
Homework 2 solutions.

Problem 4.4. Let g be an element of the group G. Keep g fixed and let x vary
through G. Prove that the products gx are all distinct and fill out G. Do the same
for the products xg.

Proof. Let g ∈ G. Let x1 6= x2 ∈ G. We need to show that gx1 6= gx2.
Suppose for contradiction that gx1 = gx2. Since G is a group, g−1 ∈ G. So this

means that g−1(gx1) = g−1(gx2). By associativity, this means that (g−1g)x1 =
(g−1g)x2. This simplifies to ex1 = ex2, where e is the identity. Finally, by the
property of the identity, we get that x1 = x2. But this contradicts the assumption
that x1 6= x2. So we have shown that if x1 6= x2 then gx1 6= gx1. Thus all the
elements of the form gx are distinct.

Similarly, we have to show that if x1 6= x2 ∈ G then x1g 6= x2g. Again, suppose
not. That is, suppose that x1g = x2g. But then when we multiply both sides by
g−1 on the right, and use the same group properties as above, we get that x1 = x1.
Again, this is a contradiction, so we must have that all elements of the form xg are
distinct.

Next we have to show that the sets S = {gx|x ∈ G} and S′ = {xg|x ∈ G} fill
out G. That is, for each element h ∈ G, we need to find elements x, x′ ∈ G s.t.
xg = gx′ = h. So let x = hg−1 and let x′ = g−1h. We know that x, x′ are in G
since g−1 ∈ G by the inverse property, and the products are in G as G is closed
under multiplication.

Now we just compute:

xg = (hg−1)g

= h(g−1g)

= he

= h,

and similarly we can compute that gx′ = g(g−1h) is just h after using all three of
the group properties.

So for each element h ∈ G, we have found x, x′ s.t. xg = gx′ = h. Therefore the
sets S and S′ fill out G. �

Problem 4.5. An element x ∈ G satisfies x2 = e precisely when x = x−1. Use
this observation to show that a group of even order must contain an odd number
of elements of order 2.

Proof. Let G be a group of even order. Let |G| denote the order of G. So we can
write |G| = 2n for some n ∈ Z. Let S be the set of elements of G that have order
greater than 2. Since only elements of order 2 and the identity satisfy x2 = e, we
can write S = {x ∈ G|x2 6= e}. We want to show that S has an even number of
elements. We use the idea that if an element has order bigger than 2, it is distinct
from its inverse, so elements of S come in pairs. To make this precise, write S as
the following union:

S =
⋃
x∈S
{x, x−1}.

We show later that the order of x is the same as the order of x−1 so this union
is indeed S. Since x2 6= e for x ∈ S, we have that x 6= x−1, so each set in this
union has two distinct elements. Since inverses are unique, two sets of the form
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{x1, x−11 }, {x2, x
−1
2 } are either equal or disjoint. So we can write S as the disjoint

union of sets with 2 elements each. Therefore S has an even number of elements.
Let 2m be the number of elements of S, for some m ∈ Z.

Let T be the set of elements in G of order 2. Let k be the number of elements
of T . Since G is the disjoint union of T , S and {e}, the number of elements of G
is the number of elements of T plus the number of elements in S plus 1. That is,
2n = 2m + k + 1. Solving for k we get k = 2(n −m) − 1. Since n,m ∈ Z, we get
that k is odd. So we have shown that there is an odd number of elements of order
2. �

Problem 4.8. Let x and g be elements of a group G. Show that x and gxg−1

have the same order. Now prove that xy and yx have the same order for any two
elements x, y of G.

Proof. Let G be a group, and let x, y, g ∈ G. Denote the order of an element x by
|x|. Suppose |x| = n, and |gxg−1| = m. We need to show that n = m. Recall that
the order of an element x is the smallest number n s.t. xn = e. First we will show
that the order of gxg−1 is at most n. You can use group properties to show that
gxg−1 · gxg−1 = gx2g−1. So we can do the following calculation:

(gxg−1)n = gxg−1gxg−1 · · · gxg−1︸ ︷︷ ︸
n times

= gxng−1

= gg−1 since xn = e, as the order of x is n

= e

We have just shown that (gxg−1)n = e, so |gxg−1| ≤ |x|. Since this is true for
arbitrary x and g, let x′ = gxg−1 and let g′ = g−1. By what we have just shown,
|g′x′g′−1| ≤ |x′|. But since g′−1 = g, we know that g′x′g′−1 = g−1(gxg−1)g = x.
Therefore, |g′x′g′−1| ≤ |x′| just means that |x| ≤ |gxg−1|. Thus |gxg−1| = |x|.

