
Problem 2.3: Which of the following collections of 2 × 2 matrices with real
entries form groups under matrix multiplication?

i) Those of the form

[
a b
b d

]

for which ac 6= b2

Answer: The set of such matrices is not closed under matrix multiplication, so
it does not form a group. To see that it is not closed under matrix multiplication,
it is enough to consider the following example:

[
1 2
2 3

] [
0 −1

−1 3

]

=

[
−2 5
−3 7

]

where the matrix

[
−2 5
−3 7

]

is not of the form

[
a b
b d

]

.

ii) Those of the form

[
a b
c a

]

such that a2 6= bc

Answer: Again, consider the two matrices

[
1 2
0 1

]

and

[
3 0
2 3

]

which are

of this form. Their product is

[
7 6
2 3

]

, which is not in the correct form. So this

set is not closed under matrix multiplication, and does not form a group.

iii) Those of the form

[
a b
0 c

]

where ac is not zero.

Answer: These do form a group. To show this, we need to check the following
things.

(1) The set is closed under multiplication: Suppose

[
a b
0 c

]

and

[
a′ b′

0 c′

]

satisfy ac, a′c′ 6= 0. Then
[

a b
0 c

] [
a′ b′

0 c′

]

=

[
a · a′ a · b′ + b · c′
0 c · c′

]

where aa′ · cc′ 6= 0 because ac, a′c′ 6= 0. Thus the product of two matrices
in this set is again in the set, so it is closed under multiplication.

(2) The identity is in this set: This is true because the matrix

[
1 0
0 1

]

is of

the correct form.

(3) We have inverses: Suppose the matrix A =

[
a b
0 c

]

is in our set. Then

consider the matrix B =

[
1
a − b

ac
0 1

c

]

. Since ac 6= 0, the term − b
ac makes

sense, so B is well-defined. It is simple to check that AB = BA = I, where
I is the identity matrix. Thus every matrix in our set has an inverse.

(4) Associativity: We have this because matrix multiplication is associative in
general.

iv) The set of matrices with non-zero determinant and integer entries.
Answer: This set does not form a group because inverses may not be in the

set. For example, consider the matrix

[
2 0
0 2

]

. This matrix is in our set. But its

inverse is the matrix

[
1/2 0
0 1/2

]

, which is not in our set.
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Problem 2.6 Show that the collection of all rotations of the plane about a fixed
point P forms a group under composition of functions. Is the same true of the set
of all reflections in lines which pass through P? What happens if we take all the
rotations and all the reflections?

Answer: Fix a point P in the plane. Let Gro be the set of all rotations about
P , let Gre be the set of all reflections about lines through P and let G be the set
of all rotations and reflections together.

First, note that all of these sets satisfy the associativity property. This is because
the composition of functions is always associative. Suppose we have three functions
f, g and h. We need to see that for each point x in their domain, f ◦(g◦h)(x) = (f ◦
g) ◦h(x). To show this takes just a bit of manipulation. Since (g ◦h)(x) = g(h(x)),
we have f ◦(g◦h)(x) = f(g(h(x))), and likewise, (f ◦g)◦h(x) = (f ◦g)(h(x)), which
is again just f(g(h(x))). Therefore, composition of functions is always associative,
so composition of rotations and/ or reflections is also associative.

Now we show that Gro is a group. Let rθ ∈ Gro be the clockwise rotation by
angle θ about P . So if θ is negative, we mean a counter-clockwise rotation by
−θ. Then given two angles θ and φ, we clearly have rθ ◦ rφ = rθ+φ. Thus the
composition of two rotations is again a rotation, so Gro is closed under composition
of functions. Now we have to check the 3 group properties.

(1) Associativity: Composition of functions is associative.
(2) Identity: Clearly the identity is r0, the rotation by angle 0, since for any

angle θ, rθ ◦ r0 = rθ = r0 ◦ rθ.
(3) Inverses: Fix an angle θ. Then the inverse of rθ is r−θ since rθ ◦ r−θ = r0 =

r−θ ◦ rθ.
Thus the set of rotations is a group under function composition.
For the next parts of the problem, we use the following fact about the composition

of two reflections.

Property 1. Let Ra, Rb ∈ Gre be reflections about lines a and b through the point

P . Suppose the angle that line a sweeps out as it moves in a clockwise direction to

line b is θ. Then Rb ◦Ra = rθ/2, where Rb ◦Ra means we do Ra first and then Rb.

Proof. Choose some point Q in the plane, where Q 6= P . Then as in the diagram,
measure the signed acute angle between the line segment QP and line a. We say
this angle is positive if when you use QP to sweep out the angle you go in a
clockwise direction. Otherwise, the angle is negative. Call this signed angle θ1. In
the diagram, the angle is positive. Then the signed acute angle between the line
segment Ra(Q), P and a is also θ1. Now let θ2 be the signed acute angle between

Ra(Q), P and the line b. Again, the signed acute angle between Rb ◦Ra(Q), P and
the line b is also θ2.

Note that the distance between Q and P is the same as the distance between
Rb ◦Ra(Q) and P . So if you rotate Q by an angle of 2θ1 + 2θ2 about P , we get to
Rb ◦Ra(Q).

But θ1+ θ2 is just θ in the case when at least one of these two angles is positive,
and θ1 + θ2 = θ − π when both of these angles are negative. So a rotation by
2θ1 + 2θ2 is either a rotation by 2θ or a rotation by 2(θ − π). But the latter is, in
fact, the same as a rotation by θ since rotating by 2π is the same as not rotating
at all. So we are done.
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Figure 1. The point Q reflected first through a and then through b

By the above property, we see that the set of reflections is not closed under
composition of functions, as two reflections give a rotation. So Gre is not a group.

On the other hand, we claim that G is a group.

Claim 1. The set of all rotations and reflections forms a group.

Proof. . It isn’t hard to see by the same methods as above that if rθ is a rotation
and Ra is a reflection about a line a then

rθ ◦Ra = Rr 1

2
θ
(a)

that is, reflecting about a and then rotation by angle θ is the same as reflecting
about the line a rotated by angle 1

2θ. Likewise,

Ra ◦ rθ = Rr
−

1

2
θ
(a)

So the set G of rotations and reflections is closed under composition of functions.
The identity is in G, because the identity is rotation by angle 0. Inverses are in

G because each reflection is its own inverse, and the inverse of a rotation by angle
θ is a rotation by angle −θ. The set is associative because, again, composition of
functions is associative. Therefore, G is a group. �

Problem 2.8 If x and y are elements of a group, prove that (xy)−1 = y−1x−1.

Proof. The element (xy)−1 is the element s.t. (xy)−1(xy) = 1 = (xy)(xy)−1. We
show that the element y−1x−1 satisfies this property.

(y−1x−1)(xy) = y−1(x−1(xy)) by associativity

= y−1((x−1x)y) by associativity

= y−1y by prop. of inverses

= 1 by prop. of inverses

so the first part of that equation is satisfied. Now for the second part.

(xy)(y−1x−1) = ((xy)y−1)x−1 by associativity

= (x(yy−1))x−1 by associativity

= x−1x by prop. of inverses

= 1 by prop. of inverses

So we have shown that (xy)−1 = y−1x−1. �
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Problem 3.2 Write Q(
√
2) for the set described in Exercise 3.1 (iii). Given a

non-zero element a+ b
√
2 express 1/(a+ b

√
2) in the form c+ d

√
2 where c, d ∈ Q.

Prove that multiplication makes Q(
√
2) \ {0} into a group.

Proof. The set Q(
√
2) consists of all real numbers of the form a+ b

√
2 where a and

b are in Q. The number 1/(a + b
√
2) is the unique real number with the property

that (a + b
√
2) · 1/(a + b

√
2) = 1. Let c = a

a2
−2b2 and let d = − b

a2
−2b2 . Then we

claim that 1/(a+ b
√
2) = c+ d

√
2. To see this, we calculate:

(a+ b
√
2) · c+ d

√
2 = ac+ 2bd+ (ad+ bc)

√
2

Then

ac+ 2bd =
a2

a2 − 2b2
− 2b2

a2 − 2b2

= 1

and

ad+ bc = − ab

a2 − 2b2
+

ba

a2 − 2b2

= 0

.
Thus, for the above choices of c and d, (a+ b

√
2) · c+ d

√
2 = 1, as promised.

Now we show that the set G = Q(
√
2) \ {0} is a group. The formula (a+ b

√
2) ·

c+d
√
2 = ac+2bd+(ad+ bc)

√
2 shows that this set is closed under multiplication.

Since G is a subset of real numbers, it is associative. The identity is in G since
1 = 1 + 0

√
2. Finally, the above calculation means that every non-zero element

of Q(
√
2) has a multiplicative inverse also in Q(

√
2). Therefore, Q(

√
2) \ {0} is a

group. �

Problem 3.3 Let n be a positive integer and let G consist of all those complex
numbers z which satisfy zn = 1. Show that G forms a group under multiplication
of complex numbers.

Proof. First we show that G is closed under multiplication. Let z, z′ ∈ G. We need
to show that (zz′)n = 1. We have that

(zz′)n = zz′ · · · · · zz′
︸ ︷︷ ︸

n times

But multiplication in C is commutative, so in fact, (zz′)n = znz′n. Since z, z′ ∈ G,
this just means that (zz′) = 1. Thus G is closed under multiplication.

Since C is a group, and G is a subset of C, we know that G is associative. The
identity is in G because 1n = 1. So the last thing we need to show is that G has
inverses. Let z ∈ G. Then z−1 is some complex number (since all complex numbers
have inverses which are complex numbers). We need to show that (z−1)n = 1. But
we know that zn = 1. So multiply both sides of this equation by (z−1)n. This gives
us that (z−1)nzn = (z−1)n. But (z−1)nzn = 1 by the fact that multiplication in
C is commutative, so this means that 1 = (z−1)n, as required. Thus G is a group
under multiplication. �

Problem 3.5 Let n be a positive integer. Prove that (x ·n y) ·n z = x ·n (y ·n z).
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Proof. By definition, (x ·n y) = xy − kn where k ∈ Z is the number s.t. xy − kn ∈
[0, n− 1]. Thus,

(x ·n y) ·n z = (xy − kn) ·n z

= (xy − kn)z − k′n

= xyz − k′′n

where k′ is the number s.t. (xy− kn)z − k′n ∈ [0, n− 1] and so k′′ = kz + k′ is the
number s.t. xyz − k′′n ∈ [0, n− 1]. With similar steps we get

x ·n (y ·n z) = x ·n (yz − ln)

= x(yz − ln)− l′n

= xyz − l′′n

where again l′′ is the number s.t. xyz − l′′n ∈ [0, n − 1]. We want to show that
xyz−k′′n and xyz− l′′n are the same number. Note that xyz−k′′n−(xyz− l′′n) =
(l′′ − k′′)n. So the difference between these two numbers is an integer multiple of
n. On the other hand, both xyz − k′′n and xyz − l′′n are between 0 and n − 1.
So −(n − 1) ≤ xyz − k′′n − (xyz − l′′n) ≤ n − 1. The only multiples of n inside
these bounds is 0. Thus l′′ − k′′ = 0 and so xyz − k′′n = xyz − l′′n. Therefore,
(x ·n y) ·n z = x ·n (y ·n z). �

Problem 3.7 Which of the following sets form a group under multiplication
modulo 14?
Answer: Note that 5 · 5 = 11 mod 14. The sets {1, 3, 5} and {1, 3, 5, 7} contain
5 and not 11, so they cannot form groups. The set {1, 7, 13} cannot form a group
mod 14 since 7 and 14 share a common factor, so 7 cannot have an inverse mod 14.
In fact, suppose 7 ·14 x = 1. Then 2 ·14 7 ·14 n = 2. But 2 ·14 7 = 0, so 0 = 2 mod
14, which is impossible.

Finally, 9 ·14 13 = 5, so the set {1, 9, 11, 13} does not form a group. So none of
these sets form groups mod 14.

Problem 3.8 Show that if a subset of {1, 2, . . . , 21} contains an even number,
or contains the number 11, then it cannot form a group under multiplication.

Proof. Suppose n is an even integer between 1 and 21, inclusive. Then we can write
n = 2m for some other integer m. We claim that n cannot have an inverse mod 22.

Suppose not. Then n = 2m has an inverse with the property that 2m·22n−1 = 1.
Thus, 11 ·22 2m ·22 n−1 = 11. By associativity, I can multiply 11 and 2 first. Note
that 11 ·22 2 = 0. Thus I get the statement that 0 ·22 n−1 = 11, i.e. 0 = 11. But
this is not true mod 22. Therefore, n has no inverse.

Similarly, suppose n = 11. We claim that 11 cannot have an inverse mod 22.
Suppose not. Then n = 11 has an inverse with the property that 11 ·22 n−1 = 1.

Thus, 2 ·22 11 ·22 n−1 = 2. By associativity, I can multiply 11 and 2 first. Note that
11 ·22 2 = 0. Thus I get the statement that 0 ·22 n−1 = 2, i.e. 0 = 2. But this is not
true mod 22. Therefore, 11 has no inverse.

So if we were given a subset of {1, 2, . . . , 21} containing the number 11 or any
even number, then that subset couldn’t possibly have inverses for all of its elements.
Therefore it would not form a group. �
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Problem 4.7 Let G be the collection of all rational numbers x which satisfy
0 ≤ x < 1. Show that the operation

x+G y =

{
x+ y if 0 ≤ x+ y < 1
x+ y − 1 if 1 ≤ x+ y < 2

makes G into an infinite abelian group all of whose elements have finite order.

Proof. We will first show that G is a group. Again, we do this in four steps.

(1) G needs to be closed under the group operation. Let x, y be in G. Then
0 ≤ x, y < 1 so 0 ≤ x + y < 2. Thus 0 ≤ x +G y < 1, so this is ok.
Furthermore, both x+ y and x+ y − 1 are rational numbers. So x+G y is
a rational number between 0 and 1, as required.

(2) Identity. The identity is 0, which is in the group. To see that 0 is the
identity, note that if 0 ≤ x < 1, then 0 ≤ x+ 0 < 1, so x+G 0 = x.

(3) Inverses. If 0 ≤ x < 1 then 0 ≤ 1 − x < 1. Note that x + (1 − x) = 1, so
x+G (1−x) = 0. So for any x ∈ G, 1−x is the inverse of x. Therefore the
inverse of x is in G.

(4) Associativity. Let x, y and z be in G. Each time we add two numbers in G
we subtract 1 enough times to make the result at least 0, and strictly less
than 1. Since 0 ≤ x+ y + z < 3, we see that

x+G (y +G z) =

{
x+ (y +G z) if 0 ≤ x+ (y +G z) < 1
x+ (y +G z)− 1 if 1 ≤ x+ (y +G z) < 2

=







x+ y +G z if 0 ≤ x+ y + z < 1
x+ y + z − 1 if 1 ≤ x+ y + z < 2
x+ y + z − 2 if 2 ≤ x+ y + z < 3

since y +G z is either y + z or y + z − 1.
Similarly, we get that

(x+G y) +G z =







x+ y +G z if 0 ≤ x+ y + z < 1
x+ y + z − 1 if 1 ≤ x+ y + z < 2
x+ y + z − 2 if 2 ≤ x+ y + z < 3

Thus the group operation is associative.

Therefore, G is a group under this group operation.
There are infinitely many rational numbers between 0 and 1, so G is infinite. G

is abelian because addition of rational numbers is abelian.
Finally, we need to show that elements of G have finite order. Let a

b be an
element of G. Then define

n ·G
a

b
=

a

b
+G · · ·+G

a

b
︸ ︷︷ ︸

n times

Since every time we add on another a
b we subtract either 0 or 1, we have that

n ·G a
b = na

b −m where m is an integer s.t. 0 ≤ m ≤ n and 0 ≤ na
b −m < 1. Thus

for n = b, b ·G a
b = a−m where m is the integer s.t. 0 ≤ a−m < 1. But a is also an

integer. So we must have a = m, and so b ·G a
b = 0. But that means exactly that

a
b has order at most b, since adding a

b to itself b times got us back to the identity.
So every element of G has finite order. �


