example, a rotation of the sphere through any axis by angle $\pi / \sqrt{2}$.
Problem 5.1. Find all the subgroups of each of the groups $\mathbb{Z}_{4}, \mathbb{Z}_{7}, \mathbb{Z}_{12}, D_{4}$ and D_{5}.

Answer. We start with a general remark that will make this problem easier.
Remark. Let G by a group, and let $g \in G$ have finite order. Then g^{-1} is a power of g. This is because there is some n s.t. $g^{n}=e$. So $g \cdot g^{n-1}=e$ meaning $g^{-1}=g^{n-1}$.

In all of these groups, each element has finite order so this remark applies.
We will write $G=<g_{1}, \ldots, g_{n}>$ for a group generated by g_{1}, \ldots, g_{n}. In the following examples, we will find lists of subgroups by choosing subsets of each group to be generators. Note that the above remark means that $<g>=<g^{-1}>$ for all elements g of finite order.

- \mathbb{Z}_{4} : First of all 1 and 3 generate \mathbb{Z}_{4}, so if they were in any generating set we would get all of \mathbb{Z}_{4} back. On the other hand, the only multiples of 2 are 0 and 2 itself. So the three subgroups are $\{e\},<2>=\{0,2\}$ and \mathbb{Z}_{4}.
- \mathbb{Z}_{7} : All the non-zero elements n of \mathbb{Z}_{7} generate \mathbb{Z}_{7}. So the only two subgroups are $\{0\}$ and \mathbb{Z}_{7}.
- \mathbb{Z}_{12} : The elements $1,5,7$ and 11 generate \mathbb{Z}_{12}. Since 10 is the additive inverse of $2,<2>=<10>$ by the remark at the start of the solution. Similarly, $<3>=<9>$ and $<4>=<8>.6$ is its own inverse so $<6>$ isn't paired with anyone.

Next, we look at subgroups with more than one generator. By the above, including $1,5,7$ or 11 in a generating set yields all of \mathbb{Z}_{12}. If both 2 and 3 are generators of a subgroup, then 5 is in that subgroup, so including both 2 and 3 in a generating set yields all of \mathbb{Z}_{12}. Likewise, including 3 and 4 means 7 will be in the subgroup, so you get all of \mathbb{Z}_{12} again. Since $<4>$ is a subset of $<2>$, including both 2 and 4 in a generating set is the same as including just 2. So $<2,4>=<2>$. Likewise, $\langle 2,6>=<2>$. Finally, including 4 and 6 in a generating set means 2 will be in your subgroup, so you may as well have just included 2 . That is, $\langle 4,6\rangle=<2\rangle$.

Therefore the subgroups of \mathbb{Z}_{12} are $\{0\},<2>=\{0,2,4,6,8,10\},<3>=$ $\{0,3,6,9\},<4>=\{0,4,8\},<6>=\{0,6\}$ and \mathbb{Z}_{12}.

- $D_{4}=\left\{e, r, r^{2}, r^{3}, s, r s, r^{2} s, r^{3} s\right\}$: The one-generator subgroups of D_{4} are $\{e\}$, rotation subgroups $<r>=\left\{e, r, r^{2}, r^{3}\right\},<r^{2}>=\left\{e, r^{2}\right\}$ and reflection subgroups $<r s>=\{e, r s\},<r^{2} s>=\left\{e, r^{2} s\right\}$ and $<r^{3} s>=\left\{e, r^{3} s\right\}$.

To get more subgroups we can add generators. Adding a rotation to a rotation subgroup doesn't yield anything new. Adding any reflection to $<r>$ gives us a subgroup with both r and s, meaning we get D_{4} back. But we can add a reflection to the subgroup $\left\langle r^{2}\right\rangle$. We get $\left\langle r^{2}, s\right\rangle=$ $\left\{e, r^{2}, s, r^{2} s\right\}$, and $<r^{2}, r s>=\left\{e, r^{2}, r s, r^{3} s\right\}$. Adding any more generators to these two subgroups gives us all of D_{4}.

Putting another reflection in a reflection subgroup means that subgroup will have a rotation, and we have just listed all the subgroups with a rotation
and a reflection. So the only subgroups are the ones listed above and all of D_{4}.

- $D_{5}=<e, r, r^{2}, r^{3}, r^{4}, s, r s, r^{2} s, r^{3} s, r^{4} s>$: The one-generator subgroups are: Rotations : $\{e\},<r>=\left\{e, r, r^{2}, r^{3}, r^{4}\right\}$, Reflections: $<s>=\{e, s\},<$ $r s>=\{e, r s\},<r^{2} s>=\left\{e, r^{2} s\right\},<r^{3} s>=\left\{e, r^{3} s\right\}$ and $<r^{4} s>=$ $\left\{e, r^{4} s\right\}$. We cannot add any reflections to the subgroup generated by r since then we would get r and s in the subgroup, giving us the whole group back. Putting adding a reflection to a reflection subgroup will give a rotation, and as we have just said, a subgroup with a rotation and a reflection is the whole group. So the only subgroups are the ones listed above, and D_{5} itself.

Problem 5.4. Find the subgroup of D_{n} generated by r^{2} and $r^{2} s$, distinguishing carefully between the cases n odd and n even.
Answer. Let $G=<r^{2}, r^{2} s>$. The elements of G are of the form $\left(r^{2}\right)^{a_{1}} \cdot\left(r^{2} s\right)^{b_{1}} \cdots\left(r^{2}\right)^{a_{k}}$. $\left(r^{2} s\right)^{b_{k}}$ where $a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{k} \in \mathbb{Z}$. One can check that $r^{2} s \cdot r^{2}=s$ and $r^{2} s \cdot r^{2} s=e$. So the expression above simplifies to an expression of the form $r^{2 l} s$ for some $l \in \mathbb{Z}$.

Suppose n is even. Then $n=2 m$ for some $m \in \mathbb{Z}$. Thus $r^{n}=\left(r^{2}\right)^{m}=e$, so the powers of r^{2} are all the even powers of r up to $2(m-1)$. Thus $G=$ $\left\{e, r^{2}, \ldots, r^{2(m-1)}, r^{2} s, \ldots, r^{2(m-1)} s\right\}$.

Now suppose n is odd. Then $n=2 m+1$ for some $m \in \mathbb{Z}$, and $r^{2 m+1}=e$. Since $r^{2 m+2}$ is a power of r^{2} and $r^{2 m+2}=r$, we have that r is in G. And since $r^{2} s \cdot r^{2}=s, s \in G$. But r and s generate all of D_{n}, so $G=D_{n}$.

Problem 5.5. Suppose H is a finite non-empty subset of a group G. Prove that H is a subgroup of G iff $x y$ belongs to H whenever x and y belong to H.

Proof. Let G be a group, and H a finite subset of G.
Suppose $x y$ belongs to H whenever x and y belong to H. This means that H is closed under the group operation. And since H is a subset of G, it is associative. So we only need to show that the identity is in H and elements of H have inverses also in H.

Since H is non-empty, we can choose an arbitrary element $x \in H$. Consider the set $S=\left\{x, x^{2}, x^{3}, \ldots, x^{n}, \ldots\right\}$. By the assumption, this whole set is in H since every element of S is just x multiplied by the previous element. But H is a finite set. So S must also be a finite set. Which means that elements of S must repeat. That is, there are numbers $i \neq j$ s.t. $x^{i}=x^{j}$. Multiplying both sides by x^{-i}, we get the equation $e=x^{j-i}$. But x^{i-j} is in S. Thus, the identity is in H, and moreover the identity is a power of x. Write $n=j-i$. Since $x^{n}=e$, then $x \cdot x^{n-1}=e$. So $x^{n-1}=x^{-1}$. Since $x^{n-1} \in H$, the inverse of x is in H. Since x was chosen arbitrarily, every element of H has an inverse. So H is a subgroup of G.

Now suppose H is a subgroup of G. Then H is closed under group multiplication, so for any x and y in $H, x y$ is also in H. Therefore, when H is a finite subset of G, H is closed under multiplication if and only if it is a subgroup.

Problem 5.7. Let G be an abelian group and let H consist of those elements of G which have finite order. Prove that H is a subgroup of G.

Proof. Since H is a subset of G it already has the associativity property. Also the identity has order 1 , so $e \in H$. So we just need to show it is closed under multiplication and has inverses.

Let $x, y \in H$. Let $|x|=n,|y|=m$ for $n, m \in \mathbb{Z}$. Since G is abelian, $(x y)^{n m}=$ $x^{n m} y^{n m}$. But $x^{n m}=\left(x^{n}\right)^{m}=e^{m}$ and $y^{n m}=\left(x^{m}\right)^{n}=e^{n}$. So $(x y)^{n m}=e$. Thus the order of $x y$ is at most $n m$, so $x y \in H$. Therefore H is closed under multiplication.

Let $x \in H$ with $|x|=n$. Then $x^{n}=e$, so multiplying both sides by x^{-n} we get $e=x^{-n}=\left(x^{-1}\right)^{n}$. So the order of x^{-1} is at most n. (In fact, it is n, since we can reverse the roles of x and x^{-1}. Therefore, $x^{-1} \in H$.

So we have shown that H is a subgroup of G.
Problem 5.11. Show \mathbb{Q} is not cyclic. Even better, prove that \mathbb{Q} cannot be generated by a finite number of elements.
Proof. First we show that \mathbb{Q} is not cyclic. We will do this by contradiction, so suppose it is cyclic. Then it would be generated by a rational number of the form $\frac{a}{b}$ where $a, b \in \mathbb{Z}$. The set $<\frac{a}{b}>$ consists of all integer multiples of $\frac{a}{b}$. So if $\mathbb{Q}=<\frac{a}{b}>$ then $\frac{a}{2 b}$ must be an integer multiple of $\frac{a}{b}$. But if

$$
c \frac{a}{b}=\frac{a}{2 b}
$$

then $c=1 / 2$ which is not an integer. Therefore \mathbb{Q} cannot be generated by a single rational number, so \mathbb{Q} is not cyclic.

Now we show that \mathbb{Q} cannot be generated by a finite set of rational numbers. Suppose for contradiction that $\mathbb{Q}=<\frac{a_{1}}{b_{1}}, \ldots, \frac{a_{n}}{b_{n}}>$. Since the number $\frac{1}{2 b_{1} \cdots b_{n}} \in \mathbb{Q}$, there must be integers c_{1}, \ldots, c_{n} s.t.

$$
c_{1} \frac{a_{1}}{b_{1}}+\cdots+c_{n} \frac{a_{n}}{b_{n}}=\frac{1}{2 b_{1} \cdots b_{n}}
$$

By adding together the fractions on the left hand side, we get

$$
c_{1} \frac{a_{1}}{b_{1}}+\cdots+c_{n} \frac{a_{n}}{b_{n}}=\frac{A_{1}+\ldots A_{n}}{b_{1} \cdots b_{n}}
$$

where $A_{i}=c_{i} a_{i} b_{1} \cdots b_{i-1} b_{i+1} \cdots b_{n}$. Write $A=A_{1}+\ldots A_{n}$ to simplify notation. Note that since the A_{i} are integers, A must be an integer. So we claim that

$$
\frac{A}{b_{1} \cdots b_{n}}=\frac{1}{2 b_{1} \cdots b_{n}}
$$

This can only happen if $A=1 / 2$. But A was supposed to be an integer, so we have arrived at a contradiction. Thus \mathbb{Q} cannot be generated by a finite set of rational numbers.