Now we will show that |xy| = |yx|. Suppose |xy| = n. Then,

xy · · ·xy︸ ︷︷ ︸
n times

= e

Multiplying both sides by y−1 on the right, we get

xy · · ·xyy−1 = ey−1 = y−1 i.e.

xy · · ·xy︸ ︷︷ ︸
n-1 times

x = y−1

Now multiplying by y on the left, we get

y xy · · ·xy︸ ︷︷ ︸
n-1 times

x = yy−1 = e

Note that in the last line, we really have yx multiplied by itself n times. Thus
|yx| ≤ |xy|. Since this is true for arbitrary x and y, we can switch the role of x and
y. So we see that |xy| ≤ |yx| as well. Therefore, |xy| = |yx|.

How this relates to last week’s bonus problem: Suppose R and S are rotations
of the sphere, and RS has finite order. Since rotations of the sphere form a group,
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the above statement shows that SR has the same order as RS. If RS is a rotation
of order n, then it must rotate by the angle 2π/n. Thus SR rotates by 2π/n as
well. Therefore, if RS has finite order then both RS and SR are rotations through
the same angle. Note that there are plenty of rotations that are not finite order,
however. Consider, for example, a rotation of the sphere through any axis by angle
π/
√

2. �

Problem 5.1. Find all the subgroups of each of the groups Z4, Z7, Z12, D4 and
D5.

Answer. We start with a general remark that will make this problem easier.

Remark. Let G by a group, and let g ∈ G have finite order. Then g−1 is a power of
g. This is because there is some n s.t. gn = e. So g ·gn−1 = e meaning g−1 = gn−1.

In all of these groups, each element has finite order so this remark applies.
We will write G =< g1, . . . , gn > for a group generated by g1, . . . , gn. In the

following examples, we will find lists of subgroups by choosing subsets of each group
to be generators. Note that the above remark means that < g >=< g−1 > for all
elements g of finite order.

• Z4 : First of all 1 and 3 generate Z4, so if they were in any generating set
we would get all of Z4 back. On the other hand, the only multiples of 2 are
0 and 2 itself. So the three subgroups are {e}, < 2 >= {0, 2} and Z4.
• Z7 : All the non-zero elements n of Z7 generate Z7. So the only two sub-

groups are {0} and Z7.
• Z12 : The elements 1, 5, 7 and 11 generate Z12. Since 10 is the additive

inverse of 2, < 2 >=< 10 > by the remark at the start of the solution.
Similarly, < 3 >=< 9 > and < 4 >=< 8 >. 6 is its own inverse so < 6 >
isn’t paired with anyone.

Next, we look at subgroups with more than one generator. By the above,
including 1,5,7 or 11 in a generating set yields all of Z12. If both 2 and 3
are generators of a subgroup, then 5 is in that subgroup, so including both
2 and 3 in a generating set yields all of Z12. Likewise, including 3 and 4
means 7 will be in the subgroup, so you get all of Z12 again. Since < 4 > is
a subset of < 2 >, including both 2 and 4 in a generating set is the same as
including just 2. So < 2, 4 >=< 2 >. Likewise, < 2, 6 >=< 2 >. Finally,
including 4 and 6 in a generating set means 2 will be in your subgroup, so
you may as well have just included 2. That is, < 4, 6 >=< 2 >.

Therefore the subgroups of Z12 are {0}, < 2 >= {0, 2, 4, 6, 8, 10},< 3 >=
{0, 3, 6, 9}, < 4 >= {0, 4, 8}, < 6 >= {0, 6} and Z12.
• D4 = {e, r, r2, r3, s, rs, r2s, r3s}: The one-generator subgroups of D4 are
{e}, rotation subgroups< r >= {e, r, r2, r3}, < r2 >= {e, r2} and reflection
subgroups < rs >= {e, rs}, < r2s >= {e, r2s} and < r3s >= {e, r3s}.

To get more subgroups we can add generators. Adding a rotation to
a rotation subgroup doesn’t yield anything new. Adding any reflection to
< r > gives us a subgroup with both r and s, meaning we get D4 back.
But we can add a reflection to the subgroup < r2 >. We get < r2, s >=
{e, r2, s, r2s}, and < r2, rs >= {e, r2, rs, r3s}. Adding any more generators
to these two subgroups gives us all of D4.

Putting another reflection in a reflection subgroup means that subgroup
will have a rotation, and we have just listed all the subgroups with a rotation
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and a reflection. So the only subgroups are the ones listed above and all of
D4.
• D5 =< e, r, r2, r3, r4, s, rs, r2s, r3s, r4s >: The one-generator subgroups

are: Rotations :{e}, < r >= {e, r, r2, r3, r4}, Reflections: < s >= {e, s}, <
rs >= {e, rs}, < r2s >= {e, r2s}, < r3s >= {e, r3s} and < r4s >=
{e, r4s}. We cannot add any reflections to the subgroup generated by r
since then we would get r and s in the subgroup, giving us the whole group
back. Putting adding a reflection to a reflection subgroup will give a rota-
tion, and as we have just said, a subgroup with a rotation and a reflection
is the whole group. So the only subgroups are the ones listed above, and
D5 itself.

�

Problem 5.4. Find the subgroup of Dn generated by r2 and r2s, distinguishing
carefully between the cases n odd and n even.

Answer. LetG =< r2, r2s >. The elements ofG are of the form (r2)a1 ·(r2s)b1 · · · (r2)ak ·
(r2s)bk where a1, . . . , ak, b1, . . . , bk ∈ Z. One can check that r2s · r2 = s and
r2s · r2s = e. So the expression above simplifies to an expression of the form r2ls
for some l ∈ Z.

Suppose n is even. Then n = 2m for some m ∈ Z. Thus rn = (r2)m = e,
so the powers of r2 are all the even powers of r up to 2(m − 1). Thus G =
{e, r2, . . . , r2(m−1), r2s, . . . , r2(m−1)s}.

Now suppose n is odd. Then n = 2m + 1 for some m ∈ Z, and r2m+1 = e.
Since r2m+2 is a power of r2 and r2m+2 = r, we have that r is in G. And since
r2s · r2 = s, s ∈ G. But r and s generate all of Dn, so G = Dn. �

Problem 5.5. Suppose H is a finite non-empty subset of a group G. Prove that
H is a subgroup of G iff xy belongs to H whenever x and y belong to H.

Proof. Let G be a group, and H a finite subset of G.
Suppose xy belongs to H whenever x and y belong to H. This means that H is

closed under the group operation. And since H is a subset of G, it is associative.
So we only need to show that the identity is in H and elements of H have inverses
also in H.

Since H is non-empty, we can choose an arbitrary element x ∈ H. Consider the
set S = {x, x2, x3, . . . , xn, . . . }. By the assumption, this whole set is in H since
every element of S is just x multiplied by the previous element. But H is a finite
set. So S must also be a finite set. Which means that elements of S must repeat.
That is, there are numbers i 6= j s.t. xi = xj . Multiplying both sides by x−i, we get
the equation e = xj−i. But xi−j is in S. Thus, the identity is in H, and moreover
the identity is a power of x. Write n = j − i. Since xn = e, then x · xn−1 = e.
So xn−1 = x−1. Since xn−1 ∈ H, the inverse of x is in H. Since x was chosen
arbitrarily, every element of H has an inverse. So H is a subgroup of G.

Now suppose H is a subgroup of G. Then H is closed under group multiplication,
so for any x and y in H, xy is also in H. Therefore, when H is a finite subset of
G, H is closed under multiplication if and only if it is a subgroup. �

Problem 5.7. Let G be an abelian group and let H consist of those elements of
G which have finite order. Prove that H is a subgroup of G.
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Proof. Since H is a subset of G it already has the associativity property. Also
the identity has order 1, so e ∈ H. So we just need to show it is closed under
multiplication and has inverses.

Let x, y ∈ H. Let |x| = n, |y| = m for n,m ∈ Z. Since G is abelian, (xy)nm =
xnmynm. But xnm = (xn)m = em and ynm = (xm)n = en. So (xy)nm = e.
Thus the order of xy is at most nm, so xy ∈ H. Therefore H is closed under
multiplication.

Let x ∈ H with |x| = n. Then xn = e, so multiplying both sides by x−n we get
e = x−n = (x−1)n. So the order of x−1 is at most n. (In fact, it is n, since we can
reverse the roles of x and x−1. Therefore, x−1 ∈ H.

So we have shown that H is a subgroup of G. �

Problem 5.11. Show Q is not cyclic. Even better, prove that Q cannot be gener-
ated by a finite number of elements.

Proof. First we show that Q is not cyclic. We will do this by contradiction, so
suppose it is cyclic. Then it would be generated by a rational number of the form a

b
where a, b ∈ Z. The set < a

b > consists of all integer multiples of a
b . So if Q =< a

b >
then a

2b must be an integer multiple of a
b . But if

c
a

b
=

a

2b

then c = 1/2 which is not an integer. Therefore Q cannot be generated by a single
rational number, so Q is not cyclic.

Now we show that Q cannot be generated by a finite set of rational numbers.
Suppose for contradiction that Q =< a1

b1
, . . . , an

bn
>. Since the number 1

2b1···bn ∈ Q,
there must be integers c1, . . . , cn s.t.

c1
a1
b1

+ · · ·+ cn
an
bn

=
1

2b1 · · · bn
By adding together the fractions on the left hand side, we get

c1
a1
b1

+ · · ·+ cn
an
bn

=
A1 + . . . An

b1 · · · bn
where Ai = ciaib1 · · · bi−1bi+1 · · · bn. Write A = A1 + . . . An to simplify notation.
Note that since the Ai are integers, A must be an integer. So we claim that

A

b1 · · · bn
=

1

2b1 · · · bn
This can only happen if A = 1/2. But A was supposed to be an integer, so we have
arrived at a contradiction. Thus Q cannot be generated by a finite set of rational
numbers. �


